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Abstract This paper is concerned with data provisioning services (information
search, retrieval, storage, etc.) dealing with a large and heterogeneous information
repository. Increasingly, this class of services is being hosted and delivered through
Cloud infrastructures. Although such systems are becoming popular, existing re-
source management methods (e.g. load-balancing techniques) do not consider work-
load patterns nor do they perform well when subjected to non-uniformly distributed
datasets. If these problems can be solved, this class of services can be made to operate
in more a scalable, efficient, and reliable manner.

The main contribution of this paper is a approach that combines proprietary cloud-
based load balancing techniques and density-based partitioning for efficient range
query processing across relational database-as-a-service in cloud computing environ-
ments. The study is conducted over a real-world data provisioning service that man-
ages a large historical news database from Thomson Reuters. The proposed approach
has been implemented and tested as a multi-tier web application suite consisting of
load-balancing, application, and database layers. We have validated our approach by
conducting a set of rigorous performance evaluation experiments using the Amazon
EC2 infrastructure. The results prove that augmenting a cloud-based load-balancing
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service (e.g. Amazon Elastic Load Balancer) with workload characterization intelli-
gence (density and distribution of data; composition of queries) offers significant ben-
efits with regards to the overall system’s performance (i.e. query latency and database
service throughput).

Keywords Range query processing - Load balancing - Data density - Cloud
computing

1 Introduction

Cloud computing is the latest evolution of computing, where IT capabilities are of-
fered as services. Cloud computing [1-4] delivers infrastructure, platform, and soft-
ware (application) as services, which are made available as subscription-based ser-
vices in a pay-as-you-go model to consumers. These services in industry are respec-
tively referred to as Infrastructure as a Service (IaaS) [5-7], Platform as a Service
(PaaS) [2, 8-10], and Software as a Service (SaaS) [11]. A technical report [1] pub-
lished by University of Berkeley in February 2009 states that “Cloud computing, the
long-held dream of computing as a utility, has the potential to transform a large part
of the IT industry, making software even more attractive as a service”.

This paper is concerned with the problem of hosting data provisioning services
over Cloud infrastructures. Most efforts so far take advantage of database replication
and the reduced maintenance, flexible elasticity, and high availability of on-demand
infrastructure [12] offered by Cloud providers such as Amazon EC2, Google Ap-
pEngine, Microsoft Azure, GoGrid, and others. Although deploying different com-
ponents (database, web server, application server) of a data provisioning service on
Cloud resources (compute server, storage) is trivial, deriving cost-effective and effi-
cient performance (query processing time, utilization, and throughput) out of these
deployments is challenging due to various issues.

Range queries [13] are extensively common workload type in context of data pro-
visioning services. A range query over a large data set can be computationally expen-
sive and if not properly handled may lead to poor performance (e.g. query processing
time). The majority of Database Management Systems (DBMS) handle a range query
by partitioning it across multiple replicas for reducing the query processing time.
However, query processing has a cost related to the hardware and software invest-
ments required for maintaining large database replications. In addition to the massive
workloads generated by range queries, scalability requirements [14] can change very
quickly and may cause a degradation in performance depending on the type and/or the
number of requests made by users. Cloud computing [12] offers the necessary flexi-
bility and adaptability to handle such issues and many companies are using the cloud
as a deployment environment for replicated databases to ensure the scalability of their
data services [15]. Indeed, scalability of services based on replicated cloud databases
is made possible using its load balancing and auto-scaling capabilities. However, auto
scaling can have an substantial cost when a large number of database replicas are in-
stantiated. Therefore, the key efficiency factor for data provisioning is to optimally
balance the workload across all database replicas to enhance the performance and
reduce costs.
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The specific aim of this paper is to investigate how cloud computing could benefit
the objective of providing efficient data provisioning services [16—19]. Two aspects of
cloud computing and one aspect of range query processing are of particular interest to
this paper. Firstly, cloud-based load balancers could be used to optimally balance the
workload of processing range query over a given set of database replicas. Secondly,
the auto-scaling capabilities (elasticity) of a cloud infrastructure could be used to
adapt the capacity of a data provisioning service to address a variable query rate.
Finally, range query partitioning is of particular interest to split a range query into
smaller ones such that they can be distributed across the available database replicas
in a load-balanced fashion.

