
J Supercomput (2013) 65:154–184
DOI 10.1007/s11227-011-0710-5

Peer-to-peer service provisioning in cloud computing
environments

Rajiv Ranjan · Liang Zhao

Published online: 21 October 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper aims to advance the management and delivery of services in
large, heterogeneous, uncertain, and evolving cloud computing environments. The
goal is important because such systems are becoming increasingly popular, yet ex-
isting service management methods do not scale well, and nor do they perform well
under highly unpredictable conditions. If these problems can be solved, then Infor-
mation Technology (IT) services can be made to operate in more scalable and reliable
manner.

In this paper, we present a peer-to-peer approach for managing services in large
scale, dynamic, and evolving cloud computing environments. The system compo-
nents such as virtualized services, computing servers, storage, and databases self-
organize themselves using a peer-to-peer networking overlay. Inter-networking sys-
tem components through peer-to-peer routing and information dissemination struc-
ture is essential to avoid the problems of management bottleneck and single point of
failure that is predominantly associated with traditional centralized and hierarchical
distributed (grids/clouds) system design approaches. We have validated our approach
by conducting a set of rigorous performance evaluation study using the Amazon EC2
cloud computing environment. The results prove that managing services based on
peer-to-peer routing and information dissemination structure is feasible and offers

R. Ranjan (�) · L. Zhao
Service Oriented Computing (SOC) Research Group, School of Computer Science and Engineering,
The University of New South Wales, Sydney, Australia
e-mail: rajivr@cse.unsw.edu.au

L. Zhao
e-mail: lzhao@cse.unsw.edu.au

R. Ranjan
Information Engineering Laboratory, CSIRO Information and Communication Technologies (ICT)
Centre, North Road, Acton, ACT 2601, Australia
e-mail: rajiv.ranjan@csiro.au

mailto:rajivr@cse.unsw.edu.au
mailto:lzhao@cse.unsw.edu.au
mailto:rajiv.ranjan@csiro.au


Peer-to-peer service provisioning in cloud computing environments 155

significant performance benefits as regards to overall system reliability, scalability,
and self-management.

Keywords Peer-to-peer · Service provisioning · Cloud computing

1 Introduction

Cloud computing is the latest evolution of computing, where IT capabilities are of-
fered as services. Cloud computing [6, 10, 15, 37] delivers infrastructure, platform,
and software (application) as services, which are made available as subscription-
based services in a pay-as-you-go model to consumers. These services in industry are
respectively referred to as Infrastructure as a Service (IaaS) [38, 40], Platform as a
Service (PaaS) [2–4, 32], and Software as a Service (SaaS) [13]. A technical report [6]
published by University of Berkeley in February 2009 states that “Cloud computing,
the long-held dream of computing as a utility, has the potential to transform a large
part of the IT industry, making software even more attractive as a service.”

If cloud computing is properly applied within an overall IT strategy, it can help
SMEs and governments to lower their IT costs, by taking advantage of economies of
scale and automated IT operations, while at the same time optimizing investment in
in-house computing infrastructure. Adoption of cloud computing platforms as an ap-
plication service provisioning environment has the following critical benefits: (i) soft-
ware enterprises and startups with innovative ideas for new Internet services are no
longer required to make large capital outlays in the hardware and software infras-
tructures to deploy their services or human expense to operate it; (ii) government
agencies and financial organizations can use clouds as an effective means for cost
cutting by leasing their IT services hosting and maintenance responsibility to exter-
nal cloud(s); (iii) organizations can more cost effectively manage peak-load by using
the cloud, rather than planning and building for peak load, and having under-utilized
servers sitting there idle during off peak time, and (iv) failures due to natural disasters
or regular system maintenance/outage may be managed more gracefully as services
may be more transparently managed and migrated to other available cloud resources,
hence enabling improved service level agreement (SLA).

The process of deploying application services on publicly accessible clouds (such
as Amazon EC2 [38], Google App Engine [17], Rejila [31], Rackspace [24]) that
expose their capabilities as a network of virtualized services (hardware, storage,
database) is known as Cloud Provisioning. The Cloud provisioning [26] process con-
sists of three key steps: (i) Virtual Machine (VM) Provisioning, this involves instan-
tiation of one or more VMs that match the specific hardware characteristics and soft-
ware requirements of the services to be hosted. Most cloud providers provide a set
of general-purpose VM classes with generic software and resource configurations.
For example Amazon’s EC2 cloud supports five basic types of VMs; (ii) Resource
Provisioning, which is mapping and scheduling of VMs onto distributed physical
cloud servers within a cloud. Currently, most of cloud providers do not provide any
control over resource provisioning to application service-level developers, in other



156 R. Ranjan, L. Zhao

words mapping of VMs to physical servers is completely hidden from cloud appli-
cation service developers; and (iii) Service Provisioning, the final step is deploy-
ment of specialized application services (such as web services, business processes,
Hadoop/MapReduce processes for scalable data analysis) within VMs and mapping
of end-user’s requests to these services. In this paper, we mainly focus on the third
step, where given a set of VMs that are hosting different types of application services
(or multiple instances of same application service), how to dynamically monitor, and
distribute the incoming requests among them in a completely peer-to-peer (decentral-
ized and distributed) manner.

Although the components (services, VMs, physical servers, storage) that are part
of a cloud provisioning environment may be distributed, existing techniques usually
employ centralized approaches [2, 4, 40] to overall service monitoring, discovery,
and load-balancing. We claim that centralized approaches are not an appropriate so-
lution [26, 29, 41] for this purpose, due to concerns of scalability, performance, and
reliability arising from the management of multiple service queues and the expected
large volume of service requests. Monitoring of system components is required for
effecting on-line load-balancing through a collection of system performance char-
acteristics. Therefore, we advocate architecting service monitoring, discovery, and
load-balancing services based on decentralized (peer-to-peer) messaging and index-
ing models.

Services provisioned across multiple clouds are located in different network do-
mains that may use heterogeneous addressing and naming schemes (public addresses,
private addresses with NAT, etc.). In general, services would require all their dis-
tributed components to follow a uniform IP addressing scheme (for example, to be
located on the same local network), so it becomes mandatory to build some kind of
overlay network on top of the physical routing network that aids the service compo-
nents in undertaking seamless and robust communication. Existing implementation
including VPN-Cubed [39], OpenVPN [25] provides an overlay network that allows
application developer to control addressing, topology, protocols, and encrypted com-
munications for services deployed across multiple clouds (private and public) sites.
However, these implementations do not provide capabilities related to decentralized
service discovery, monitoring, and load-balancing across VM instances.

In this paper, we advocate architecting service monitoring [28], discovery [34],
and load-balancing [26] services based on decentralized (peer-to-peer) messaging [9,
18, 22, 23] and indexing [14, 19, 29, 36] models.

1.1 Scalable peer-to-peer approach

In this paper, we propose to interconnect the cloud system components based on
structured peer-to-peer routing structures. In literature, structured peer-to-peer rout-
ing structures are more commonly referred to as the DHTs. DHTs provide hash table
like functionality at Internet scale. DHTs such as Chord [35], CAN [30], and Pas-
try [33] are inherently self-organizing, fault-tolerant, and scalable. DHTs provide ser-
vices that are light-weight and hence, do not require an expensive hardware platform
for hosting, which is an important requirement as regards to building and managing
cloud systems that aggregate massive number of commodity servers and virtualized



Peer-to-peer service provisioning in cloud computing environments 157

instances hosted within them. A DHT is a distributed data structure that associates a
key with a data. Entries in a DHT are stored as a (key, data) pair. A data can be looked
up within a logarithmic overlay routing hops if the corresponding key is known.

Engineering cloud provisioning services based on DHTs is an efficient approach
because DHTs are highly scalable, can gracefully adapt to the dynamic system expan-
sion (join) or contraction (leave, failure), are not susceptible to single point of failure,
and promote autonomy. Engineering Cloud provisioning services over a DHT net-
working model offers new research challenges in designing novel data indexing and
routing algorithms. Innovative techniques need to be developed to ensure that query
load is balanced across the system; routing links per resource is minimized, and at
the same time logarithmic performance bounds for data lookup, entity (services, re-
sources) join or leave on DHTs are maintained.

1.2 Our contributions

The novel contributions of this paper include: (i) an integrated framework called
cloud peer that facilitates peer-to-peer management of cloud system components for
providing end-users with fault-tolerant and reliable services in large, autonomous,
and highly dynamic environments; (ii) extension of the DHT routing structure with
cloud service monitoring, discovery, and load-balancing capabilities; and (iii) com-
prehensive asymptotic analysis of messaging overhead involved with proposed ap-
proach.

We now summarise some of our findings:

– in a cloud computing system consisting of n services, on average the number
of messages required to successfully discover and map a request to a service is
O(logn).

