
espite clear technological advances, research challenges 
must be solved to realize a standard large-scale, QoS-
optimized platform for managing streaming big data 
analytics ecosystem.

Welcome to the inaugural 
Blue Skies column of IEEE’s 
flagship cloud computing mag-
azine. This column intends to 
provide an in-depth analysis 

of the most recent and influential research related 
to cloud technologies and innovations, focusing on 
streaming big data processing in datacenter clouds. 

Big Data Computing Paradigm
Today, we live in a digital universe in which informa-
tion and technology are not only around us but also 
play important roles in dictating the quality of our 
lives. As we delve deeper into this digital universe, 
we’re witnessing explosive growth in the variety, ve-
locity, and volume of data1,2 being transmitted over 
the Internet. A zetabyte of data passed through the 
Internet in the past year; IDC predicts that this digi-
tal universe will explode to an unimaginable eight 
Zbytes by 2015. These data are and will be generated 
mainly from Internet search, social media, mobile 
devices, the Internet of Things, business transac-
tions, next-generation radio astronomy telescopes, 
high-energy physics synchrotron, and content dis-
tribution. Government and business organizations 

are now overflowing with data, easily aggregating to 
terabytes or even petabytes of information.

The above examples demonstrate the rise of big 
data applications, in which data has grown unre-
strainedly. Conventional data processing technolo-
gies are now unable to process this data within a 
tolerable elapsed time. Such applications generate 
datasets that don’t fit the data processing model 
frameworks of traditional relational databases (such 
as Oracle, MySQL, and DB2) and data mining (such 
as Microsoft Excel, Matlab, and R). Relational data-
bases operate on archived data in response to que-
ries such as “commit a credit card transaction” (as 
in e-commerce). That is, the data processing tech-
nologies are designed to maintain an efficient and 
fault-tolerant collection of data that’s accessed and 
aggregated only when users issue a query or trans-
action request (and thus the data must be archived 
prior to processing). 

In contrast, all state-of-the-art implementations 
of data mining algorithms operate by loading the 
whole training dataset into the main (RAM) mem-
ory of a single machine or simple machine clusters 
that have static processing and storage capacity con-
figurations. This approach has two key problems.3–6 
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First, the data can simply grow too big 
over time to fit into the available RAM. 
Second, most of big data applications 
produce data spread across multiple dis-
tributed data sources (including stream-
ing sources). Moving all the datasets 
to a centralized machine is thus ex-
pensive (due, for example, to network 
communication and other I/O costs), 
even if we assume that the machine 
has a super-large RAM to hold all the 
data for processing. Further, when the 
data mining algorithms’ computational 
complexity exceeds the available RAM, 
the algorithms don’t scale well and they 
never finish or are unable to process the 
whole training dataset.

To process data as they arrive, the 
paradigm has changed from the con-
ventional “one-shot” data processing 
approach to elastic and virtualized 
datacenter cloud-based data processing 
frameworks that can mine continuous, 
high-volume, open-ended datastreams. 
This advancement is broadly supported 
by two key technologies.

Data Mining/Application 
Programming Frameworks
Data mining and application program-
ming frameworks enable the creation of 
a big data analytics application archi-
tecture. Broadly, these frameworks can 
be classified into four categories. Large-
scale data mining frameworks, such as 
GraphLab,3 FlexGP,6 Apache Mahout 
(http://mahout.apache.org), and ML-
Base,7 implement a wide range of data 
mining algorithms—including cluster-
ing, decision trees, latent Dirichlet allo-
cation, regression, and Bayesian—that 
can mine datasets in parallel by leverag-
ing distributed set of machines.

Distributed message queuing frame-
works, such as Amazon Kinesis (https://
aws.amazon.com/kinesis) and Apache 
Kafka (http://kafka.apache.org), provide 
a reliable, high-throughput, low-latency 

system of queuing real-time datastreams. 
Data application programming frame-
works, such as Apache Hadoop (http://
hadoop.apache.org) and Apache Storm 
(http://storm.incubator.apache.org), 
write applications that rapidly process 
massive amounts of data in parallel on 
large sets of machines. To speed up the 
data mining algorithms, these frame-

works simplify the process of distrib-
uting the training and learning tasks 
across a parallel set of machines. The 
frameworks also automatically take care 
of low-level distributed system manage-
ment complexities, such as task sched-
uling, fault management, interprocess 
communication, and result collection. 