The main contribution of this paper is a novel approach combining cloud-based
load balancing techniques and density-based range query partitioning for efficient
range processing over a cloud infrastructure with a case study of a large historical
news database. The proposed approach has been implemented using a Service Ori-
ented Architecture (SOA) over news databases replicated on the Amazon EC2 infras-
tructure. The rest of the paper is structured as follows. Section 2 first discusses the
specific characteristics of the used data sets (historical news), i.e. its non-uniform data
distribution. Section 3 presents the proposed approach for density based range query
partitioning and distribution. Section 4 discusses experimental results. Section 5 dis-
cusses related work. Finally, Sect. 6 summarizes the results of this work and presents
our conclusions.

2 Research problem analysis

As our proposal is based around range query processing, this section describes the
characteristics of the data sets and queries used for this study. A data set, noted in this
paper as NDS, contains textual news announcements that are captured over span of
time. The following properties are useful for characterizing a news announcement n;
in a news dataset NDS:

— t(n;) is the publication date and time for ;.

— T(n;) is the set of tags associated with n;. Each news announcement n; can be
linked with one or more tags that helps in news indexing and categorization. These
tags are defined by concerned news providers. This study particularly focuses on
Reuters Instrument Codes, or RICs applied by Thomson Reuters for identifying
financial instruments and indices. Examples of RICs are company codes such as
AAPL.O (for Apple), MSFT.O (for Microsoft), and IBM.N (for IBM).

— s(n;) the size of storage required to store n; in a relational database system.

We define < as an absolute precedence operator such that for any two news
announcements n and no, if t(n1) < t(ny), then ny < ny also holds true. There-
fore, a news data set can be formalized as a sequence of news announcements
NDS = {n1 <np < --- < ny}, where ny is the first and ny is the last news announce-
ment, respectively. A typical search query over a news database requires a time
interval (e.g. between 01/01/2003 and 31/12/2007) and a list of search tags. Such
queries are better known as range queries. More precisely, a range query is a com-
mon database operation that retrieves all records where some value is between an
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upper and a lower boundary (in our case, it is a date/time interval). As an example,
one would request all news tagged with a particular company code (e.g. MSFT.O for
Microsoft) between January 2003 and December 2007. In this case, the range con-
cerns the publication (announcement) date of the news articles. We formalize a range
query on a news dataset as follows.

Definition 1 (Range query) A range query g on a news dataset NDS searches for
news announcements with tags in 7S(g) and that were published within the time
interval {z, f.}. The result set obtained by executing ¢ is denoted as RS(g):

RS(q) ={Vn eNDS / 1;(q) =t(n) <tc(q); T(n) € TS(q)}

Further, the measured processing time of a range query g is denoted as p#(gq), and
the size of its result set is given by the following function:

Size(RS(q)) = Y _ s(n)

neRS(q)

Range queries are used in various service domains such as Internet-based search
engines, auctions, and gaming. Usually, users issuing queries in aforementioned ser-
vices do not experience significant delays. That is due to the fact that, services do
not immediately return all the results to the user as they apply complex pagination
techniques in which a limited number of records are retrieved on each page. Follow-
ing that, the results are sorted and only the N most recent records are shown to the
user. These pagination techniques are however not adapted to our case in which users
need to apply further processing to the entire result set (e.g. statistical analysis). In
such a situation, processing range queries without pagination can be computationally
expensive when applied to large data sets.

We define a query partitioning function QSPL¥(q) = {q1. . .., qx} as the partition-
ing of a query ¢ into k queries distributed on k database replicas. Existing query
distribution mechanisms, built in Database Management Systems, assume a uniform
data distribution and, therefore, range query partitioning based on equal ranges is
defined as follows:

Definition 2 (Query Partitioning based on equality of ranges) The Query Partition-
ing Function based on equality of ranges for k database replicas, noted QSPL]e‘q A0
q — {q1, ..., qr}, ensures that:

Vg = {t5, t,, TS}, Vai = {t}. 5. TS} € QSPLY, (q). (tf —15) ~ (te — 1,)/ k.

The majority of existing relational database systems (MySQL, PostgreSQL, Ora-
cle, etc.) expose extensive data replication and query partitioning capabilities. How-
ever, these approaches assume uniform distribution of data and, therefore, are not
capable of generating sensible partitioning and mapping of queries for non-uniform
data.