– proposed peer-to-peer approach to load-balancing is highly effective in curbing
the number of mapping iterations undertaken on a per service request basis, the
mapping and notification message complexity involved with the load-balancing
algorithm is O(1).

– application workload granularity and service status update frequency have signifi-
cant influence on the mapping delay experienced by service requests in the system.

1.3 Paper organization

The rest of this paper is organized as follows: First, existing state-of-the-art in cloud
provisioning domain is discussed. This is followed by some survey results on cloud
provisioning capabilities in leading commercial public clouds. Then, a layered ap-
proach to architecting peer-to-peer cloud provisioning system is presented. The finer
details related to architecting peer-to-peer cloud service discovery and load-balancing
techniques over DHT overlay is then presented, followed by a analysis of the algo-
rithms. Lastly, experimental results of the peer-to-peer cloud provisioning implemen-
tation across a public cloud (Amazon EC2) environment is presented next. The paper
ends with brief conclusive remarks.



158 R. Ranjan, L. Zhao

2 Related work

In this section, we look at the current state-of-the-art and compare it against the
work proposed in this paper. Key players in cloud computing domain such as Ama-
zon EC2 [38], Microsoft Azure [40], Google App Engine [17], Eucalyptus [12], and
GoGrid [16] offer a variety of pre-packaged services for monitoring, managing and
provisioning resources. However, the way these techniques are implemented in each
of these clouds vary significantly.

Currently, Amazon Web Services (AWS) exposes three centralized services for
load-balancing (Elastic Load Balancer [4]), monitoring (Amazon CloudWatch [2]),
and Auto-Scaling (Amazon Auto-Scaling [1]). Both Elastic Load Balancer and Auto-
Scaling services rely on the resource status information reported by the CloudWatch
service. Elastic Load Balancer service can automatically provision incoming service
workload across available Amazon EC2 instances. On the other hand, Auto Scaling
service can be used to dynamically scale-in or scale-out the number of Amazon EC2
VM instances for handling changes in service demand patterns. However, Cloud-
Watch can only monitor the status information at VM-level not at specific application
service level. In reality a VM instance can host more than one services such as web
server, database backend, image server, etc. Therefore, there is critical requirement
monitoring the status of individual services in a scalable manner. This can aid in
accurately predicting services’ behaviours and performance.

Eucalyptus [12] is an open source cloud computing platform. The system is com-
posed of three controllers such as Node Controller, Cluster Controller, and Cloud
Controller. These controllers are responsible for managing virtual machines on phys-
ical resources, coordinating load-decisions across nodes that are in same availability
zone and handling connections from external clients and administrators. In the current
hierarchical design, cloud controller works at the root level, Cluster Controllers are
the intermediate nodes, and Node Controllers operate at the leaf level. However, from
network management perspective the hierarchical design pattern may prove to be per-
formance bottleneck with the increase in service request intensity and system size.

Windows Azure Fabric [40] is designed over a weave-like inter-connection struc-
ture that includes nodes (servers, VMs and load-balancers) and edges (power, Eth-
ernet and serial communications). The Azure Fabric Controller (FC) is the service,
which monitors, maintains and provisions machines to host the applications that the
developer creates and deploys in the Microsoft Cloud. FC is responsible for managing
all the software and hardware components in a Microsoft data center. These compo-
nents include servers, load-balancers (hardware-based), switches, routers, power-on
automation devices, etc. The behavior of the FC is made redundant by creating multi-
ple replicas (5 to 7) at any given point of time. These replicas are constantly updated
to ensure that information consistency and integrity is achieved across FCs.

GoGrid [16] Cloud Hosting offers developers centralized F5 Load Balancers for
distributing application service traffic across servers, as long as IPs and specific ports
of these servers are attached. The load balancer allows Round Robin algorithm and
Least Connect algorithm for routing application service requests. Also, the load bal-
ancer can detect a crash of the server, which it handles by redirecting future requests
for the failed server to other available servers.



Peer-to-peer service provisioning in cloud computing environments 159

Unlike other cloud platforms, Google App Engine [17] offers developers a scal-
able platform in which applications can run, rather than providing direct access to
a customized virtual machine. Therefore, access to the underlying operating system
is restricted in App Engine. And load-balancing strategies, service provisioning and
auto scaling are all automatically managed by the system behind the scenes. At this
time, there is very little or no documentation available about finer details of Google
App Engine architecture.

In this paper, we address the limitation of nonscalable (centralized, hierarchical)
way of provisioning services in clouds through implementation of a generic peer-
to-peer routing and information indexing structure (Cloud Peer) for internetworking
multiple services and applications as part of single, cohesive cloud resource manage-
ment abstraction.

3 Models

This focus of this section is to provide comprehensive details on cloud computing en-
vironment. The system and application models considered in this paper are described
first, and the proposed peer-to-peer (discovery, load-balancing) model that delivers
reliable and scalable application management environment is induced and presented
based on these models. Table 1 shows the notations for System, Application, and
Index models that we refer to in rest of this paper.

3.1 Overall system model

Clouds aim to power the next generation data centers by architecting them as a net-
work of virtual services (hardware, database, user-interface, application logic) so that
end-users are able to access and deploy applications from anywhere in the world on
demand at competitive costs depending on users QoS (Quality of Service) require-
ments. The cloud computing system [21], P , is a set of cloud computing infrastruc-
tures owned and maintained by 3rd party providers such as Amazon EC2, Flexiscale,
and Go-Grid. More formally,

P = (r1, r2, . . . , rn) ∪ d,

where

ri ,1 ≤ i ≤ k,= {v1,m, vi,2, . . . , vi,m} ∪ di .

In case of a virtual cloud (ri ), vi is virtual machine for hosting services and d is
the cloud specific data repository (such as S3 in case of Amazon S3 cloud). In reality,
a cloud application provisioning system can create multiple virtual clouds within sin-
gle or multiple cloud computing environments. The granularity and size (number of
virtual clouds) of the system is dependent on the application’s QoS requirements. All
virtual clouds are fully interconnected in way that a messaging route exists between
any two individual VMs. Virtual clouds that are hosted in different cloud comput-
ing domains (data centers) are connected to each other through Internet; this implies
that inter virtual cloud communication is dynamic and heterogeneous. However, we



160 R. Ranjan, L. Zhao

Table 1 Notations: system, application, and index models

Symbol Meaning

System

P a set of cloud computing infrastructures

ri i-th cloud resource

si a service instance

di data repository for i-th cloud

vi,m a virtual machine instance

Application

G an application workload

n number of tasks or work units in a application

wi i-th task or work unit

Id,i input dataset associated with i-th work unit

Multi-dimensional Index

di, j discovery query for service i from j -th application provisioner

ui a update query issued by the i-th service

dim dimensionality or number of attributes in the Cartesian space

fmin minimum division level of d-dimensional index tree

x, y, z Cartesian coordinates of a 3-dimensional index cell

b a pastry overlay configuration parameter

key a unique identifier assigned to a query

Tdi,j
, Tui

random variables denoting number of disjoint query paths undertaken in
mapping a discovery and update queries

Mdi,j
random variable denoting number of messages generating a discovery query

can safely assume that communication network between virtual clouds hosted within
same data center would be homogeneous. The performance of cloud resources (such
as processor speed, memory, cache size, disk, and storage) that are allocated to a vir-
tual machine can be approximated by measuring capacity, spindle count, seek time,
and transfer speed. These software and hardware characteristics determine the per-
formance that a given application can extract from the system.

Each VM can host a service si (or services) that provides a certain kind of ac-
tion, or functionality that’s exchanged for value between provider and end-user. The
action or functionality can vary based on the application model, for example a high-
performance computing service such as Folding@home, SETI@home provides func-
tionality for executing mathematical models on given set of data. On the other hand, a
Web server is a service that delivers content, such as web pages, using the Hypertext
Transfer Protocol (HTTP), over the Internet.

3.2 Application model

Several fundamental workloads in science, physics, commerce, media, and engi-
neering can be modeled as embarrassingly parallel or Bag of Tasks (BoT) work-
loads. Some popular examples in this domain are referred to as the “@home” work-
load (e.g., Einstein@home, Folding@home, SETI@home, BLAST, MCell, INS2D).



Peer-to-peer service provisioning in cloud computing environments 161

A workload G that belongs to this model includes of a number of n homogeneous
or heterogeneous independent work units {w1,w2, . . . ,wn} without interwork unit
control or communication dependencies. A work unit wi in G is always associated
with a set Id,i of input data objects {Id,1, Id,2, . . . , Id,n}. In general each work unit
represents a particular data analysis or processing experiment with a distinct set of
parameter and input data object. Although it can be assumed that there exists a ran-
dom relationship between data objects and work units, the relationship between data
objects and work units may show regular dependency patterns, such as one-to-many
and partitioned.

