
espite clear technological advances, research challenges
must be solved to realize a standard large-scale, QoS-
optimized platform for managing streaming big data
analytics ecosystem.

Welcome to the inaugural
Blue Skies column of IEEE’s
flagship cloud computing mag-
azine. This column intends to
provide an in-depth analysis

of the most recent and influential research related
to cloud technologies and innovations, focusing on
streaming big data processing in datacenter clouds.

Big Data Computing Paradigm
Today, we live in a digital universe in which informa-
tion and technology are not only around us but also
play important roles in dictating the quality of our
lives. As we delve deeper into this digital universe,
we’re witnessing explosive growth in the variety, ve-
locity, and volume of data1,2 being transmitted over
the Internet. A zetabyte of data passed through the
Internet in the past year; IDC predicts that this digi-
tal universe will explode to an unimaginable eight
Zbytes by 2015. These data are and will be generated
mainly from Internet search, social media, mobile
devices, the Internet of Things, business transac-
tions, next-generation radio astronomy telescopes,
high-energy physics synchrotron, and content dis-
tribution. Government and business organizations

are now overflowing with data, easily aggregating to
terabytes or even petabytes of information.

The above examples demonstrate the rise of big
data applications, in which data has grown unre-
strainedly. Conventional data processing technolo-
gies are now unable to process this data within a
tolerable elapsed time. Such applications generate
datasets that don’t fit the data processing model
frameworks of traditional relational databases (such
as Oracle, MySQL, and DB2) and data mining (such
as Microsoft Excel, Matlab, and R). Relational data-
bases operate on archived data in response to que-
ries such as “commit a credit card transaction” (as
in e-commerce). That is, the data processing tech-
nologies are designed to maintain an efficient and
fault-tolerant collection of data that’s accessed and
aggregated only when users issue a query or trans-
action request (and thus the data must be archived
prior to processing).

In contrast, all state-of-the-art implementations
of data mining algorithms operate by loading the
whole training dataset into the main (RAM) mem-
ory of a single machine or simple machine clusters
that have static processing and storage capacity con-
figurations. This approach has two key problems.3–6

Streaming Big Data
Processing in
Datacenter Clouds

78	 I EEE Clo u d Co m p u t i n g p u b l i s h ed by t h e I EEE co m p u t er s o cie t y � 2 3 2 5 - 6 0 9 5/ 14/$ 31 . 0 0 © 2 0 14 I EEE

Rajiv Ranjan
Commonwealth
Scientific and In-
dustrial Research
Organization,
Australia

Blue Skies

Ma y 2 0 14 	 I EEE Clo u d Co m p u t i n g� 79

First, the data can simply grow too big
over time to fit into the available RAM.
Second, most of big data applications
produce data spread across multiple dis-
tributed data sources (including stream-
ing sources). Moving all the datasets
to a centralized machine is thus ex-
pensive (due, for example, to network
communication and other I/O costs),
even if we assume that the machine
has a super-large RAM to hold all the
data for processing. Further, when the
data mining algorithms’ computational
complexity exceeds the available RAM,
the algorithms don’t scale well and they
never finish or are unable to process the
whole training dataset.

To process data as they arrive, the
paradigm has changed from the con-
ventional “one-shot” data processing
approach to elastic and virtualized
datacenter cloud-based data processing
frameworks that can mine continuous,
high-volume, open-ended datastreams.
This advancement is broadly supported
by two key technologies.

Data Mining/Application
Programming Frameworks
Data mining and application program-
ming frameworks enable the creation of
a big data analytics application archi-
tecture. Broadly, these frameworks can
be classified into four categories. Large-
scale data mining frameworks, such as
GraphLab,3 FlexGP,6 Apache Mahout
(http://mahout.apache.org), and ML-
Base,7 implement a wide range of data
mining algorithms—including cluster-
ing, decision trees, latent Dirichlet allo-
cation, regression, and Bayesian—that
can mine datasets in parallel by leverag-
ing distributed set of machines.