As a case study, we have used the Thomson Reuters news database provided by
an Australian-based company SIRCA [20] which provides high frequency financial
market and news data in the form of eResearch services to over 200 universities,
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Fig. 1 Non-uniform data distribution for range queries from 2003-01-01 to 2007-12-31

regulators, and financial market participants across the globe. Every year up to 5
million additional news announcements are added to the existing SIRCA database.
As of today, over 40 millions news announcements in more than 19 different lan-
guages have been captured, stored, and made available to researchers. To illustrate
the non-uniform nature of this database, we define data density as the size of news
announcements over a set period. Figure 1 plots some of the densities for news data
related to several companies over a time interval of 5 years (2003 to 2007). In these
figures, density has been defined over a weekly period.

For example, one can see that news announcements related to Apple (the com-
pany’s tag—AAPL.O) tend to be more frequent during the period of 2006-2007 as
compared to the period 2003-2005. Partitioning of a range query without any con-
sideration to the distribution of data will lead to unbalanced query workload across
database replicas. Therefore, this work proposes a density-driven query partitioning
and load-balancing approach as described in the forthcoming section.

3 Proposed approach

The proposed density-based query partitioning mechanism allows the workload to
be balanced among a set of database replicas deployed over a cloud infrastructure.
Partitioning a range query g = {f;, t,, TS} into two queries q1 = {ty,, ¢, IS} and
q> = {ts,, te,, TS} is considered to be optimal if the estimated query processing times
of both queries are as close as possible. We propose the following formulation to
estimate the query processing time of a query ¢ based on data density.
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Definition 3 (Query processing time estimation)

Yg={t;. 1. TS}, PTE(@) =0 ) s
neRS(q)

The estimated query processing time PTE(q) is proportional to the size of the re-
sult set RS(g). « is the coefficient and it depends on the number of VM instances
that hosts the query processing service as well as the type of Relational DBMS
(e.g. MySQL, PostgreSQL). In our experiments, we allocated small VM resource in-
stances to MySQL relational DBMS. Changing the size of the VM resource instance
to medium will have a clear impact on «. To conclude, the value of o can only be
measured for various VM resource configurations. In this work, we hosted the query
processing services (MySQL RDBMS) on homogeneous set of VMs having the same
configuration (e.g. cores, speed, family, physical memory, etc.). As a result, the value
of the parameter « was same for all VMs and hence was normalized to 1 during the
query partitioning phase.

Based on the above formula, the partitioning of a query g = {#;, f., TS} into two
equally load balanced queries g1 = {t;,, t.,, TS} and g2 = {t;,, t.,, TS} must corre-
spond to a minimal value of

Z s(n) — Z s(m)‘

neRS(q1) meRS(q2)

In order to optimally partition range queries, a solution should ensure that the sizes
of result sets are similar. In that case, the range query partitioning based on density is
defined as follows:

Definition 4 (Query partitioning based on density) The Query Partitioning Based on
Density for k database replicas, noted QPBD : (k,q) — {q1, - - -, qi}, ensures that:

Vg =1{t5, 1., TS}, Vqk.qp € QPBD(k, q), S(RS(qx)) = S(RS(qp))-

In other words, it ensure equality of sizes of the result sets of each query partition.

Such query partitioning is possible if the sizes of query results are predictable.
This is made possible by pre-computing the density for a set period (referred to as the
minimum density interval) of news articles for each company or topic and indexing
them along with tagging information. The minimum density interval is set to one
day in the experiments undertaken in this paper. The minimum density interval forms
the basis for the query partitioner when determining sub-queries for a given range
query. Depending on the frequency of news data items, the query partitioner could be
configured to consider different minimum density interval. Clearly, this may have an
impact on the number of sub-queries spanning out of a range query. For evaluating
the proposed approach, any level of granularity (minute, hour, day, week, etc.) is
acceptable as long as the pre-processing phase is applying the same minimum density
interval. Since the news datasets that we are considering for this work span over a
number of years, we perceived that setting the minimum density interval to one day
is a reasonable assumption. Querying such an index allows the system to get the
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Algorithm 1 for Query Partitioning Based on Density
INPUT k: number of partitions;
INPUT g: query to partition;

SET s =t,(q);
SET Q: set of sub queries to construct;
FOR ¢ BETWEEN #,(q) AND t.(q)
{
IF (PTE({s, e, TS}) > PTE(q)/k)
{
SET new query {s, e, TS} into Q;
SETs=e;
}
}
IF (s # 1e(q))
SET new query {s, z.(q), TS} into Q;
RETURN Q;

sum of sizes of all news articles per day for a given query. We define such a density
measure as follows.