Traditionally in Grid computing domain, an application workload is characterized
as computation or communication intensive. The main application characteristic that
determines its type is the communication-to-computation ratio. In this work, we as-
sume that work units are computation intensive and they do not communicate at run-
time. Thus, there exist no control or data dependency among the work units in the
application. In the proposed system model, a SME or Cloud application owner can
simultaneously submit multiple applications that are composed under BoT model.

4 Layered system design

Figure 1 illustrates a layered cloud computing architecture for enabling peer-to-peer
provisioning of services. Physical cloud servers, along with core middleware capa-
bilities (VMs, hypervisors), form the basis for delivering IaaS. The application-level
middleware services aims at providing PaaS capabilities. The top layer focuses on

Fig. 1 A depiction of layered peer-to-peer provisioning system architecture



162 R. Ranjan, L. Zhao

application services (SaaS) by making use of services provided by the lower lay-
ers. PaaS/SaaS services are often developed and provided by the 3rd party service
providers, who may or may not be different from IaaS providers.

Cloud applications (SaaS): Popular cloud applications include Business to Busi-
ness (B2B) applications, traditional eCommerce type of applications, enterprise busi-
ness applications such as CRM and ERP, social computing such as Facebook and
MySpace, and compute, data intensive applications and Content Delivery Networks
(CDNs). This layer also includes the software environments and programming frame-
works such as Web 2.0 Interfaces (Ajax, IBM Workplace, and Visual Studio.net
Azure plug-in) that help developers in creating rich, cost-effective, user-interfaces
for browser-based applications. The layer also provides the data intensive, parallel
programming environments (such as MapReduce, Hadoop, Dryad) and composition
tools that ease the creation, deployment, and execution of applications in clouds.

Core Services Layer (PaaS): This layer implements the platform level services
that provide runtime environment-enabling cloud computing capabilities to applica-
tion services built using User-Level Middlewares. Core services at this layer include
Scheduling, Fault-Management, Monitoring, Dynamic SLA Management, Account-
ing, Billing, and Pricing. Further, the services at this layer must be able to provide
support for decentralized load-balancing, scalable selection, and messaging between
distributed cloud components. Some of the existing services operating at this layer
are Amazon EC2’s CloudWatch and Load-balancer service, Google App Engine, Mi-
crosoft Azure fabric controller, and Aneka. To be able to provide support for decen-
tralized service discovery [20] and load-balancing between cloud components (VM
instances, application services); novel Distributed Hash Table (DHT)-based PaaS
layer services need to be developed at this layer for supporting complex interactions
with guarantees on dynamic management. In Fig. 1, this component of PaaS layer is
shown as cloud peer service.

Infrastructure Layer (IaaS): The computing power in cloud computing environ-
ments is supplied by a collection of data centers that are typically installed with many
thousands of servers. At the IaaS layer there exists massive physical servers (storage
servers and application servers) that power the data centers. These servers are trans-
parently managed by the higher level virtualization services and toolkits that allow
sharing of their capacity among virtual instances of servers. These virtual machines
(VMs) are isolated from each other, which aids in achieving fault tolerant behavior
and the isolation of security contexts.

5 The peer-to-peer provisioning approach

In this paper, we consider a service provisioning approach that involves following
stages: (i) Discovery, the process of locating an appropriate application service in a
loosely-networked overlay of services that can successfully serve an user’s request
under given constraints/targets (type, availability, location, performance constraints)



Peer-to-peer service provisioning in cloud computing environments 163

and (ii) Load-balancing, which is an act of uniformly distributing workload across
one or more service instances, in order to achieve performance targets such as max-
imize resource utilization, maximize throughput, minimize response time, minimize
cost, and maximize revenue. Although resource discovery and load-balancing are
widely studied problems in distributed systems (grid computing, data centers), more
advanced techniques and algorithms that cater for higher level of decentralization,
scalability, and self-management need to be developed.

In effect, end-users for an application service could initiate request from any part
of the Internet (in other words end-users are geographically and topologically dis-
tributed). Similarly, the system size can vary based on popularity of application ser-
vice and performance requirements. Further, as clouds become ready for mainstream
acceptance, scalability of services will come under more severe scrutiny since at that
time cloud providers will have to support an increasing number of online services,
each being accessed by massive numbers of global users round the clock. Tradi-
tional way of discovering and mapping requests (stage 2) across services based on
centralized network models is inefficient due to scalability, performance, and relia-
bility concerns arising from large system size and volume of service requests. Thus,
scalable and decentralized approaches that are self-managing must be developed to
accomplish tasks at different stages (stage 1 & 2).

5.1 Query types and their composition

To an extent, the multilayered (IaaS, PaaS, and SaaS) architecture of cloud comput-
ing environments (refer to Fig. 2) complicates the overall service discovery problem.
At each layer, cloud offers heterogeneous mix of services that differ in their scale,
granularity, and type. At IaaS layer, cloud offers services such as physical servers,
VMs, storage devices. The search dimensions at IaaS layer can include processor
speed, number of cores, processor architecture, installed operating system, available
memory, and network bandwidth. At SaaS-level, SaaS providers can effectively de-
ploy multiple types of services (and/or multiple instance of same service) based on
the composition and predicted workload of the application. For instance, a SaaS
provider, who hosts a business workflow (such as ERP, CRM) can simultaneously
create multiple instances of different services (such as application server, database
server, security server, etc.) to meet its workload demands. The main challenge for
a Service Aggregation Engine (Service Provisioner) is to appropriately select the set
of services across workflow such that end-to-end performance targets are met (e.g.,
minimize response, maximize service throughput).

A query at SaaS-level must search for services that satisfy multiple criteria in-
cluding Service type, price, hosting location, and availability. For example, based
on recent information published by Amazon EC2 CloudWatch service, each Ama-
zon Machine Image (AMI) instance has seven performance metrics (see Table 2) and
three dimensions (see Table 3) associated with it. To summarize, a service discovery
query would be a conjunction of sub-queries that needs to be resolved across multiple
search dimensions of IaaS and Saas. An example of such a query follows:

Cloud Service Type = web hosting && Host CPU Utilization ≤ 50% && Instance
OSType = WinSrv2003 && Host Processor Cores ≥ 1 && Host Processors Speed
≥ 1.5 GHz && Host Cloud Location = Europe



164 R. Ranjan, L. Zhao

Fig. 2 Visual representation of mapping SaaS to logical PaaS-level overlay and IaaS-level physical Cloud
servers

Table 2 Performance metrics associated with an Amazon EC2 AMI instance

Utilization IncomingTraffic OutgoingTraffic DiskWriteOps

DiskReadBytes DiskReadOps DiskWriteBytes

Table 3 Performance dimensions associated with an Amazon EC2 AMI instance

Image-ID AutoScalingGroupName InstanceID InstanceType

On the other hand, service instances deployed on physical Cloud services needs
to publish their information so that service provisioner can search them. Service in-
stances update their software and hardware configuration and the availability status
by sending update query. The service configuration distribution in three dimensions
is shown in Fig. 3. A service update query has the following semantics:

Cloud Service Type = web hosting && Host CPU Utilization = 30% && Instance
OSType = WinSrv2003 && Host Processor Cores = 2 && Host Processors Speed
= 1.5 GHz && Host Cloud Location = Europe

5.2 Cloud peer service design

The cloud peer implements services for enabling decentralized and distributed dis-
covery supporting status lookups and updates across the internetworked cloud com-



Peer-to-peer service provisioning in cloud computing environments 165

Fig. 3 SaaS Services types and Update query distribution

puting system components; enabling optimizing load-balancing and tackling the dis-
tributed service contention problem. Dotted box in Fig. 1 shows the layered design
of cloud peer service over DHT based self-organizing routing structure. The services
build upon the DHT routing structure extends (both algorithmically and programmat-
ically) the fundamental properties related to DHTs including deterministic lookup,
scalable routing, and decentralized network management. The cloud peer service is
divided into a number of sublayers (see Fig. 1): (i) higher level services for discovery,
coordination, and messaging; (ii) low level distributed indexing and data organization
techniques, replication algorithms, and query load-balancing techniques; (iii) DHT-
based self-organizing routing structure. A cloud peer undertakes the following critical
tasks that are important for proper functioning of DHT-based provisioning overlay:

5.2.1 Overlay construction

The overlay construction refers to how cloud peers are logically connected over
the physical network. The system design approach utilizes FreePastry [5] (a open
source implementation of Pastry DHT) as the basis for creation of cloud peer over-
lay. A Pastry overlay inter-connects the cloud peer services based on a ring topology.
Inherent to the construction of a Pastry overlay are the following issues: (i) Gener-
ation of cloud peer ids and query (discovery, update) ids, called keys, using crypto-
graphic/randomizing hash functions [7, 20, 27] such as SHA-1. These ids are gen-
erated from 160-bit unique identifier space. The id is used to indicate a cloud peers
position in a circular id space, which ranges from 0 to 2160−1. The queries and cloud
peers are mapped on the overlay network depending on their key values.