Finally, NoSQL database frameworks, 
such as MongoDB (www.mongodb.org), 
HyperTable (http://hypertable.org), Cas-
sandra (http://cassandra.apache.org), and 
Amazon Dynamo (http://aws.amazon.
com/dynamodb), allow data access based 
on predefined access primitives such as 
key-value pairs. Given the exact key, the 
value is returned. This well-defined data 
access pattern results in better scal-
ability and performance predictability 
that is suitable for storing and indexing 
real-time streams of big datasets. These 
frameworks can scale more naturally to 
ad hoc and evolving large datasets, as 
NoSQL databases don’t require fixed 
table schemas or support expensive join 
operations.

Datacenter Clouds
The second key technology is datacen-
ter clouds,8–10 which promise on-de-
mand access to affordable large-scale 
resources in computing (such as mul-
ticore CPUs, GPUs, and CPU clusters) 
and storage (such as disks) without sub-
stantial upfront investment. 

Datacenter cloud services are a natu-

ral fit1,4,6 for processing big datastreams, 
because they allow data mining algo-
rithms (and underlying application pro-
gramming and database frameworks) to 
run at the scale required for handling 
uncertain data volume, variety, and veloc-
ity. However, to support a complicated, 
dynamically configurable big data ecosys-
tem, we need to innovate and implement 
novel services and techniques for orches-
trating cloud resource selection, deploy-
ment, monitoring, and QoS control. 

Big Data Analytics Ecosystem
As Figure 1 shows, a big data ecosys-
tem’s high-level architecture consists of 
three main components or layers:

•	 Data ingestion accepts data from 
multiple sources, such as online ser-
vices and back-end system logs.

•	 Data analytics consists of many sys-
tems—such as stream/batch process-
ing systems and scalable machine 
learning frameworks—that ease im-
plementation of data analytics use 

Today, we live in a digital universe in 
which information and technology 

are not only around us but also 
play important roles in dictating the 

quality of our lives. 
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cases such as collaborative filtering 
and sentiment analysis. 

•	Data storage consists of next-
generation database systems for 
storing and indexing final as well as 
intermediate datasets.

The first two layers talk with different 
databases during execution and, where 
required, persist or load the data in 
or from a database. The simple archi-
tecture in Figure 1 offers a snapshot 

of real ones; we encourage passionate 
readers to also investigate the Lambda 
Architecture.11 

Recently, each architectural layer 
changed dramatically in terms of the 
software stack when services such as 
Yahoo!, Twitter, and LinkedIn released 
open source solutions for dealing with 
big data. Figure 2 shows an example 
of the new architecture: Apache Kafka 
serves as a high-throughput distributed 
messaging system, Apache Storm as a 

distributed and fault-tolerant real-time 
computation, and Apache Cassandra as 
a NoSQL database. It’s not surprising 
that real-time stream-processing sys-
tems are just one building block in the 
big data ecosystem; computing arbitrary 
datasets via arbitrary queries demands a 
variety of tools and techniques.

Open Source Real-Time Stream 
Computation Frameworks
Although the stream-processing concept 
is not new, the available open source 
stream-processing systems are quite 
young and a silver bullet solution doesn’t 
exist. Therefore, picking an appropri-
ate platform for (near) real-time stream 
processing is a nontrivial task given the 
number of offers and their multiple fea-
tures. To ease this process, we created 
an initial list of criteria: architecture, 
language support, integration with other 
technologies, and documentation and 
community support. 