Definition 5 (Density distribution) The density distribution of a query g = {ts, ., TS}
is DD(g) = {S(RS(q1), S(RS(¢q2), ..., S(RS(qn)} where V1l <i <n /q; ={t; + (i —
1) * (t, — t5)/n, ts + (@) * (t, — t5)/n, TS}. In other words, if n is equal to the total
number of days in the interval [¢q, 7. ], then V1 <i <n / g; is the query g applied on
a 1 single day. In such a case, the density distribution corresponds to the expected
size of result sets of g for every day in the interval [, f.]. In this paper, we assume n
to be automatically set to the total number of days in the interval [#, #.].

Knowing the size of news articles for a given query per day allows the design
of an algorithm that splits a range query based on equality of result set sizes and
operates in O (n) (where n is the total number of days in the date range of a query).
n is automatically computed by the algorithm from a given query’s start and end date.
Based on the size, different queries could lead to a search over a different number of
days. For evaluation, query sizes (date ranges) are randomly chosen from the time
interval [Jan. 2003, Dec. 2007].

Using a query partitioning technique based on density allows to reduce the number
of density values to the number of days during the interval of a query. While exper-
imenting with several years of news data, a query covering the entire interval of the
data set covers at most 5 years x 365 days = 1825. The complexity of the splitting
algorithm has a minor impact on the performance because as n < 1825, reducing the
complexity of the splitting algorithm (e.g. to O (log n)) will have a minor impact on
the overall performance of the system.

The algorithm takes k (number of partitions) and ¢ (original query to partition) as
inputs and produces k sub-queries as detailed in Algorithm 1.
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Fig. 2 Proposed SOA for query partitioning and execution on an Amazon EC2 infrastructure

To integrate the proposed solution with a cloud infrastructure, we propose a
Service-Oriented Architecture (SOA) composed of the five main services illustrated
in Fig. 2. We also show how the services can be supported by the Amazon Cloud
infrastructure. The services are described as follows:

1. A Data Density Service: provides pre-computed density distribution helpful for
the estimation of a query processing time. It is based on an inverted index of
the density per day for every tag used in the news database. The Data Density
Service’s input is a range query g = {t,, t., TS} and its output is DD(q) that is
the size of news results per day over the range between t; and 7,. Figure 1 has
illustrated examples of the Data Density Service output.

2. A Density Based Query Partitioning Service: transforms a query ¢ into a set of £
queries q1, q2, . - ., gk such that PTE(q;) >~ PTE(q2) >~ - -- >~ PTE(qy) and k is the
number of available database replicas.

3. A Query Load Balancing Service: sends each g; resulting from the Density based
Query Partitioning Service on its corresponding replica of the data set. The exe-
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cutions of all ¢; are done in parallel. Then the results of each g; are merged and
the overall result of ¢ is returned to the end user. In this work, we rely on the
cloud-based load balancing service called Amazon Elastic Load Balancer (ELB).
Such service plays the role of Query Load Balancing Service.

4. Query Execution Services: execute queries g; resulting from the Density based
Query Partitioning Service on database replicas assigned by the Query Load Bal-
ancing Service.

5. A Workload Watch Service: allows to monitor the workload of each virtual ma-
chine and provide a wide range of metrics useful for the load balancer to effec-
tively distribute the workload across the available virtual machines. In this work,
we rely on the cloud-based workload watching service provided by the EC2 Cloud
called “Cloud Watch” which checks periodically the number of available replicas
which can change due to the elasticity of the cloud.

A Business Process (BP) is responsible for orchestrating all the above services
whenever a query is executed. This approach is very flexible as it allows the BP to be
modified to accommodate a different cloud provider for example. The orchestrator
is designed based on an extensible software engineering pattern that allows to plug-
in service APIs of different clouds. Though our current implementation works with
Amazon EC2 cloud, it can be extended to support other clouds including Microsoft
Azure and GoGrid without much modifications to the design of the orchestrator. Re-
cent developments in the cloud API domain such as Simple Cloud, Delta Cloud,
JCloud, and Dasein Cloud abstracts APIs related to multiple cloud providers such as
Amazon EC2, GoGrid, etc. Our future developments can leverage one of these APIs
to enable orchestration of services across multiple clouds.