Each cloud peer is assigned responsibility for managing a small number of queries
and building up routing information (leaf set, routing table, and neighborhood set) at
various cloud peers in the network. Given the Key k, Pastry routing algorithm can find
the cloud peer responsible for this key in O(logb n) messages, where b is the base and



166 R. Ranjan, L. Zhao

n is the number of cloud peers in the network. Each cloud peer in the Pastry overlay
maintains a routing table, leaf set, and neighborhood set. These tables are constructed
when a cloud peer joins the overlay, and it is periodically updated to take into account
any new joins, leaves, or failures. Each entry in the routing table contains the IP
address of one of the potentially many cloud peers whose id have the appropriate
prefix; in practice, a cloud peer is chosen, which is close to the current peer, according
the proximity metric. Figure 4 shows a hypothetical Pastry overlay with keys and
cloud peers distributed on the circular ring based on their cryptographically generated
ids.

5.2.2 Multi-dimensional query indexing

A 1-dimensional hashing provided by a standard DHT is insufficient to manage com-
plex objects such as resource tickets and claims. DHTs [8] generally hash a given
unique value (e.g., a file name) to a 1-dimensional DHT key space and hence they
cannot directly support mapping and lookups for complex objects. Management of
those queries whose extents lie in d-dimensional space can be done by embedding a
logical index structure over the 1-dimensional DHT key space.

In order to support multidimensional query indexing (service type, host utilization,
VM instance OS type, host cloud location, host processor speed) over Pastry overlay,
a cloud peer implements a distributed indexing algorithm, which is a variant of peer-
to-peer MX-CIF Quad tree distributed indexing algorithm [36]. The distributed index-
ing algorithm builds a multi-dimensional index based on the cloud service attributes,
where each attribute represents a single dimension. An example 2-dimensional at-
tribute space that indexes service attributes including Speed and CPU Type is shown
in Fig. 4.

First step in initializing the distributed index is the process called Minimum Di-
vision (fmin). This process divides the attribute space into multiple index cells when
the multi-dimensional distributed index is first created. As a result of this process,
the attribute space resembles a grid like structure consisting of multiple index cells.
The cells resulting from this process remain constant throughout the life of the in-
dexing domain and serve as entry points for subsequent service discovery and update
query mapping. The number of cells produced at the minimum division level is al-
ways equal to (fmin)

dim, where dim is dimensionality of the attribute space. Every
cloud peer in the network has basic information about the attribute space coordi-
nate values, dimensions and minimum division level. Cloud peers can obtain this
information (cells at minimum division level, control points) in a configuration file
from the bootstrap peer. Each index cell at fmin is uniquely identified by its centroid,
termed as the control point. In Fig. 4, fmin = 1, dim = 2. The Pastry overlay hashing
method (DHT(coordinates)) is used to map these control points so that the respon-
sibility for an index cell is associated with a cloud peer in the overlay. For example
in Fig. 4, DHT(x1, y1) = k10 is the location of the control point A(x1, y1) on the
overlay, which is managed by cloud peer 12.

5.2.3 Multi-dimensional query routing

This action involves the identification of the index cells at minimum division level
fmin in the attribute space to map a service discovery and update query. For mapping



Peer-to-peer service provisioning in cloud computing environments 167

F
ig

.4
A

pi
ct

or
ia

l
re

pr
es

en
ta

tio
n

of
Pa

st
ry

(D
H

T
)

ov
er

la
y

co
ns

tr
uc

tio
n,

m
ul

tid
im

en
si

on
al

da
ta

in
de

xi
ng

,a
nd

ro
ut

in
g:

(1
)

a
se

rv
ic

e
ho

st
ed

w
ith

in
a

V
M

pu
bl

is
he

s
a

up
da

te
qu

er
y;

(2
)

C
lo

ud
pe

er
8

co
m

pu
te

s
th

e
in

de
x

ce
ll,

C
(x

3
,
y

3
),

to
w

hi
ch

th
e

up
da

te
qu

er
y

m
ap

s
by

us
in

g
m

ap
pi

ng
fu

nc
tio

n
SM

F
(q

ue
ry

);
(3

)
N

ex
t,

di
st

ri
bu

te
d

ha
sh

in
g

fu
nc

tio
n,

D
H

T
(x

3
,
y

3
),

is
ap

pl
ie

d
on

th
e

ce
lls

co
or

di
na

te
va

lu
es

,w
hi

ch
yi

el
ds

a
ov

er
la

y
ke

y,
K

14
;

(4
)

C
lo

ud
pe

er
8

ba
se

d
on

its
ro

ut
in

g
ta

bl
e

en
tr

y
fo

rw
ar

ds
th

e
re

qu
es

t
to

pe
er

12
;

(5
)

Si
m

ila
rl

y,
pe

er
12

on
th

e
ov

er
la

y
fo

rw
ar

ds
th

e
re

qu
es

tt
o

cl
ou

d
pe

er
14

;(
6)

a
pr

ov
is

io
ni

ng
se

rv
ic

e
su

bm
its

a
se

rv
ic

e
di

sc
ov

er
y

qu
er

y;
(7

)
C

lo
ud

pe
er

2
co

m
pu

te
s

th
e

in
de

x
ce

ll,
C

(x
1
,
y

1
),

to
w

hi
ch

th
e

se
rv

ic
e

di
sc

ov
er

y
qu

er
y

m
ap

s;
(8

)
D

H
T
(x

1
,
y

1
)

is
ap

pl
ie

d
th

at
yi

el
ds

an
ov

er
la

y
ke

y,
K

10
;

(9
)

C
lo

ud
pe

er
2

ba
se

d
on

its
ro

ut
in

g
ta

bl
e

en
tr

y
fo

rw
ar

ds
th

e
m

ap
pi

ng
re

qu
es

tt
o

pe
er

12



168 R. Ranjan, L. Zhao

Algorithm 1: Query routing algorithm undertaken by cloud peer service

Input : discovery di,j , update ui0.1

Output : mapping of objects to cloud peers0.2

Definitions :0.3

– SMF (query): returns set C of base index cells to
which a query maps;

– DHT (control point): returns the key which acts as
the basis of mapping query to Pastry overlay;

– C: set that stores the coordinates for base index cells
to which a query is mapped to;

– key: an m-bit identifier generated from 2m space, forms the basis for determin-
istic routing;

– put: sends the messages to appropriate peer using Pastry method. This
method is exposed by FreePastry framework;

Procedures :

Post () : map query0.4

Input : query ∈ { discovery, update }0.5

call Route (di,j );0.6

return ;0.7

Route () : route query0.8

Input : query ∈ { discovery, update }0.9

Intialization: C ← { φ }, key ← null0.10

C = SMF(query);0.11

foreach {x,y,z } ∈ C do0.12

key = DHT ({ x,y,z });0.13

call put (key);0.14

end0.15

return ;0.16

service discovery query, the mapping strategy depends on whether it is a multidimen-
sional point query (equality constraints on all search attribute values) or multidimen-
sional range query. For a multi-dimensional point service discovery query the map-
ping is straight forward since every point is mapped to only one cell in the attribute
space. For a multidimensional, mapping is not always singular because a range look-
up can cross more than one index cell. To avoid mapping a multidimensional service
discovery query to all the cells that it crosses (which can create many unnecessary
duplicates) a mapping strategy based on diagonal hyperplane of the attribute space is
utilized.

Algorithm 1 shows pseudo code for query routing. This mapping involves feed-
ing the service discovery query’s spatial dimensions into a mapping function,
SMF(query) (see line 0.11 in Algorithm 1). This function returns the IDs of index



Peer-to-peer service provisioning in cloud computing environments 169

cells to which given query can be mapped (refer to step 7 in Fig. 4. Distributed hash-
ing (DHT(coordinates)) is performed on these IDs (which returns keys for Pastry
overlay) to identify the current cloud peers responsible for managing the given keys.
A cloud peer service uses the index cell(s) currently assigned to it and a set of known
base index cells obtained at the initialization as the candidate index cells. Similarly,
mapping of update query also involves the identification of the cell in the attribute
space using the same algorithm. A update query is always associated with an event
region and all cells that fall fully or partially within the event region would be selected
to receive the corresponding objects. The calculation of an event region is also based
upon the diagonal hyperplane of the attribute space. Giving in depth information here
is out of the scope for this paper, however the readers who would like to have more
information can refer the paper that describes the index in detail.

5.3 Load-balancing algorithm description

A load-balanced provisioning of requests between virtual machine instances de-
ployed in clouds is critical, as it prevents the service provisioner from congesting the
particular set of VMs and network links, which arises due to lack of complete global
knowledge. In addition, it significantly improves the cloud user Quality of Service
(QoS) satisfaction in terms of response time. The cloud peer service in conjunction
with the Pastry overlay and multi-dimensional indexing technique is able to perform
a load-balanced service provisioning. The description of the actual load-balancing
mechanism follows next.

