
Future Generation Computer Systems 29 (2013) 1661–1670
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy-aware parallel task scheduling in a cluster
Lizhe Wang a,b,∗, Samee U. Khan c,∗∗, Dan Chen a,∗∗, Joanna Kołodziej d, Rajiv Ranjan e, Cheng-zhong Xu f,
Albert Zomaya g

a School of Computer Science, China University of Geosciences, PR China
b Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, PR China
c Department of Electrical and Computer Engineering, North Dakota State University, United States
d Institute of Computer Science, Cracow University of Technology, Poland
e ICT Centre, CSIRO, Australia
f Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, PR China
g School of Information Technologies, The University of Sydney, Australia

h i g h l i g h t s

• This paper develops formal models for parallel tasks and a power aware cluster.
• Power aware scheduling for parallel tasks based on list scheduling is proposed.
• System model is based on SLA for green parallel task scheduling.
• The proposed methodologies are thoroughly investigated through simulations.

a r t i c l e i n f o

Article history:
Received 23 September 2011
Received in revised form
19 November 2012
Accepted 25 February 2013
Available online 18 March 2013

Keywords:
Cluster computing
Green computing
Task scheduling

a b s t r a c t

Reducing energy consumption for high end computing can bring various benefits such as reducing
operating costs, increasing system reliability, and environmental respect. This paper aims to develop
scheduling heuristics and to present application experience for reducing power consumption of parallel
tasks in a cluster with the Dynamic Voltage Frequency Scaling (DVFS) technique. In this paper, formal
models are presented for precedence-constrained parallel tasks, DVFS-enabled clusters, and energy
consumption. This paper studies the slack time for non-critical jobs, extends their execution time and
reduces the energy consumption without increasing the task’s execution time as a whole. Additionally,
Green Service Level Agreement is also considered in this paper. By increasing task execution time within
an affordable limit, this paper develops scheduling heuristics to reduce energy consumption of a tasks
execution and discusses the relationship between energy consumption and task execution time. Models
and scheduling heuristics are examined with a simulation study. Test results justify the design and
implementation of proposed energy aware scheduling heuristics in the paper.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, high end computing facilities can consume a very
large amount of power, although they provide high performance
computing solutions for scientific and engineering applications [1].
For example, operating amiddle-sized data center (i.e., a university
data center) demands 80000 kW power [2]. It is estimated that
computing resources consume around 0.5% of the world’s total

∗ Corresponding author at: School of Computer Science, China University of
Geosciences, PR China.
∗∗ Corresponding authors.

E-mail addresses: Lizhe.Wang@gmail.com (L. Wang), samee.khan@ndsu.edu
(S.U. Khan), Danjj43@gmail.com (D. Chen).

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.02.010
power usage [3], and if current demand continues, this is projected
to quadruple by 2020. Energy consumption for high performance
facilities thus contributes to a significant electric bill. Additionally,
high power consumption in general results in higher cooling costs.
Furthermore, to allow computing facilities to operate on high
power for a long timewill lead to a high temperature of computing
systems,which further harms a system’s reliability and availability.
Therefore, reducing power consumption for high end computing
becomes a critical research topic.

Modern processors are equipped with the Dynamic Voltage
Frequency Scaling (DVFS) technique, which enables processors
to be operated at multiple frequencies under different supply
voltages. The DVFS technique thus gives opportunities to reduce
the energy consumption of high performance computing by scaling
processor supply voltages. Our research is devoted to developing

http://dx.doi.org/10.1016/j.future.2013.02.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:Lizhe.Wang@gmail.com
mailto:samee.khan@ndsu.edu
mailto:Danjj43@gmail.com
http://dx.doi.org/10.1016/j.future.2013.02.010

1662 L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670
scheduling heuristicswhich reduce energy consumption of parallel
task execution by using the DVFS mechanism. A parallel task is a
set of jobs with precedence constraints. Jobs in a parallel task may
have some slack time for their execution due to their precedence
constraints.

This paper makes a study of scheduling policies and application
experiences to reduce power consumption of parallel tasks. Our
first research issue is to minimize task execution time as well as
reduce power consumption. The execution time of the non-critical
jobs in a parallel task can be extended, thus giving an opportunity
to scale down the supply voltages of processors. Based on the
analysis of DVFS on non-critical jobs, we develop two power aware
scheduling heuristics for parallel tasks, the PowerAware List-based
Scheduling (PALS) algorithm and the Power Aware Task Clustering
(PATC) algorithm.