4 Experiments and validation
4.1 Experimental setting

Hardware and software configuration We ran our experiments on Amazon EC2
using standard small instances in US-west location. By default, a small instance has
the following hardware configuration: 1.7 GB of main memory, 1 EC2 Compute Unit
(i.e. 1 virtual core with 1 EC2 Compute Unit), 160 GB of local instance storage,
and a 32-bit platform. Over the lifetime of the experiment, we varied the number
of active instances over the range [2, 16] in the step of 2* where x € {1, 2, 3, 4}.
This was done in order to evaluate the performance of the system with varying query
processing capabilities. For each instance type, we used an Ubuntu 10.04 operating
system configured with a MySQL 5.1 database server. Each instance implements a
2-tier web application architecture (refer to Fig. 2), where an Apache web server
with PHP modules forms the basis for the application tier, while the database tier
is implemented using MySQL. The database tier stores a news dataset that requires
80 GB of storage space.

An Amazon’s small instance has access to a local disk (secondary storage) which
is not persistent by default. When an instance is shut down, both its state and contents
on the local disk are purged. A cloud-based deployment model that cannot guarantee
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data persistence is not a favorable option. To solve this, Cloud providers including
Amazon and Microsoft Azure, offer off instance storage volumes that persist inde-
pendently from the life on an Instance. These off instance storage volumes, which are
referred to as the Elastic Block Store (EBS) in Amazon EC2 and XDrive in Microsoft
Azure are particularly suited for applications that require database, file system, or ac-
cess to raw level storage. The main advantages of architecting applications using
off instance storage include: (i) each storage volume is automatically replicated, this
prevents data loss due to failure of any single hardware component and (ii) storage
volumes provide the ability to create point-in-time snapshots, which could be per-
sisted to the cloud specific data repositories (such as Amazon’s S3 and Azure Blob).
Keeping the aforementioned advantages in mind, we mounted an EBS volume on the
Amazon’s S3 service for each of the instances that required a persistent news dataset.

Workload configuration The testing tool that we used to generate the query load
was JMeter, which is a java desktop application designed to load test functional be-
havior and measure performance. It provides features that can be used to simulate a
heavy load on a web server, network or an object to test its performance under vary-
ing load types. JMeter has a well developed graphical user interface which permits
the visualization of test inputs and performance results. As an alternative to JMeter
one could also use HTTPerf and ApacheBench for randomly generating workload.
An architectural diagram of the test setup is shown in Fig. 2. JMeter generates the
query workload based on a Poisson distribution, whose mean inter-arrival delay was
set to 10 seconds. The queries are directly submitted to the Amazon’s ELB service.
The company id (RIC) and the date range are chosen randomly from the available
companies list and period (Jan. 2003 — Dec. 2007). A sample query in our experi-
ments had the following semantics: g = “search news announcements with 7S(g) =
AAPL.O (related to Apple) starting date = 01/01/2003 and end date = 01/01/2004”.

As the ELB is not launched as an instance, we will address it as an architectural
component as opposed to a hardware or software in the following discussions. Ama-
zon does not currently support different instance sizes for hosting ELBS, so all tests
were run with the standard ELB. Further, no performance tuning or configuration is
currently possible on ELBs. The only configuration that we set with regards to the
ELB was that only a single availability zone (US-west) was enabled for load distri-
bution. The instances hosting the web server and the database server were configured
to register automatically with the ELB during their start up phase.

The experiment has the following query workflow: JMeter directly submits the
queries to an ELB; the ELB dispatches the query to one of the known query service
instances in cloud; and upon successful execution of the query, the results are directly
returned to the JMeter, where they are logged for further analysis. The performance
metrics collected and analyzed in all tests was the Disk I/O read throughput and the
average query processing time. The Read Throughput is the key metric in database
applications as it may require instances to store immediate results on local disks or
request data from mounted storage volume (EBS) if the data is not cached locally.
The Average Query Processing Time is the delay between the time-stamp when the
JMeter submits a news search query to Amazon’s ELB and the time-stamp when the
JMeter receives a successful reply from the query execution service. This information
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Fig. 3 Performance of built-in load-balancing capability of database systems

is continuously logged with a special result analysis service over the life-span of the
tests. We ran our experiments with the following objectives in mind: to measure the
efficiency of workload-aware query load-partitioning and analyze the impact it may
have on real applications (news query service). We also conducted experiments to
compare the efficiency of the proposed approach against a classical one (existing
built-in load-balancing capability of database systems).