As mentioned in previous section, both service discovery (issued by service provi-
sioner) and update query (published by VMs or Services hosted within VMs) queries
are spatially hashed to an index cell i in the multidimensional attribute space. In
Fig. 5, service discovery query for provisioning request P1 is mapped to index cell
with control point value A, while for P2, P3, and P4, the responsible cell has control
point value C. Note that these service discovery queries are posted by service provi-
sioners. In Fig. 5, a provisioning service inserts a service discovery query with cloud
peer p, which is mapped to index cell i. The index cell i is spatially hashed through
routing functions (refer to Algorithm 1) to an cloud peer s. In this case, cloud peer s
is responsible for balancing the load offered by the service discovery queries that are
currently mapped to the cell i. Subsequently, service si hosted within VM u issues
a update query (see Fig. 5) that falls under a region of the attribute space currently
required by the requests P3 and P4. Next, the cloud peer s has to decide which of
the requests (either P3 or P4 or both) is allowed to claim the update query published
by si . The load-balancing decision is based on the principle that it should not lead to
over-provisioning of the concerned service. This mechanism leads to load-balanced
allocation of work units across services in clouds and aids in achieving system-wide
objective function.

The examples in Table 4 are list of service discovery queries that are stored with
a cloud peer service at time T = 700 secs. Essentially, the queries in the list arrived
at a time ≤ 700 and waited for a suitable update query that can meet their provi-
sioning requirements (software, hardware, service type, location). Table 5 depicts
an update query that has arrived at T = 700. Following the update query arrival, the



170 R. Ranjan, L. Zhao

F
ig

.5
Pe

er
-t

o-
pe

er
pr

ov
is

io
ni

ng
ac

ro
ss

se
rv

ic
e

in
st

an
ce

s.
M

ul
ti-

di
m

en
si

on
al

se
rv

ic
e

pr
ov

is
io

ni
ng

re
qu

es
ts

P1
,P

2,
P3

,P
4,

in
de

x
ce

ll
co

nt
ro

lp
oi

nt
s

A
,B

,C
,D

,m
ul

ti-
di

m
en

-
si

on
al

up
da

te
qu

er
ie

s
l,

s
an

d
so

m
e

of
th

e
sp

at
ia

l
ha

sh
in

gs
to

th
e

Pa
st

ry
ov

er
la

y,
i.e

.t
he

m
ul

ti-
di

m
en

si
on

al
(s

pa
tia

l)
co

or
di

na
te

va
lu

es
of

a
ce

ll’
s

co
nt

ro
l

po
in

t
is

us
ed

as
th

e
Pa

st
ry

ke
y.

Fo
r

th
is

fig
ur

e
f

m
in

=
2,

di
m

=
2



Peer-to-peer service provisioning in cloud computing environments 171

Table 4 Service discovery
query stored with a cloud peer
services at time T

Time Query ID Service type Speed Cores Location

300 Query 1 Web Host-1 > 2 1 USA

400 Query 2 Web Host-2 > 2 1 Singapore

500 Query 3 Web Host-3 > 3 1 Europe

Table 5 A representative Update query published with a cloud Peer service at time T

Time VM IP Service type Speed Cores Utilization Location

700 192.168.128.127 Web Host-1 > 2.7 1 70% USA

cloud peer service undertakes a procedure that allocates the available service capacity
with si (that published the update query) among the list of matching service discov-
ery queries. Based on the updating si ’s attribute specification, only service discovery
query 3 matches. Following this, the cloud peer notifies the provisioning services that
posted the Query 1. Note that Queries 2 and 3 have to wait for the arrival of update
queries that can match their requirements.

5.3.1 Load-balancing algorithm analysis

This section analyzes the computational tractability of the approach by deriving sev-
eral time and message complexity bounds to measure the computational quality. Us-
ing the example for embarrassingly parallel or Bag of Tasks application models, we
analyze the time complexity involved with mapping a service request for a task to a
service si in the overlay. A service request is encapsulated as a discovery query and is
injected to the cloud peer overlay using the Algorithm 1. A concise description of the
important steps involved with the load-balancing process is shown in Algorithm 2.

We consider a peer-to-peer overlay of cloud-based n services (SaaS-level) and m

independent requests that are required to be mapped to one of these services in a
load-balanced manner. This implies that there are total m requests that are submitted
by application provisioners (on-behalf of end-users) to the peer-to-peer overlay.

When a discovery query, di,j arrives at a cloud peer, it is added to the existing
query list (see lines 1.17–1.21 in Algorithm 2). When a update query, ui arrives (refer
to lines 1.22–1.32 in Algorithm 2) at a cloud peer, the list of discovery queries that
overlap or match (refer to lines 1.6–1.16 in Algorithm 2) with the submitted update
query in the d-dimensional space is computed. The overlap signifies that the service
requests associated with discovery queries can be served by the update query issuer
service, subject to its availability.

In order to compute a load-balanced mapping for requests to services, the cloud
peer first, selects the discovery queries stored in the QueryList (see line 1.19 in Algo-
rithm 2) in first come first serve order (see line 1.12 in Algorithm 2); then from this
list, the number of discovery queries that overlap with a update query is stored in the
QueryListm (see line 1.12 of Algorithm 2). The service requests related to the dis-
covery queries are mapped to the service si until that service is not over-provisioned



172 R. Ranjan, L. Zhao

Algorithm 2: Load-balancing undertaken by a cloud peer in the overlay

Input : discovery di,j , update ui1.1

QueryList ← Φ ;1.2

index ← 0 ;1.3

Output : load-balanced mapping1.4

Definitions :1.5

– Overlap (discovery di,j , update ui ): returns true if discovery query di,j

matches against the update query ui ;
– QueryList: stores the list of discovery queries currently mapped to a cloud

peer i;
– QueryListm: stores the list of discovery queries that matches against a currently

published update query ui ;

Procedures() :

Match(di,j , ui ) :1.6

Input : discovery di,j , update ui1.7

index ← 0 ;1.8

QueryListm ← Φ ;1.9

foreach discovery di,j ∈ QueryList do1.10

if Overlap (discovery di,j , update ui ) �= Φ then1.11

QueryListm ← QueryListm [indexm ] ∪ di,j ;1.12

indexm ← indexm + 1 ;1.13

end1.14

end1.15

return(QueryListm) ;1.16

Discovery Query Arrival(di,j ):1.17

Input : discovery di,j1.18

QueryList [index ] ← ∪ di,j ;1.19

indexm ← indexm + 1 ;1.20

return;1.21

Update Query Arrival(ui ) :1.22

Input : update ui from service si1.23

QueryListm ← Φ ;1.24

QueryListm ← Match(di,j , ui ) ;1.25

counter ← SizeOf (QueryListm) ;1.26

while si is not over-provisioned OR counter ≥ 0 do1.281.28

map reqeust QueryListm [counter ] to si ;1.29

counter ← counter + 1 ;1.30

end1.31

return;1.32



Peer-to-peer service provisioning in cloud computing environments 173

(lines 1.28–1.30 in Algorithm 2). In worst case, QueryList in Algorithm 2 can contain
m number of discovery queries and all of them could potentially match to a update
query, ui . Hence, in this case, complexity involved with calculating (lines 1.11–1.14)
the match list and mapping (lines 1.28–1.31) of requests to services is O(m).

The load-balancing procedure can utilize the dynamic resource parameters such as
the number of available processors, queue length, etc. as the over-provision indicator.
These over-provision indicators are encapsulated in the update query object by the
services. The next section describes the overall message complexity involved with
Algorithm 1 and Algorithm 2.

5.4 Message complexity analysis

Lemma 1 In a overlay of n heterogeneous services, on average a service request di,j

requires O(logn) messages to be sent in order to locate a service that can success-
fully complete the request without being overloaded.

Mapping a service request, which is encapsulated in a discovery query message
di,j , involves the following steps: (i) posting a discovery query the cloud peer overlay
and (ii) mapping the service request to the matching service (refer to Algorithm 2).
Hence, the total number of messages produced in successfully allocating a request to
a service is summation of the number of messages produced in these two steps. In
rest of this discussion, the terms discovery query and service request are used inter-
changeably.

We denote the number of messages generated in mapping a service request di,j by
a random variable Mc. The distribution of Mc is function of the problem parameters
including query size, dimensionality of search space, query rate, division threshold,
and data distribution. Note that the derivation presented in this paper assumes that the
Pastry method is used for delegation of service messages in the overlay. Essentially,
a control point at the fmin level of the logical d-dimensional Cartesian space can be
reached in O(logb n) routing hops using the Pastry routing method (see lines 0.11–
0.15 in Algorithm 1). Based on the above discussion, in order to compute the worst
case message lookup and routing complexity one additional random variable Tdi,j

is
considered. Tdi,j

denotes the number of disjoint query path undertaken in mapping
a discovery query. The d-dimensional index described in Sect. 5.2 maps a service
request to utmost mapped to 2 index cells. Note that the number of index cells to
which a service request can be mapped is dependent on the spatial index. With Pastry
DHT method every disjoint path will undertake E[Tdi,j

]× (logb n) routing hops with
high probability. Hence, the expected value of Mdi,j

is given by:

E[Tdi,j
] = E[Mdi,j

] × (logb n),

substituting E[Tdi,j
] with the value 2 and adding 1 for messages involved with actual

mapping,

E[Mdi,j
] = 2 × (logb n) + 1,

ignoring the constant terms in the above equation we get,

E[Mdi,j
] = O(logn). (1)



174 R. Ranjan, L. Zhao

The above equation shows that mapping message complexity function growth rate
is bounded by the function O(logn).