Our second research objective is to make an study on energy
and performance tradeoff for parallel task execution. The green
Service Level Agreement (SLA) is introduced in this research. By
negotiating with users via the green SLA, an energy-performance
tradeoff algorithm is developed to reduce energy consumption
with an affordable task execution time increase. We develop a
simulation study on the proposed scheduling heuristics and make
a performance evaluation.

We declare our contribution as follows:

• We develop formal models for parallel tasks and a power aware
cluster and we also define the task scheduling issue.
• We develop two power scheduling heuristics for parallel tasks:

the PALS and the PATC.
• We present the green SLA use scenarios and propose a new

scheduling heuristics for energy aware parallel task scheduling,
which makes a study of the tradeoff between the energy
consumption and task execution time (performance).
• We build a simulation study and performance evaluation on

the proposed heuristics. Test results justify our design and
implementation of energy aware heuristics.

The rest of this paper is organized as follows. Section 2 intro-
duces background and related work. Then Section 3 discusses the
models for parallel tasks, DVFS and compute clusters and Section 4
formally define the research issue of energy aware parallel task
scheduling. Section 5 applies the DVFS technique on non-critical
jobs of parallel tasks, which is the basis of the PALS and the PATC.
We describe the scheduling heuristics of the PATC and the PALS
in Sections 6 and 7. Section 8 presents the Service Level Agree-
ment with performance metrics of green computing and proposes
the research issue of energy-performance tradeoff for parallel task
scheduling. Section 9 then presents the scheduling algorithm for
the research issue proposed in 9. The complexity analysis for the
proposed algorithms are presented in Sections 10 and 11 describes
a simulation study on the proposed scheduling heuristics. Finally
this paper is summarized in Section 12.

2. Related work

This section discusses background and related work of task
scheduling, DVFS, and power aware cluster computing.

2.1. Parallel task scheduling

Task scheduling techniques in parallel and distributed systems
have been studied in great detail with the aim of making use of
these systems efficiently.

Task scheduling algorithms are typically classified into two sub-
categories: static scheduling algorithms and dynamic scheduling
algorithms. In static task scheduling algorithms, the task assign-
ment to resources is determined before applications are executed.
Information about task execution cost and communication time is
supposed to be known at compilation time. Static task scheduling
algorithms normally are non-preemptive—a task is always running
on the resource to which it is assigned [4]. Dynamic task schedul-
ing algorithms normally schedule tasks to resources in the runtime
to achieving load balance among PEs. are based on the redistribu-
tion [5,6].

The list scheduling algorithm is the most popular algorithm in
the static scheduling [7,8]. List based scheduling algorithms assign
priorities to tasks and sort tasks into a list ordered in decreasing
priority. Then tasks are scheduled based on the priorities. In this
paper, we build a list based scheduling heuristic for parallel tasks—
the PALS algorithm. The task execution information, such as task
execution cost and communication cost, can be obtained by some
profiling tools and compiler aides in advance.

The task graph clustering technique [9,10] is an effective static
scheduling heuristic for scheduling parallel tasks. Given a task
graph, ‘‘clustering’’ is the process of mapping task graph nodes
onto labeled clusters. All tasks of the same cluster are executed
in the same processor. In traditional task scheduling heuristics,
the process of clustering tasks is an optimization of reducing the
makespan of the scheduled graph. In this paper, we proposed the
PATC algorithm, whose process of clustering tasks is guided by
reducing the total power consumption of the scheduled graph.

2.2. Energy reduction via DVFS techniques

Dynamic voltage and frequency scaling (DVFS) has been proven
to be a feasible solution to reduce processor power consump-
tion [11,12]. By lowering processor clock frequency and supply
voltage during some time slots, for example, idle or communi-
cation phases, large reductions in power consumption can be
achieved with only modest performance losses. A DVFS-enabled
cluster [1] is a compute cluster where compute nodes can run
at multiple power/performance operating points. The DVFS tech-
niques have been applied in the high performance computing
fields, for example, in large data centers, to reduce power con-
sumption and achieve high reliability and availability [13–15].
Popular DVFS-based software solutions for high end computing
include:
• Scientific applications can be modeled with a Directed Acyclic

Graph (DAG) and the critical path is identified for applications.
Thus, it is possible to reduce energy consumption by leveling
down the processor supply voltage during non-critical execu-
tion of tasks [16].
• Some work [17] builds online performance-driven runtime

systems to automatically scale processor supply voltages.
• Some work applies DVFS during the communication phases of

high performance computing, for example MPI [18,19].
• In addition to parallel applications, virtual machine scheduling

can also use DVFS [1].
Our research in this paper falls into the first category:

scheduling DAGs on multiple processors in a cluster with DVFS
techniques.