4.2 Evaluating built-in load-balancing capability of database systems

Our work is motivated by the fact that classical approaches based on existing DBMS’
built-in facilities for partitioning range queries are unable to perform optimal balanc-
ing of heterogeneous workload. To demonstrate this statement, a simple test is con-
ducted that partitions a range query based on equality of ranges. The range query with
the following configuration is injected into the system: g = “search news announce-
ments with 7S(¢g) = AAPL.O (related to Apple) where start date = 01/01/2003 and
end date = 31/12/2007 (total search interval = 5 years). Since there are two replicas
of the query execution service, the search query is split into two sub-queries with each
requesting a news dataset over 2.5 years. Figure 3 shows the results of this test. Con-
firming our anticipation, the results show that uniform partitioning of queries across
the service replicas without considering the underlying data density distribution leads
to unbalanced workload. Recall that such behavior exists due to the intrinsic nature
of the news dataset, where the queries searching over a similar space (number of
months), may have different amount of data to index. To further push our argument,
Fig. 3 also plots the performance gain achieved when the partitioning and routing of
a query is done based on the proposed density-based approach.

4.3 Evaluating the performance of cloud-based deployments

So far, we ran experiments for studying the classical query load-balancing approach,
which is intrinsic to database system implementations. Thus, the natural next steps
are to analyze

(1) whether the performance variability and degradation observed in previous sec-
tions will be efficiently handled through the cloud-based deployment of query
execution service and

(2) to which extent the load-balancing efficiency across service replicas is improved
by applying the proposed density driven approach.

@ Springer



A workload-driven approach to database query processing in the cloud 733

Workload of database replicas without query partitioning Workload of database replicas with query partitioning

Read Throughput (Opss)
.
Read Throughput (0pss)

2 replicas (VMs)

4 replicas (VMs)
Read Throughput (Ops's)
see
S
Read Thioughput (Ops/s)

8 replicas (VMs)
Read Throughput (Ops's)

roughput (Opsis

16 replicas (VMs)
Read The

Fig. 4 Workload of database replicas (virtual machines) for 2, 4, 8, and 16 replicas with (right) and
without (left) query partitioning

In these experiments, a query workload (search interval) is generated, which con-
tains queries of various sizes for randomly selected companies. A total of 500 random
queries are included as part of the workload and sent to the cloud-deployed service
instances at a rate of 6 queries per minute. It is worth noting that this rate is exactly
same as the original query rate experienced by SIRCA’s query execution service (an
estimated 1 million queries per year). The experiment lasted 82 minutes and is being
done to study two distinct cases: the first one partitions queries based on the news
data density and the second one does uniform portioning (i.e. without considering
the data density).

The results pertaining to the read-throughput of instances are shown in Fig. 4.

4.4 Limitations

The first drawback of the proposed approach is the required pre-processing phase
to build the data density database which can be time consuming. However, such a
density database is only built once as the news dataset is static and no updates to the
density database are required afterwards. The pre-processing phase allows an index
to be built. The processing time is obviously high in this phase and depends on the
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type of DBMS and the type of built-in index used. In our experiments, indexing the
entire dataset took 23 hours on a small instance. Increasing the performance of this
phase can be done by executing it on a much bigger instance. However, this phase is
only done once because the news data is historical and never updated. This could be a
limitation when using the proposed approach on a frequently updated news database.

Once the density database is created, querying it is in O (logn) where n is the
total number of tag-day (a tag-day is the unique association of a tag and a day during
which the tag has been used). That is made possible by using a b-tree index on dates
and a hash index on tags for the density data. Experiments show that querying the
density of a query requires an average of 0.1 seconds when using a 5-year dataset
corresponding to over 27 million tag-days in the density database.