Lemma 2 In a overlay of n services and total m service requests, the total mapping
messages (see lines 0.11–0.16 in Algorithm 1) generated in the system is bounded by
the function O(m × n × logn).

This lemma directly follows from definition of Algorithm 1. Since a service in
the system requires O(logn) messages to be undertaken before it can be successfully
allocated to service, therefore computing the mapping message complexity for m

requests is straightforward.

Lemma 3 In a overlay of n heterogeneous services, each service posts p update
query over a time period t , then the average-case message complexity involved with
mapping (refer to lines 0.11–0.16 in Algorithm 1) these update queries to cloud peers
in the overlay is bounded by the function O(E[Tui

] × p × logn).

The proof for this definition directly follows from Lemma 1. The procedure for
mapping the update query to cloud peers is similar to the one followed for a discovery
query. A update query is always associated with an event region, and all index cells
that fall fully and partially within the even region will be selected to receive the
corresponding update query. The number of disjoint query path taken to map a update
query is denoted by random variable Tui

with mean E[Tui
].

6 Experiments and evaluation

In this section, we evaluated the performance of the proposed peer-to-peer cloud pro-
visioning approach (cloud peer) by creating a overlay of services that are deployed
across virtual machines within the Amazon EC2 infrastructure. We assumed unsatu-
rated server availability for these experiments, so that enough capacity could always
be allocated to a VM for any service request. Next, we describe the various details
related to cloud Peer (peer-to-peer network, multidimensional index structure, and
network configuration parameters) setup, PaaS layer provisioning software, and ap-
plication model related to this study.

6.1 Cloud peer details

A cloud peer service operates at PaaS (refer to Fig. 4) layer and handles activi-
ties related to decentralized query (discovery and update) routing, management, and
matching. Additionally, it also implements the higher level services such as pub-
lish/subscribe based loosely-coupled interactions and service selections. Every VM
instance, which is deployed on the Amazon EC2 platform, hosts a number of services
and a cloud peer service that loosely glues it to the overlay. Next, follows the details
related to the configuration of cloud peer.

FreePastry [5] network configuration: Both cloud peers’ nodeIds and discov-
ery/update queries’ overlay IDs were randomly generated from the 160-bit Pastry



Peer-to-peer service provisioning in cloud computing environments 175

identifier space. These nodeIds and overlay IDs were uniformly distributed in the
identifier space. Every cloud peer service was configured to buffer maximum of
1,000 messages at a given instance of time. The buffer size was chosen to be suf-
ficiently large such that the FreePastry framework did not drop any messages. Other
network parameters were configured tp the default values as given in the file freepas-
try.params. This file is generally provided with the FreePastry distribution.

Multidimensional index configuration: The minimum division fmin of logical
multi-dimensional index was set to 3, while the maximum height of the distributed
tree (multi-dimensional index), fmax was constrained to 3. In other words, the di-
vision of the multi-dimensional attribute space was not allowed beyond fmin. This
is done for keeping the setup simple and easy to configure. The multidimensional
index tree (space) had provision for defining service discovery and update queries
that specify the service characteristics in 4 dimensions including application service
types, number of processing cores available on the server hosting the VM, hardware
architecture of the processor(s), and their processing speed. The aforementioned mul-
tidimensional index configuration results into 81(34) index cells at fmin level.

Service discovery and update queries multi-dimensional extent: Update queries,
which are posted by service instances, express equality constraints on its type, in-
stalled software environments, and hardware configuration attribute values (e.g., =).

6.2 Aneka: PaaS layer application provisioning and management service

At PaaS layer, we utilize the Aneka [11] software framework that handles activi-
ties related to application element scheduling, execution, and management. Aneka is
a .NET-based service oriented platform for constructing cloud computing environ-
ments. To create a cloud application provisioning systems using Aneka, a developer
or application scientist needs to start an instance of the configurable Aneka container
hosting required services on each selected VMs.

Services of Aneka can be broadly characterized into two distinct spaces: (i) Ap-
plication Provisioner: This service implements the functionality that: (i) accepts ap-
plication workload from cloud users; (ii) performs dynamic discovery of applica-
tion management services via the cloud peer service; (iii) dispatches workload to
application management service; (iv) monitors the progress of their execution; and
(v) collects the output data, which returned back to the cloud users. An Application
Provisioner need not be hosted within a VM; it only needs to know the endpoint ad-
dress (such as web service address) of a random cloud peer service in the overlay
to which it can connect and submit its service discovery query; and (ii) Application
Management Service: This service, which is hosted within a VM, is responsible for
handling execution and management of submitted application workload. An applica-
tion management service sits within a VM and updates its usage status, software, and
hardware configurations by sending update queries to the Cloud peer overlay. One or
more instance of application management service can be connected in a single-level
hierarchy to be controlled by a root level Application Provisioner. This kind of ser-
vice integration is aimed at making application programming flexible, efficient, and
scalable.



176 R. Ranjan, L. Zhao

6.3 Test application

The PaaS layer software service, Aneka, supports composition, orchestration, and
execution of application programs that are composed using different application pro-
gramming models to be executed within the same software environment. The experi-
mental evaluation in this paper considers execution of applications programmed using
thread model. The thread programming model defines an application as a collection
of one or more independent work units. This model can be successfully utilized to
compose and program embarrassingly parallel programs (parameter sweep applica-
tions). The thread model fits well for implementing and architecting new applications,
algorithms on cloud infrastructures since it gives finer degree of control and flexibility
as regards to runtime control.

To demonstrate the feasibility of architecting cloud provisioning services based
cloud peer overlay, we consider composition and execution of Mandelbrot Set com-
putation. Mathematically, the Mandelbrot set is an ordered collection of points in
the complex plane, the boundary of which forms a fractal. The Application Provi-
sioner service implements and enables the Mandelbrot fractal calculation on cloud
resources, using a the thread programming model. The application submission in-
terface allows the end-users to configure number of horizontal and vertical partitions
into which the fractal computation can be divided. These horizontal and vertical parti-
tions, we refer to as problem complexity. The number of independent thread units cre-
ated is equal to the horizontal×vertical partitions. For evaluations, we vary the values
for horizontal and vertical parameters over the intervals, 5 × 5, 10 × 10, 15 × 15, and
20 × 20.

6.4 Deployment of test services on amazon EC2 platform

In order to test the feasibility of aforementioned services in regards to the provision-
ing of application services on Amazon EC2 cloud platform, we created Amazon Ma-
chine Images (AMIs) packaged with a cloud peer, Aneka’s Application Provisioner
and Management services. The image that hosted the cloud peer and Aneka Provi-
sioner services was equipped with Microsoft Windows Server 2008 R1 SP2 Data-
center edition, Microsoft SQL Server 2008 Express, Internet Information Services 7,
Tomcat 6.0.10, and Axis2 1.2 container. On the other hand, while the image that
hosted the Aneka Management Service had Microsoft Windows Server 2008 R1 SP2
Datacenter system installed, cloud peer service was exposed to the provisioning and
management services through WS* interfaces. Later, we built the customized Ama-
zon Machine Images from the aforementioned basic images. We configured three
Application Provisioners and nine Management Services. The Management Service
was divided into groups of three that connected to a common Application Provisioner,
this resulted in a hierarchical structure. The Application provisioner services commu-
nicate and internetwork through the cloud peer overlay. Figure 6 shows the pictorial
representation of the test service setup.

6.5 Results and observations

In this study: (i) the problem complexity was varied over the range 5 × 5, 10 × 10,
15 × 15, and 20 × 20; (ii) heartbeat interval was selected from the following set of



Peer-to-peer service provisioning in cloud computing environments 177

Fig. 6 Test service setup in Amazon EC2

values 1, 10, and 60 seconds; and (iii) the minimum division was selected from the
interval [2, 4] in step of 1. The graphs in Figs. 7, 8, and 9 show the performance of the
peer-to-peer cloud provisioning techniques (service discovery & load-balancing) in
terms of problem complexity, heartbeat interval, and minimum division perspective,
respectively.