2.3. Power aware task scheduling

A lot of work has developed DVFS for task scheduling. For
example, Yao et al. [20] and Ali et al. [21] discuss scheduling
independent tasks with DVFS on a single processor, Wei et al. [22]
and Gruian et al. [23] use DVFS to schedule dependent tasks
on multiple processors, Martin et al. [24] and Luo et al. [25,26]
developed a power aware task scheduling algorithm for real time
systems. As our work is devoted to developing power aware
scheduling algorithms for dependent tasks, we compare our work
with related research in this topic.

Zhang et al. [27], Martin et al. [24], Schmitz [28], and Luo
et al. [26] schedule dependent tasks on real time, where the tasks

L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670 1663
normally are assigned with arrival time, deadline and max power
consumption. In our research of energy aware high end computing,
we do not have these restrictions on the tasks to be scheduled.

Zong et al. [29] employ the similar DAG model and resource
model with us and developed energy-aware duplication schedul-
ing algorithms. This work however did not use DVFS technique
to reduce power consumption, therefore their implementation
certainly has some room to further reduce energy consump-
tion if DVFS technology is employed when scheduling parallel
tasks. Gruian et al. [23] propose a list based low energy schedul-
ing algorithm—LEneS. It smartly introduces enhanced task-graphs
(ETG) and energy gain in the list based scheduling.Martin et al. [24]
develop a hybrid global/local search optimization framework for
DVFS with simulated heating. LPHM [30] is a low power schedul-
ing of DAGs to minimize task execution time. LPHM combines
the heterogeneous earliest finish time with the DVFS technique.
Zong et al. [31] develops two energy-aware duplication scheduling
algorithms for parallel tasks on homogeneous clusters: EAD and
PEBD. Lee et al. [32] propose an energy-conscious scheduling (ECS)
heuristic for parallel tasks on heterogeneous computing systems.
Kimura et al. [33] use the same idea of extending task execution
time by reclaiming slack times for non-critical jobs.

Costa et al. present a multi-facet approach to reduce energy
consumption in clouds and grids with users decisions consider-
ation [34] and SLA-aware management for management Cloud
resources [35], which enjoy similar ideas of user-defined and SLA-
based energy management.

Compared to the above related research, our PALS algorithm
not only considers minimizing the energy consumption in the
scheduling algorithm, but also uses the concept of slack time for
jobs in a power Gantt chart to discuss the trade off between
energy consumption and scheduling length. The PALS algorithm
also concerns reducing voltages during the communication phases
between parallel jobs. None of above research work discusses this
aspect.

We propose a novel power aware scheduling algorithm based
on task clustering—the PATC algorithm. The PATC algorithm
merges tasks by zeroing communication links aiming to reducing
power consumption, which is a different scheduling philosophy
from the list based heuristics.

3. Systemmodel

This section provides the formal description for a DVFS-
enabled cluster, parallel tasks, and performancemodels, which are
employed as a basis of the formal problem definition in Section 4
and the scheduling algorithms in Sections 6 and 7.

3.1. DVFS model

A DVFS-enabled processor can be operated on a set of supply
voltages V and a set of processor frequencies F .

V =


1≤m≤M

{vm} (1)

F =


1≤m≤M

{fm} (2)

where,
vm is the m-th processor operating voltage;
fm is the m-th processor operating frequency;
vmin = v1 ≤ v2 ≤ · · · ≤ vM = vmax;
fmin = f1 ≤ f2 ≤ · · · ≤ fM = fmax;
1 ≤ m ≤ M,M is the total number of processor operating

points.

3.2. Energy model

The energy consumption of modern processor for job execu-
tion, ξ , can be divided into two parts, dynamic energy consump-
tion ξdynamic , and static energy consumption ξstatic [36]. Static power
consumption arises from running, bias and leakage currents. Dy-
namic power consumption arises from the charging and discharg-
ing of the circuit node capacitances found on the output of every
logic gate.
ξ = ξdynamic + ξstatic . (3)
According to [37], the dynamic power consumption Pdynamic is com-
puted as follows:

Pdynamic = A× C × v2
× f (4)

where,
A is the percentage of active logic gates, which are charged
dynamically;
C is the total capacitance load;
v is the supply voltage;
f is the processor frequency.
Then, we have:

ξdynamic =

△t

Pdynamic ×△t (5)

where,
Pdynamic is the dynamic power;
△t is a time period.
ξstatic is normally proportional to Edynamic [19]:

ξstatic ∝ ξdynamic . (6)
Therefore the whole power consumption could be estimated as
follows:
ξ ∝ ξdyanmic . (7)

In conclusion, we have the performance model:

ξ =

△t

(δ × v2
× f ×△t) (8)

where,
δ is a constant determined by the PE.
v is the processor operating voltage during△t;
f is the processor operating frequency during△t;
△t is a time period.