Distributed message queuing frame-
works, such as Amazon Kinesis (https://
aws.amazon.com/kinesis) and Apache
Kafka (http://kafka.apache.org), provide
a reliable, high-throughput, low-latency

system of queuing real-time datastreams.
Data application programming frame-
works, such as Apache Hadoop (http://
hadoop.apache.org) and Apache Storm
(http://storm.incubator.apache.org),
write applications that rapidly process
massive amounts of data in parallel on
large sets of machines. To speed up the
data mining algorithms, these frame-

works simplify the process of distrib-
uting the training and learning tasks
across a parallel set of machines. The
frameworks also automatically take care
of low-level distributed system manage-
ment complexities, such as task sched-
uling, fault management, interprocess
communication, and result collection.

Finally, NoSQL database frameworks,
such as MongoDB (www.mongodb.org),
HyperTable (http://hypertable.org), Cas-
sandra (http://cassandra.apache.org), and
Amazon Dynamo (http://aws.amazon.
com/dynamodb), allow data access based
on predefined access primitives such as
key-value pairs. Given the exact key, the
value is returned. This well-defined data
access pattern results in better scal-
ability and performance predictability
that is suitable for storing and indexing
real-time streams of big datasets. These
frameworks can scale more naturally to
ad hoc and evolving large datasets, as
NoSQL databases don’t require fixed
table schemas or support expensive join
operations.

Datacenter Clouds
The second key technology is datacen-
ter clouds,8–10 which promise on-de-
mand access to affordable large-scale
resources in computing (such as mul-
ticore CPUs, GPUs, and CPU clusters)
and storage (such as disks) without sub-
stantial upfront investment.

Datacenter cloud services are a natu-

ral fit1,4,6 for processing big datastreams,
because they allow data mining algo-
rithms (and underlying application pro-
gramming and database frameworks) to
run at the scale required for handling
uncertain data volume, variety, and veloc-
ity. However, to support a complicated,
dynamically configurable big data ecosys-
tem, we need to innovate and implement
novel services and techniques for orches-
trating cloud resource selection, deploy-
ment, monitoring, and QoS control.

Big Data Analytics Ecosystem
As Figure 1 shows, a big data ecosys-
tem’s high-level architecture consists of
three main components or layers:

•	 Data ingestion accepts data from
multiple sources, such as online ser-
vices and back-end system logs.

•	 Data analytics consists of many sys-
tems—such as stream/batch process-
ing systems and scalable machine
learning frameworks—that ease im-
plementation of data analytics use

Today, we live in a digital universe in
which information and technology

are not only around us but also
play important roles in dictating the

quality of our lives.

80	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue skies

cases such as collaborative filtering
and sentiment analysis.

•	Data storage consists of next-
generation database systems for
storing and indexing final as well as
intermediate datasets.

The first two layers talk with different
databases during execution and, where
required, persist or load the data in
or from a database. The simple archi-
tecture in Figure 1 offers a snapshot

of real ones; we encourage passionate
readers to also investigate the Lambda
Architecture.11

Recently, each architectural layer
changed dramatically in terms of the
software stack when services such as
Yahoo!, Twitter, and LinkedIn released
open source solutions for dealing with
big data. Figure 2 shows an example
of the new architecture: Apache Kafka
serves as a high-throughput distributed
messaging system, Apache Storm as a

distributed and fault-tolerant real-time
computation, and Apache Cassandra as
a NoSQL database. It’s not surprising
that real-time stream-processing sys-
tems are just one building block in the
big data ecosystem; computing arbitrary
datasets via arbitrary queries demands a
variety of tools and techniques.

Open Source Real-Time Stream
Computation Frameworks
Although the stream-processing concept
is not new, the available open source
stream-processing systems are quite
young and a silver bullet solution doesn’t
exist. Therefore, picking an appropri-
ate platform for (near) real-time stream
processing is a nontrivial task given the
number of offers and their multiple fea-
tures. To ease this process, we created
an initial list of criteria: architecture,
language support, integration with other
technologies, and documentation and
community support.

We divide the architecture dimen-
sion into centralized, distributed, and
parallel distributed systems. Central-

Applications

Scalable data centre cloud resource layer

Big data analytics ecosystem

Data storage layerData ingestion layer Data analytic layer

Data application programming frameworks

Large-scale data
mining

framework

Disaster
management

Radio
astronomy

Smart energy
grids

Telephone fraud
detection

Healthcare

NoSQL
databases

Datacenter provider A Datacenter provider B Datacenter provider C

Streams
Distributed
streaming
systems

Distributed data
queuing systems

Batch processing
systems

Figure 1. A high-level architecture of large-scale data processing service. The big data analytics architectures have three layers—

data ingestion, analytics, and storage—and the first two layers communicate with various databases during execution.