All the application workload were concurrently submitted to the Application Pro-
visioners. Several metrics were quantified for identifying the performance of peer-to-
peer cloud provisioning techniques, including response time, query mapping delay,
and cloud peer overlay network message complexity for routing multi-dimensional
queries. The response time for an application was calculated by subtracting the out-
put arrival time of the last thread in the submission list from the time at which the
application was originally submitted. On the other hand, cloud peer overlay message
complexity measures the finer details related number of messages that flow through
the network in order to: (i) initialize the multidimensional attribute space, (ii) map
the discovery and update queries, (iii) maintain the overlay, and (iv) send notifica-
tions. The metric mapping delay measures the average latency for mapping a service
discovery query to a cloud peer.

6.5.1 Problem complexity perspective

Figure 7 shows the results for response time in seconds, number of tasks and mes-
sages, as well as mapping delay with increasing problem complexity size. Cloud con-
sumers submit their applications with a Application Provisioner (see Fig. 6). The ini-
tial experimental results in Fig. 7(a) and Fig. 7(b) reveal that with increase in problem
complexity (number of horizontal × vertical partitions of Madelbrot set), the appli-
cation end-users experience increase in response times and mapping delay. The basic



178 R. Ranjan, L. Zhao

Fig. 7 The performance of the peer-to-peer cloud provisioning techniques with varying problem com-
plexity. The heartbeat interval was set to 2 seconds and fmin and fmax to 3, for these set of experiments

reason behind this behavior of the cloud system was the fixed number Application
Management services (static infrastructure capacity), i.e., with increase in the prob-
lem complexity, the number of task threads (a task thread represents a single work
unit, e.g., for 5 × 5 Mandelbrot configuration resulted in creation of 25 task threads)
that are required to be serviced with Management services increase, hence leading
to worsening queuing and waiting delays. However, this behavior of the system can
be fixed through implementation of reactive provisioning of new service instances to
counter the effect of increase in problem complexity or size.



Peer-to-peer service provisioning in cloud computing environments 179

Fig. 8 The performance of the peer-to-peer cloud provisioning technique in terms of heartbeat interval
perspective with problem complexity size as 15 × 15 and fmin and fmax as 3

Figure 7(b) presents the measurements for average mapping delay for each discov-
ery query with respect to increase in the problem complexity. The results show that at
higher problem complexity, the discovery queries experience increased mapping de-
lay. This happens due to the reason that the discovery queries have to wait for longer
period of time before they are matched against an update query (service contention
problem). However, the task thread processing time (CPU time) is not affected by
the mapping delay, hence the response time in Fig. 7(a) shows no or little change for
different problem sizes.

Figure 7(c) indicates the total number completed tasks at each Aneka’s Applica-
tion Management service instance with the increase in problem complexity. For every
group of problem complexity, the number of tasks at each instance showed a similar
trend. The result shows that the task processing load was evenly distributed across the
management service instances. This behavior basically proved that the load-balancing
algorithm undertaken by cloud peer services was extremely effective distributing the
workload across services instances.

Figure 7(d) shows the total message overhead involved with management of mul-
tidimensional index, routing of discovery(marked as sub Fig. 7(d)) and update query
(marked as pub) messages, and maintenance of Pastry overlay. We can clearly see
that as problem complexity increases the number of messages required for mapping
the queries to the overlay network increase as well. The number of discovery and
update messages produced in the overlay is a function of the multidimensional index
structure that maintains and routes these queries in a peer-to-peer fashion. In addi-
tion, from Fig. 7(d), it is evident that our system is scalable since the total number



180 R. Ranjan, L. Zhao

Fig. 9 The performance of the peer-to-peer cloud provisioning technique in terms of maximum division
perspective with problem complexity size as 15 × 15, heartbeat interval as 2 seconds and fmax as 5

of messages is increased linearly with respect to problem size. Hence, the choice of
the multidimensional data indexing structure and routing technique governs the man-
ageability and efficiency of the overlay network (latency and messaging overhead).
Hence, there is much work required in this domain as regards to evaluating the per-
formance of different types of multidimensional indexing structures for mapping the
query messages in peer-to-peer settings.

The proposed load-balancing approach was also highly successful in reducing the
number of mapping iterations undertaken for the successful submission of a task
to a Application Management service (see Fig. 7(e)). Note that, our results showed
that the negotiation and notification complexity of the proposed approach had simi-
lar bounds as that of a centrally provisioned system, such as the Amazon EC2 load-
balancer or Microsoft Fabric Controller. Essentially, with a centrally provisioned sys-
tem, the mapping iteration and notification message complexity is O(1). Experiment
results (refer to Fig. 7(e)) showed that Aneka’s Application Provisioner service in
the system receive an average 1 notifications on per task basis. This suggests that
the mapping iteration and notification complexity involved with our scheduling tech-
nique is O(1).

6.5.2 Heartbeat interval perspective

Figure 8 consists of results for group of test that measured the effect of varying heart-
beat (update query publish delay) interval on response time, number of messages and
mapping delay. The heartbeat interval was varied as 1 second, 10 seconds, and 60



Peer-to-peer service provisioning in cloud computing environments 181

seconds. At the same time, fmin and fmax were set to 3 and the problem complex-
ity size was configured to be 15 × 15. The primary results in Fig. 8(a) showed a near
constant response time behavior, which was around 228 seconds, over three heartbeat
intervals.

Figure 8(b) depicts the number of messages generated with respect to increas-
ing heartbeat interval. We can see that as heartbeat interval increases, the num-
ber of messages generated during the experiment period decrease. For instance,
when heartbeat interval was configured to 1 second, the total number of mes-
sages produced was 14,974. However, the number of messages dropped signifi-
cantly for higher values of heartbeat interval. Figure 8(c) reveals the relationship
of the mapping delay and the heartbeat interval. We can see that with increase in
heartbeat interval, the mapping delay increases to some extent. Therefore, the up-
date query interarrival delay (heartbeat interval) should be chosen in such a way
that a balance between mapping delay and message overhead can exist in the sys-
tem.

6.5.3 Minimum division (fmin) perspective

In this experiment (Fig. 9), we were interested in studying the behavior of response
time, number of messages and mapping delay parameters with increasing fmin value
for multi-dimensional index. We can recall that, fmin affects the number of index
cells that created, which subsequently controls the number of messages required for
mapping queries. For this experiment,fmax was fixed to 5, while the fmin was varied
over the interval [2,4] in step of 1. Next, the heartbeat interval was fixed to 2 seconds.
The Mandelbrot application problem complexity was set to 15 × 15. Our goal in this
experiment was to study the effect of fmin on the application response time and query
mapping delay.

As shown in Fig. 9(a), with the increase in fmin, we did not observe a significant
change in the average response time. In fact, the response time kept steady when fmin

varies. At fmin = 2, 3 and 4, the response time remains at the value of 226 ± 1.
We also analyzed the number of messages that were required to: (i) manage multi-

dimensional index; (ii) route discovery and update query messages; and (iii) maintain
Pastry overlay with changing fmin. The results for this test is shown in Fig. 9(b). The
number of discovery messages (shown as sub in the Fig. 9(b)) remained constant at
450. This was because, number of message required for mapping a discovery is inde-
pendent of fmin value, as discussed in previous sections. Meanwhile, the number of
update query mapping messages were found to be doubling with increase in fmin. We
also observed that changing fmin value did not affect average mapping delays (refer
to Fig. 9(b)) of discovery queries. At fmin = 2, the discovery query in the system on
average experienced a mapping delay of 34,494.65 milliseconds. While at fmin = 4
this value increased to 35,000 milliseconds.

The key lesson here is that, fmin value should be chosen in such a way that query
processing load is evenly distributed across cloud peers, while having little or not
impact on the application performance. Evaluating this aspect of system is subject of
our future work.



182 R. Ranjan, L. Zhao

7 Conclusion

Developing provisioning techniques that integrate application services in a peer-to-
peer fashion is critical to exploiting the potential of cloud computing platforms. Ar-
chitecting provisioning techniques based on peer-to-peer network models (such as
DHTs) is significant; Since peer-to-peer networks are highly scalable, can gracefully
adapt to the dynamic system expansion (join) or contraction (leave, failure), are not
susceptible to single point of failure. To this end, we presented a software fabric
called cloud peer that creates an overlay network of VMs and application services
for supporting scalable and self-managing service discovery and load-balancing. The
functionality exposed by the cloud peer service is very powerful and our experimental
results conducted on Amazon EC2 platform confirms that it is possible to engineer
and design peer-to-peer cloud provisioning systems and techniques.

As part of our future work, we would explore other multidimensional data index-
ing and routing techniques that can achieve close to logarithmic bounds on messages
and routing state, balance query (discovery, load-balancing, coordination) process-
ing load, preserves data locality, and minimize the metadata. Another important al-
gorithmic and programming challenge in building robust cloud peer services is to
guarantee consistent routing, lookup, and information consistency under concurrent
leave, failure and join operations by application services. To address these issues,
we will investigate robust fault-tolerance strategies based on distributed replication
of attribute/query subspaces to achieve a high level of robustness and performance
guarantees.