3.3. Resource model

A compute cluster normally contains multiple compute nodes,
which are formally termed as Processing Elements (PEs) in a
context of parallel computing. This paper makes a study of
homogeneous clusters: all PEs of the cluster have the same pro-
cessing speedor provide identical processingperformance in terms
of MIPS (Million Instructions Per Second). A homogeneous cluster,
C , contains K PEs. The k-th PE pek has two properties:
• pek · vop

∈ V is the processor operating voltage
• pek · f op ∈ F is the processor operating frequency
1 ≤ k ≤ K , K is the total number of PEs.

A cluster C is defined by its set of processing elements

C =


1≤k≤K

{pek}. (9)

3.4. Parallel task model

A parallel task with precedence constrains is modeled as a
Directed Acyclic Graph (DAG)—T = (J, E):
• J: a set of jobs (nodes in a DAG)

J =


1≤n≤N

{jobn} (10)

where,
jobn is a job in the parallel task J .

1664 L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670
N is the total number of jobs.
A job, jobn, has 3 properties:
– weight is the instruction number of jobn.
– tst is the starting time of jobn.
– t is the execution time of jobn. If jobn is executed on pek, the

job execution time is calculated as follows:

jobn · t =
jobn · weight × CPI

pek · f op
(11)

where, CPI is the number of cycles per instruction of
pek. It is determined by both the hardware and software
of the cluster C , for example, computer architecture and
instruction set (i.e., RISC or CISC). jobn · t0 is the jobn’s
execution time when PE is running with the maximum
frequency fmax. Eq. (11) calculates job execution based on
PE’s operating frequency.

– tend is the end time of jobn. We have:
jobn · t

end
= jobn · t

st
+ jobn · t. (12)

Based on Eqs. (11) and (8), the energy consumption to execute
jobn can be calculated as follows:
ξn = γ × v2

× jobn · weight (13)
where, γ is a constant determined by the cluster C , and
irrelevant with the parallel task T . v is the PE supply voltage
during the jobn’s execution.

• E: a set of precedence constraints (edges in a DAG) E defines
partial orders (operational precedence constraints) on J . eij is an
edge between jobi and jobj, itmeans that jobi must be completed
before jobj can begin, 1 ≤ i, j ≤ N, jobi, jobj ∈ J . eij sometime
can also be represented jobi < jobj.

e has one property:
eij ·cost ≥ 0, is the amount of data required to be transferred

from jobi to jobj, 1 ≤ i, j ≤ N, jobi, jobj ∈ J . Data are transferred
from the PE where jobi is executed to the PE where jobj is
executed.

As we are studying a homogeneous cluster, without loss of
generality, ei,j · cost can also be normalized as communication
time. Now we discuss the relationship between ei,j · cost and
PE’s operating frequency. It shows in [19] that the energy
consumption and communication cost as processor frequency
varies for four commonMPI calls when different size of data are
transferred among PEs. From the experiment results we can see
energy can be saved up to 31%with atmost a 5% communication
time increase. In this paper, we ignore the communication time
increase. In other words, when a PE’s supplied voltage is scaled
down, the data communication time remains unchanged.

4. Research problem definition

Here we firstly consider the best-effort scheduling research
problem. Without damaging the performance of parallel task exe-
cution (task execution time), the best-effort scheduling algorithm
tries to reduce the energy consumption for task execution.

Before we bring up the formal definition of the above research
issues, the following term definitions are introduced.

• TST : Task Starting Time of T

TST = min
1≤n≤N

jobn · t
st (14)

• TFT : Task Finish Time of T

TFT = max
1≤n≤N

jobn · t
end (15)

• makespan: the schedule length of T

makespan = TFT–TST (16)
Fig. 1. An example DAG.

Fig. 2. An example Gantt chart.