Apache Kafka

Apache Storm

Apache
Cassandra

Figure 2. A simple instance of large-scale datastream-processing service. The

example service consists of Apache Kafka (data ingestion layer), Apache Storm (data

analytics layer), and Apache Cassandra Systems (data storage layer).

Ma y 2 0 14 	 I EEE Clo u d Co m p u t i n g� 81

ized in-memory streaming systems are
suitable for handling queries with low-
latency requirements, and they don’t
produce much intermediate state data.
For example, Esper (http://esper.code-
haus.org) is a streaming system with
a centralized architecture that runs
on a single node and keeps everything
(states, operators, and so on) in memo-
ry. However, if the continuous queries
have a large window size and might
entail millions of tuples per second, a
better answer is found in systems with a
parallel-distributed architecture—such
as Apache Samza (http://samza.incuba-
tor.apache.org)—which let you partition
the streams and parallelize operators’
execution across a cluster of machines.

Language support refers to the
frameworks’ flexibility in letting your
team develop an application using your
choice of language. Apache Storm is a
good example here; it supports both
JVM and non-JVM languages.

Another salient dimension is tech-
nology integration—specifically, the
availability of ready-to-plug libraries
for connecting the system to various in-
line technologies. For example, Apache
Kafka is a high-throughput distributed
in-memory messaging system that com-
plements every stream-processing sys-
tem and has a ready component for this
integration, which is a trump card.

The last (but not least) criterion
is the framework’s documentation and
community support, which lets develop-
ers employ APIs easily. Here, Esper and
Apache Storm have adequate documen-
tation support, which is only expected to
grow as more and more end-users adopt
these systems. Table 1 gives an overview
of state-of-the-art open source systems
and how they meet the criteria.

Given more space, we would expand
the criteria list to include more techni-
cal features such as dynamic rebalanc-
ing, state management, fault-tolerance,

built-in monitoring, and metric report-
ing capabilities. However, in-depth
analysis of overriding open source or
commercial frameworks is beyond this
column’s scope.

Open Challenges and Research
Directions
Despite the clear technological advances
in machine learning, big data application
programming frameworks, and datacen-
ter clouds, we’ve yet to realize a standard
large-scale, QoS-optimized platform as
a service-level software for managing a
streaming big data analytics ecosystem.
Future efforts will focus on solving the
following research challenges.

Understanding an Optimal Analytics
System
It’s not yet clear how to build an optimal
big data application architecture given
the abundance of existing frameworks
that offer competing functionalities
for large-scale data mining, distribut-
ed message queuing, data application
programming, and NoSQL databases.
Frameworks such as Apache Mahout
implement several data mining algo-
rithms, but it’s not clear which is most
suitable for processing given both his-
torical and streaming big data in a dis-
tributed and parallel setting. Similarly,
some data application programming
frameworks such as Apache Hadoop
are suitable for handling historic data,
while others like Spark Streaming12 or
Apache S413 are better suited to stream-
ing data. Similar complexities exist in
choosing NoSQL databases, especially
for heterogeneous (structured and un-
structured) datatypes. Therefore, we
must develop a solid scientific founda-
tion and decision-making technique
that can help us select these key func-
tionalities based on the big data’s na-
ture (that is, its volume, variety, and
velocity).

Monitoring and Managing End-to-
End QoS
Guaranteeing QoS for large-scale data
processing across multiple layers and
various computing platforms is a non-
trivial task. The QoS for each computing
platform in the ecosystem isn’t necessar-
ily the same; key quality factors include
throughput and latency in distributed
messaging system, response time in the
batch processing platform, and precision
recall in the scalable data mining plat-
form. Therefore, it is not yet clear

•	 how these QoS could be defined co-
herently across layers;

•	 how the various measures should be
combined to give a holistic view of
the stream of data flows end-to-end;
or

•	 how optimal optimization would
be realized in cases with large sets
of variables and constraints, such
as with heterogeneous resources,
bursty workloads, and so on.

To this end, future research efforts
must take an end-to-end QoS view of
the ecosystem and develop techniques
and frameworks that cater to all compo-
nents rather than treating them as silos.