We divide the architecture dimen-
sion into centralized, distributed, and 
parallel distributed systems. Central-
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Figure 1. A high-level architecture of large-scale data processing service. The big data analytics architectures have three layers—

data ingestion, analytics, and storage—and the first two layers communicate with various databases during execution.
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Figure 2. A simple instance of large-scale datastream-processing service. The 

example service consists of Apache Kafka (data ingestion layer), Apache Storm (data 

analytics layer), and Apache Cassandra Systems (data storage layer).
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ized in-memory streaming systems are 
suitable for handling queries with low-
latency requirements, and they don’t 
produce much intermediate state data. 
For example, Esper (http://esper.code-
haus.org) is a streaming system with 
a centralized architecture that runs 
on a single node and keeps everything 
(states, operators, and so on) in memo-
ry. However, if the continuous queries 
have a large window size and might 
entail millions of tuples per second, a 
better answer is found in systems with a 
parallel-distributed architecture—such 
as Apache Samza (http://samza.incuba-
tor.apache.org)—which let you partition 
the streams and parallelize operators’ 
execution across a cluster of machines.

Language support refers to the 
frameworks’ flexibility in letting your 
team develop an application using your 
choice of language. Apache Storm is a 
good example here; it supports both 
JVM and non-JVM languages. 

Another salient dimension is tech-
nology integration—specifically, the 
availability of ready-to-plug libraries 
for connecting the system to various in-
line technologies. For example, Apache 
Kafka is a high-throughput distributed 
in-memory messaging system that com-
plements every stream-processing sys-
tem and has a ready component for this 
integration, which is a trump card. 

The last (but not least) criterion 
is the framework’s documentation and 
community support, which lets develop-
ers employ APIs easily. Here, Esper and 
Apache Storm have adequate documen-
tation support, which is only expected to 
grow as more and more end-users adopt 
these systems. Table 1 gives an overview 
of state-of-the-art open source systems 
and how they meet the criteria. 

Given more space, we would expand 
the criteria list to include more techni-
cal features such as dynamic rebalanc-
ing, state management, fault-tolerance, 

built-in monitoring, and metric report-
ing capabilities. However, in-depth 
analysis of overriding open source or 
commercial frameworks is beyond this 
column’s scope.

Open Challenges and Research 
Directions 
Despite the clear technological advances 
in machine learning, big data application 
programming frameworks, and datacen-
ter clouds, we’ve yet to realize a standard 
large-scale, QoS-optimized platform as 
a service-level software for managing a 
streaming big data analytics ecosystem. 
Future efforts will focus on solving the 
following research challenges.

Understanding an Optimal Analytics 
System 
It’s not yet clear how to build an optimal 
big data application architecture given 
the abundance of existing frameworks 
that offer competing functionalities 
for large-scale data mining, distribut-
ed message queuing, data application 
programming, and NoSQL databases. 
Frameworks such as Apache Mahout 
implement several data mining algo-
rithms, but it’s not clear which is most 
suitable for processing given both his-
torical and streaming big data in a dis-
tributed and parallel setting. Similarly, 
some data application programming 
frameworks such as Apache Hadoop 
are suitable for handling historic data, 
while others like Spark Streaming12 or 
Apache S413 are better suited to stream-
ing data. Similar complexities exist in 
choosing NoSQL databases, especially 
for heterogeneous (structured and un-
structured) datatypes. Therefore, we 
must develop a solid scientific founda-
tion and decision-making technique 
that can help us select these key func-
tionalities based on the big data’s na-
ture (that is, its volume, variety, and 
velocity).

Monitoring and Managing End-to-
End QoS
Guaranteeing QoS for large-scale data 
processing across multiple layers and 
various computing platforms is a non-
trivial task. The QoS for each computing 
platform in the ecosystem isn’t necessar-
ily the same; key quality factors include 
throughput and latency in distributed 
messaging system, response time in the 
batch processing platform, and precision 
recall in the scalable data mining plat-
form. Therefore, it is not yet clear 

•	 how these QoS could be defined co-
herently across layers;

•	 how the various measures should be 
combined to give a holistic view of 
the stream of data flows end-to-end; 
or

•	 how optimal optimization would 
be realized in cases with large sets 
of variables and constraints, such 
as with heterogeneous resources, 
bursty workloads, and so on.

To this end, future research efforts 
must take an end-to-end QoS view of 
the ecosystem and develop techniques 
and frameworks that cater to all compo-
nents rather than treating them as silos.