The second drawback is that the number k of queries resulting from the partition-
ing of a query ¢ is limited to the number of days composing the date/time range of
q . For example, a query on news between 01/12/2003 and 03/12/2003 could only be
distributed on 3 replicas, one day each. This is due to the fact that an indivisible date
range has to be defined (which is 1 day in our case) to allow the construction of an
efficient data density index. Therefore, a data set of 5 years of news data would al-
low no more than 1825 partitions for any query. This limitation can be overcome by
choosing a smaller time interval (e.g. an hour) but this would significantly increase
the time required to build the index.

5 Related work

In this section, we look at the current state-of-the-art and compare it against the work
proposed in this paper.

When considering cloud database services, cloud-based relational database ser-
vices such as Amazon RDS and Microsoft SQL Azure have been introduced to the
market. However, existing offerings have severely limited abilities in their support
for workload-aware query partitioning and load-balancing. A recent approach [16]
has considered a query partitioning strategy, but is only applicable to OLTP and web
workloads. Since OLTP/web workloads are characterized by short-lived queries with
little internal parallelism, the approach is not directly applicable to our case where
sub-queries can be parallelized across replicated database service instances. There
has been a substantial amount of work [17] on the problem of tuning virtual machine
configurations for database workloads and on the problem of making database sys-
tems adaptable to hardware resource allocation [21, 22]. However, in this paper, we
are fine tuning the partitioning of queries to better balance the load across replicated
database service instances.

In the area of data Clustering, clustering records [23-25] is of particular interest
for range query processing. The approach involves physically placing records having
a common characteristic onto the same cluster. In the case of our news data, clustering
can be based on date ranges and/or tags. Clustering based on date ranges allows
to speedup a range query processing if the date range is short (few days or weeks)
but results in poor performance with larger date ranges. Furthermore, news data are
usually tagged with several tags and, therefore, applying clustering on tags could lead
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to duplication of news item across clusters, hence increasing the size of the database.
Moreover, the size of the clusters can significantly vary as some tags are used more
frequently than others. Finally, combining clustering based on date range and tags
would inherit the disadvantages of both solutions. For the above reasons, clustering
based on date ranges and/or tags is not suitable approach for the type of data set we
are dealing with, i.e. SIRCA’s news data.

Another class of approach includes replicating database instances to distribute
range query processing. In [13], the authors address the two conflicting problems
of ensuring data-access load balancing and efficiently processing range queries over
peer-to-peer networks. A novel hash function is proposed which (a) preserves the or-
dering of data to ensure efficient range query processing, and, (b) replicates and fairly
distributes popular data or/and ranges among peers. Although such an approach en-
sures load balancing querying of “popular” data (frequently requested), it performs
poorly for infrequently accessed data sets.

6 Conclusion & future work

In this paper, we introduced a hybrid workload-aware approach for efficiently balanc-
ing workload (range queries) across relational database-as-a-service for cloud com-
puting environments. The proposed approach overcomes two significant challenges:
efficient query partitioning and load-balanced workload placement. For query par-
titioning, we developed a novel data density distribution estimation algorithm. For
workload placement, we implemented the query partitioning algorithm as an addi-
tional service on top of existing cloud-based load-balancer services such as Ama-
zon EC2 Loadbalancer. Our approach allows a minimum density interval to be
configured according to granularity of relational dataset and composition of search
queries. Based on our evaluation results, we believe that workload-aware database-
as-a-service can be made prime time and further research and development work is
needed in this domain.

As future work, we will develop query workload and relational database perfor-
mance models that can detect changes in workload intensity which may occur over
time and allocate or de-allocate database instances accordingly in order to achieve
performance targets. We will develop new workload prediction models that build
upon the recent advances in Computational Statistics (CS) techniques, and allow the
capture of the performance behavior from the actual traces of incoming requests. To
this end, we will build upon existing CS techniques including kernel canonical cor-
relation analysis and quadrative response surface model. We will investigate a flex-
ible, layered queueing model, to determine how much hardware resources (comput-
ing, storage, and network) to provision for a database-as-a-service application. The
goal is to allocate sufficient capacity to each layer (load-balancer, business logic, and
database) so that its performance target can be met under varying workload condi-
tions within a minimum possible cost. Finally, we would look into the cloud-agnostic
orchestration environment which can be transformed into cloud-specific configura-
tions and used for facilitating deployment across multiple clouds.
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