Provisioning Datacenter Cloud
Resources for Real Time Analytics
Handling large volumes of stream-
ing and historical data—ranging from
structured to unstructured and nu-
merical to micro-blog datastreams—
is challenging because its volume is
heterogeneous and highly dynamic.
Although datacenter clouds offer abun-
dant resources, they don’t support QoS-
driven autonomic resource provisioning
or deprovisioning in response to chang-
es in the 3Vs (that is, in the big data ap-
plication’s behavioral uncertainties).

The datacenter cloud resource pro-
visioning’s uncertainty14–16 has two

82	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue skies

aspects. First, from a big data applica-
tion’s perspective, it’s difficult to es-
timate workload behavior in terms of
the data volume to be analyzed, data
arrival rate, datatypes, data process-
ing time distributions, and I/O system
behavior. Second, from a datacenter
resource perspective, without know-
ing the big data’s requirements or be-
haviors, it’s difficult to make decisions
about the size of resources to be provi-

sioned at any given time. Furthermore,
the availability, load, and throughput of
datacenter resources can vary in unpre-
dictable ways, due to failure, malicious
attacks, or network link congestion.
In other words, we need reasonable
workload and load resource perfor-
mance prediction models when making
provisioning decisions for datacenter
resources that host instances of data
mining algorithms, distributed mes-

sage queuing systems, data application
programming frameworks, and NoSQL
databases.

Ensuring End-to-End
Security and Privacy
Data stored on (and processed by) cloud
resources and big data analytics eco-
system components aren’t secured at
finer granularity levels. The applica-
tion data managed by these resources

Table 1. Capability Analysis of Recent Open Source Stream-Processing Systems.

Architecture Language
Support

Integration Documentation

Esper Centralized
in-memory

Java

.NET

Declarative
SQL-like query
language

API for integrating functionalities Well-documented API
and a thorough reference
architecture that covers
all features with clear-cut
examples

Active community mailing list

Apache
Samza

Parallel-
distributed

Java Virtual
Machine (JVM)
languages

Managed by Apache Yet Another
Resource Negotiator (YARN) resource
manager (Storm-YARN)

Apache Kafka

Limited documentations and
examples

Spark
Streaming12

Parallel-
distributed

Scala

Java

SQL-like query
language
(Shark)

Integrated scalable machine learning
library (MLlib)

Integrated graph processing
algorithms

Apache Kafka

Apache Flume

Twitter

ZeroMQ

Message Queuing Telemetry
Transport (MQTT)

Limited documentations and
examples

Apache Storm Parallel-
distributed

JVM and non-
JVM languages

Higher-level
programming
model (Trident)

Managed by apache YARN resource
manager (Storm-YARN)

Apache Kafka

Kestrel

RabbitMQ

Java Messaging Services (JMS)

Apache HBase (Storm-HBase)

Twitter

Machine learning integration with
TridentML library

Well-documented APIs and
online tutorials

Several books

Active community

Apache S413 Parallel-
distributed

JVM and non-
JVM languages

Apache YARN Limited documentations and
examples

Ma y 2 0 14 	 I EEE Clo u d Co m p u t i n g� 83

and components are vulnerable to theft,
because adversaries can gain access to
private data and malicious database ad-
ministrators might capture or leak data.
Hence, research efforts must focus on
developing techniques that efficiently
support the following:

•	 end-to-end data encryption and de-
cryption without causing additional
query and data processing overhead
(time and space);

•	 execution of various traditional
SQL queries—such as equality
checks, order comparisons, aggre-
gates, and joins—or NoSQL queries
over encrypted data; and

•	 preservation of data security and
privacy at each lifecycle stage (in-
cluding creation, ingestion, analyt-
ics, and visualization).

Developing techniques that can ensure
end-to-end stream security and privacy
remains a challenging research problem.

his column also welcomes high-
quality position, survey, and review

papers from cloud computing and relat-
ed research areas. Future contributions
might also include in-depth reports on
innovative research projects in aca-
demia and research institutions, cloud
and big data challenges at leading inter-
national conferences, and open source
cloud computing projects.

Acknowledgements
I thank Omer Rana (Cardiff Univer-
sity), Lizhe Wang (Chinese Academy
of Sciences), and Alireza Khoshkbarfo-
roushha (Australian National Univer-
sity) for providing and discussing their
viewpoints on research areas related to
this column. I also thank Khoshkbarfo-
roushha for his instrumental input in
the compilation of Table 1.