Provisioning Datacenter Cloud 
Resources for Real Time Analytics
Handling large volumes of stream-
ing and historical data—ranging from 
structured to unstructured and nu-
merical to micro-blog datastreams—
is challenging because its volume is 
heterogeneous and highly dynamic. 
Although datacenter clouds offer abun-
dant resources, they don’t support QoS-
driven autonomic resource provisioning 
or deprovisioning in response to chang-
es in the 3Vs (that is, in the big data ap-
plication’s behavioral uncertainties). 

The datacenter cloud resource pro-
visioning’s uncertainty14–16 has two 
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aspects. First, from a big data applica-
tion’s perspective, it’s difficult to es-
timate workload behavior in terms of 
the data volume to be analyzed, data 
arrival rate, datatypes, data process-
ing time distributions, and I/O system 
behavior. Second, from a datacenter 
resource perspective, without know-
ing the big data’s requirements or be-
haviors, it’s difficult to make decisions 
about the size of resources to be provi-

sioned at any given time. Furthermore, 
the availability, load, and throughput of 
datacenter resources can vary in unpre-
dictable ways, due to failure, malicious 
attacks, or network link congestion. 
In other words, we need reasonable 
workload and load resource perfor-
mance prediction models when making 
provisioning decisions for datacenter 
resources that host instances of data 
mining algorithms, distributed mes-

sage queuing systems, data application 
programming frameworks, and NoSQL 
databases.

Ensuring End-to-End 
Security and Privacy
Data stored on (and processed by) cloud 
resources and big data analytics eco-
system components aren’t secured at 
finer granularity levels. The applica-
tion data managed by these resources 

Table 1. Capability Analysis of Recent Open Source Stream-Processing Systems.

Architecture Language 
Support

Integration Documentation

Esper Centralized 
in-memory 

Java

.NET

Declarative 
SQL-like query 
language 

API for integrating functionalities Well-documented API 
and a thorough reference 
architecture that covers 
all features with clear-cut 
examples

Active community mailing list

Apache 
Samza

Parallel-
distributed

Java Virtual 
Machine (JVM) 
languages

Managed by Apache Yet Another 
Resource Negotiator (YARN) resource 
manager (Storm-YARN)

Apache Kafka

Limited documentations and 
examples

Spark 
Streaming12

Parallel-
distributed

Scala

Java

SQL-like query 
language 
(Shark)

Integrated scalable machine learning 
library (MLlib)

Integrated graph processing 
algorithms

Apache Kafka 

Apache Flume

Twitter

ZeroMQ

Message Queuing Telemetry 
Transport (MQTT) 

Limited documentations and 
examples

Apache Storm Parallel-
distributed

JVM and non-
JVM languages

Higher-level 
programming 
model (Trident)

Managed by apache YARN resource 
manager (Storm-YARN)

Apache Kafka

Kestrel

RabbitMQ

Java Messaging Services (JMS)

Apache HBase (Storm-HBase)

Twitter

Machine learning integration with 
TridentML library

Well-documented APIs and 
online tutorials

Several books

Active community

Apache S413 Parallel-
distributed

JVM and non-
JVM languages

Apache YARN Limited documentations and 
examples
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and components are vulnerable to theft, 
because adversaries can gain access to 
private data and malicious database ad-
ministrators might capture or leak data. 
Hence, research efforts must focus on 
developing techniques that efficiently 
support the following:

•	 end-to-end data encryption and de-
cryption without causing additional 
query and data processing overhead 
(time and space); 

•	 execution of various traditional 
SQL queries—such as equality 
checks, order comparisons, aggre-
gates, and joins—or NoSQL queries 
over encrypted data; and

•	 preservation of data security and 
privacy at each lifecycle stage (in-
cluding creation, ingestion, analyt-
ics, and visualization). 

Developing techniques that can ensure 
end-to-end stream security and privacy 
remains a challenging research problem. 

his column also welcomes high-
quality position, survey, and review 

papers from cloud computing and relat-
ed research areas. Future contributions 
might also include in-depth reports on 
innovative research projects in aca-
demia and research institutions, cloud 
and big data challenges at leading inter-
national conferences, and open source 
cloud computing projects.
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