Acknowledgements Dr. Rajiv Ranjan would like to thank the University of New South Wales for fund-
ing his position though the strategic e-Research initiative.

References

1. Amazon auto scaling service (2010) http://aws.amazon.com/autoscaling/. Accessed: May 25, 2010
2. Amazon cloudwatch service (2010) http://aws.amazon.com/cloudwatch/. Accessed: May 25, 2010
3. Amazon elastic mapreduce service (2010) http://aws.amazon.com/elasticmapreduce/. Accessed: May

25, 2010
4. Amazon load balancer service (2010) http://aws.amazon.com/elasticloadbalancing/. Accessed: May

25, 2010
5. An open source pastry dht implementation (2010) http://freepastry.rice.edu/FreePastry. Accessed:

May 25, 2010
6. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A,

Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb

7. Bakhtiari S, Safavi-naini R, Pieprzyk J, Centre Computer (1995) Cryptographic hash functions: a sur-
vey. Technical report

8. Balakrishnan H, Frans Kaashoek M, Karger D, Morris R, Stoica I (2003) Looking up data in p2p
systems. Commun ACM 46(2):43–48

9. Bharambe AR, Agrawal M, Seshan S (2004) Mercury: supporting scalable multi-attribute range
queries. Comput Commun Rev 34(4):353–366

10. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging it plat-
forms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst
25(6):599–616

http://aws.amazon.com/autoscaling/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticloadbalancing/
http://freepastry.rice.edu/FreePastry


Peer-to-peer service provisioning in cloud computing environments 183

11. Chu X, Nadiminti K, Jin C, Venugopal S, Buyya R (2007) Aneka: next-generation enterprise grid
platform for e-science and e-business applications. In: E-SCIENCE ’07: proceedings of the third IEEE
international conference on e-science and grid computing, Washington, DC, USA. IEEE Computer
Society Press, Los Alamitos, pp 151–159

12. Eucalyptus systems (2010) http://www.eucalyptus.com/. Accessed: May 25, 2010
13. Force.com cloud solutions (saas) (2010) http://www.salesforce.com/platform/. Accessed: May 25,

2010
14. Ganesan P, Yang B, Garcia-Molina H (2004) One torus to rule them all: multi-dimensional queries in

p2p systems. In: WebDB ’04: proceedings of the 7th international workshop on the web and databases,
New York, NY, USA. ACM Press, New York, pp 19–24

15. Gillett FE, Brown EG, Staten J, Lee C (2008) Future view: the new tech ecosystems of cloud, cloud
services, and cloud computing. Technical report, Forrester Research, Inc

16. GoGrid Cloud Hosting (2010) (f5) load balancer. GoGrid wiki, http://wiki.gogrid.com/wiki/index.
php/(F5)-Load-Balancer. Accessed: May 25, 2010

17. Google app engine (2010) http://code.google.com/appengine/. Accessed: May 25, 2010
18. Gupta I, Birman K, Linga P, Demers Al, van Renesse R (2003) Kelips: building an efficient and stable

p2p dht through increased memory and background overhead. In: Proceedings of the 2nd international
workshop on peer-to-peer systems (IPTPS ’03)

19. Gupta A, Sahin OD, Agrawal D, El Abbadi A (2004) Meghdoot content-based publish/subscribe
over p2p networks. In: Middleware ’04: proceedings of the 5th ACM/IFIP/USENIX international
conference on middleware, New York, NY, USA. Springer, New York, pp 254–273

20. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing and
random trees: distributed caching protocols for relieving hot spots on the world wide web. In: STOC
’97: proceedings of the twenty-ninth annual ACM symposium on theory of computing, New York,
NY, USA. ACM Press, New York, pp 654–663

21. Lee YC, Zomaya A (2010) Rescheduling for reliable job completion with the support of clouds.
Future Gener Comput Syst. doi:10.1016/j.future.2010.02.010

22. Li J, Stribling J, Gil TM, Morris R, Frans Kaashoek M (2005) Comparing the performance of dis-
tributed hash tables under churn. In: Lecture notes in computer science. Springer, Berlin, pp 87–99

23. Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer
overlay network schemes. IEEE Commun Surv Tutor 7(2):72–93

24. Mosso cloud platform (2010) http://www.rackspacecloud.com. Accessed: May 25, 2010
25. Openvpn (2010) http://openvpn.net/. Accessed: May 25, 2010
26. Parashar M, Gnanasambandam N, Quiroz A, Kim H, Sharma N (2009) Towards autonomic workload

provisioning for enterprise grids and clouds. In: Proceedings of the 10 th IEEE/ACM international
conference on grid computing (Grid 2009), pp 50–57

27. Preneel B (1999) The state of cryptographic hash functions. In: Lectures on data security: modern
cryptology in theory and practice, 1994. Lecture notes in computer science, vol 1561. Springer, Berlin,
pp 158–182

28. Ranjan R (2007) Coordinated resource provisioning in federated grids. PhD thesis, The University of
Melbourne

29. Ranjan R, Harwood A, Buyya R (2008) Peer-to-peer-based resource discovery in global grids: a tuto-
rial. IEEE Commun Surv Tutor 10(2):6–33

30. Ratnasamy S, Francis P, Handley M, Karp R, Shenker, S (2001) A scalable content-addressable net-
work. In: SIGCOMM ’01: proceedings of the 2001 conference on applications, technologies, archi-
tectures, and protocols for computer communications, New York, NY, USA. ACM Press, New York,
pp 161–172

31. Rejila cloud platform (2010) http://www.rejila.com/. Accessed: May 25, 2010
32. Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R, Wolfsthal Y, Elmroth

E, Caceres J, Ben-Yehuda M, Emmerich W, Galan F (2009) The reservoir model and architecture for
open federated cloud computing. IBM J Res Dev 53(4). http://dl.acm.org/citation.cfm?id=1850659.
1850663

33. Rowstron AIT, Druschel P (2001) Pastry: scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In: Middleware ’01: proceedings of the IFIP/ACM international confer-
ence on distributed systems platforms heidelberg, London, UK. Springer, Berlin, pp 329–350

34. Spence D, Crowcroft J, Hand S, Harris T (2005) Location based placement of whole distributed sys-
tems. In: CoNEXT ’05: proceedings of the 2005 ACM conference on emerging network experiment
and technology, New York, NY, USA. ACM Press, New York, pp 124–134

http://www.eucalyptus.com/
http://www.salesforce.com/platform/
http://wiki.gogrid.com/wiki/index.php/(F5)-Load-Balancer
http://wiki.gogrid.com/wiki/index.php/(F5)-Load-Balancer
http://code.google.com/appengine/
http://dx.doi.org/10.1016/j.future.2010.02.010
http://www.rackspacecloud.com
http://openvpn.net/
http://www.rejila.com/
http://dl.acm.org/citation.cfm?id=1850659.1850663
http://dl.acm.org/citation.cfm?id=1850659.1850663


184 R. Ranjan, L. Zhao

35. Stoica I, Morris R, Liben-Nowell D, Karger DR, Frans Kaashoek M, Dabek F, Balakrishnan H (2003)
Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Netw
11(1):17–32

36. Tanin E, Harwood A, Samet H (2007) Using a distributed quadtree index in peer-to-peer networks.
VLDB J 16(2):165–178

37. The S. Reservoir (2008) Reservoir—an ict infrastructure for reliable and effective delivery of services
as utilities. Technical report, IBM Research

38. Varia J (2009) Cloud architectures. Technical report, Amazon Web Services
39. Vpn-cubed (2010) http://www.cohesiveft.com/vpncubed/. Accessed: May 25, 2010
40. Windows azure platform (2010) http://www.microsoft.com/azure/. Accessed: May 25, 2010
41. Zhang X, Freschl JL, Schopf JM (2003) A performance study of monitoring and information ser-

vices for distributed systems. In: High performance distributed computing. Proceedings 12th IEEE
international symposium on, 22–24 2003, pp 270–281

http://www.cohesiveft.com/vpncubed/
http://www.microsoft.com/azure/

	Peer-to-peer service provisioning in cloud computing environments
	Abstract
	Introduction
	Scalable peer-to-peer approach
	Our contributions
	Paper organization

	Related work
	Models
	Overall system model
	Application model

	Layered system design
	The peer-to-peer provisioning approach
	Query types and their composition
	Cloud peer service design
	Overlay construction
	Multi-dimensional query indexing
	Multi-dimensional query routing

	Load-balancing algorithm description
	Load-balancing algorithm analysis

	Message complexity analysis

	Experiments and evaluation
	Cloud peer details
	Aneka: PaaS layer application provisioning and management service
	Test application
	Deployment of test services on amazon EC2 platform
	Results and observations
	Problem complexity perspective
	Heartbeat interval perspective
	Minimum division (fmin) perspective


	Conclusion
	Acknowledgements
	References