References
1.	X. Wu et al., “Data Mining with Big

Data,” IEEE Trans. Knowledge and
Data Eng., vol. 26, no. 1, 2013, pp.
97–107.

2.	W. Fan and A. Bifet, “Mining Big
Data: Current Status, and Forecast
to the Future,” SIGKDD Explora-
tions Newsletter, vol. 14, no. 2, 2013,
pp. 1–5.

3.	Y. Low et al., “Distributed GraphLab:
A Framework for Machine Learn-
ing and Data Mining in the Cloud,”
Proc. Very Large Database Endow-
ment, vol. 5, no. 8, 2012, pp. 716–727.

4.	S.R. Upadhyaya, “Parallel Approach-
es to Machine Learning—A Com-
prehensive Survey,” J. Parallel Dis-
tributed Computing, vol. 73, no. 3,
2013, pp. 284–292.

5.	D. Peteiro-Barral and B. Guijarro-
Berdiñas, “A Survey of Methods for
Distributed Machine Learning,”
Progress in Artificial Intelligence,
vol. 2, no. 1, 2013, pp. 1–11.

6.	O.C. Derby, FlexGP: a Scalable Sys-
tem for Factored Learning in the
Cloud, doctoral dissertation, Dept.
Electrical and Computing Eng.,
MIT, 2013.

7.	T. Kraska, “MLBase: A Distrib-
uted Machine-Learning System,”
Proc. Sixth Biennial Conf. Innova-
tive Data Systems Research, 2013;
www.cidrdb.org/cidr2013/Papers/
CIDR13_Paper118.pdf.

8.	M. Armbrust et al., “A View of Cloud
Computing,” Comm. ACM, vol. 53,
no. 4, 2010, pp. 50–58.

9.	D.A. Patterson, “Technical Perspec-
tive: The Data Center Is the Com-
puter,” Comm. ACM, vol. 51, no. 1,
2008, pp. 105–105.

10.	L. Wang et al., eds., Cloud Comput-
ing: Methodology, Systems, and Ap-
plications, CRC Press, 2011.

11.	N. Marz, Big Data: Principles and
Best Practices of Scalable Real-Time

Data Systems, O’Reilly Media, 2013.
12.	M. Zaharia et al., “Discretized

Streams: An Efficient and Fault-
Tolerant Model for Stream Process-
ing on Large Clusters,” Proc. 4th
Usenix Conf. Hot Topics in Cloud
Computing, 2012; www.cs.berkeley.
edu/~matei/papers/2012/hotcloud_
spark_streaming.pdf.

13.	L. Neumeyer et al., “S4: Distributed
Stream Computing Platform,” Proc.
IEEE Int’l Conf. on Data Mining
Workshops, 2010, pp. 170–177.

14.	R.N. Calheiros, R. Ranjan, and R.
Buyya, “Virtual Machine Provision-
ing Based on Analytical Perfor-
mance and QoS in Cloud Comput-
ing Environments,” Proc. 40th Int’l
Conf. Parallel Processing (ICPP 11),
2011, pp. 295–304.

15.	J. Schad et al., “Runtime Measure-
ments in the Cloud: Observing, Ana-
lyzing, and Reducing Variance,” Proc.
Very Large Database Endowment, vol.
3, nos. 1–2, 2010, pp. 460–471.

16.	A. Iosup et al., “On the Performance
Variability of Production Cloud Ser-
vices,” Proc. IEEE/ACM Int’l Symp.
Cluster, Cloud, and Grid Computing
(CCGrid 11), 2011, pp. 103–113.

Rajiv Ranjan is a senior research
scientist and Julius Fellow at the Com-
monwealth Scientific and Industrial Re-
search Organization (CSIRO), Australia.
His research interests include cloud com-
puting, big data, and quality of service
(QoS) optimization in distributed sys-
tems. Ranjan has a PhD in computer sci-
ence and software engineering from the
University of Melbourne. Contact him at
rajiv.ranjan@csiro.au and http://www.ict.
csiro.au/staff/rajiv.ranjan.

Selected CS articles and columns
are also available for free at http://
ComputingNow.computer.org.