• Schedule: Task Schedule
The schedulen of jobn is a mapping from jobn to a PE pek with

task starting time jobn · tst .

schedulen : jobn → (pek, jobn · t
st). (17)

The schedule of parallel task T , Schedule, is defined as:

Schedule =


1≤n≤N

schedulen. (18)

A feasible schedule of parallel task T keeps the partial orders
between jobs in T .

Based on the above definitions, the best-effort scheduling issue
is defined as: given parallel task T and a cluster C , find a feasible
schedule Schedule, which (1) gives the minimum schedule length
makespanbest of T , and (2) reduce as much energy consumption as
it can without increasingmakespanbest .

5. Voltage scaling for non-critical jobs

This section discusses how to scale down non-critical jobs’
voltages with DVFS technique, which is the basis of the PATC and
the PALS presented in the next two sections. Fig. 1 is an example
parallel task to be scheduled. In Fig. 1, job IDs and job execution
costs are marked inside the jobs and the communication costs are
labeled on the links. The scheduled task graph is shown in Fig. 2
as a Gantt chart (see Fig. 3). The Dominant Sequence (DS) of a
scheduled task graph in a Gantt chart is a set of time slots of job
execution and data communication from the first job to the last
job, of which the sum of computation costs and communication
costs is the makespan.

The DS in Fig. 2 is ‘‘A→ C → E → F ’’. It should bemade aware
that a DS may cross multiple PEs. As the best-effort scheduling
algorithm does not extend the makespan, supplied voltages of PEs
during the time slots of task execution and data communication in
the DS is not changed. Supplied voltages of other time slots in a
Gantt chart are considered be scaled down. For example, in Fig. 2
jobs B and D have chance to extend their execution time and scale
down their supplied voltages.

L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670 1665
Fig. 3. Example power Gantt chart.

To discuss the algorithm for scaling voltages on non-critical
time slots, we need to compute the slack time for a non-critical
job. We have jobn’s earliest start time is:

jobn ·
←−
tst = max

{jobm|jobm<jobn}
{jobm · t

end
+ em,n · cost} (19)

jobn’s latest finish time is:

jobn ·
−→
tend = min

{jobl|jobl>jobn}
{jobl · t

st
− el,n · cost} (20)

{jobm|jobm < jobn} and {jobl|jobl > jobn} are jobn’s precursor
set and successor set respectively. Then jobn’s slack time can be
calculated as:

jobn · slack = jobn ·
−→
tend − jobn ·

←−
tst . (21)

We can find in Fig. 2 the slack time of job B and D.
Assume jobn is a non-critical job and is executed on pek. Then

jobn’s execution time can be extended to jobn · slack without
violating precedence constraints (without changing the finish time
of its precursors and the start timeof its successors). pek’s operating
frequency can be scaled to pek · f op,

pek · f op = fmax ×
jobn · t0

jobn · slack
(22)

where, jobn · t0 is jobn’s execution time when pek is operated with
fmax. jobn · t0 is discussed in Section 3.4 and can be calculated in
Eq. (11).

Algorithm1 showshow to scale downnon-critical jobs. For each
PE, it scans all time slots (line 2–3). When the PE is idle or transfers
data in a time slot, Algorithm 1 scales the PE’s operating frequency
to the lowest (line 4–6). When a time slot executes a non-critical
job, it calculates its slack time, extends the job’s execution time to
the slack time, and scales down the PE’s operating frequency to a
proper value (line 7–9).

Algorithm 1 Non-critical time slot voltage scaling algorithm
1 BEGIN
2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF
7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Eq. (21).
9 scale pek’s frequency to pek.f op as Eq. (22).
10 ENDIF
11 ENDFOR
12 ENDFOR
13 END

After we scale down the voltages of non-critical jobs in a sched-
uled task graph, the total power consumption can be calculated
with the model defined in Section 3.2.
6. The PATC algorithm

We summarize several obvious rules to guide the design of the
PATC algorithm and the PALS algorithm.
1. Eq. (13) shows that given a certain task, a PE’s supply voltage

could be scaled down to a proper voltage to reduce the task’s
energy consumption. Certainly, this actionmay lead an increase
of task execution time.

2. Research in [19] indicates that during the communication
phase, the PE’s supply voltage should be scaled down to the
lowest level.

3. When a PE is idle (there is no task execution and data
communication), its supply voltage should be leveled down to
the lowest level.

This section presents the Power Aware Task Clustering (PATC)
algorithm for parallel task scheduling. Traditional task clustering
algorithm takes the following steps: (1) task clustering by zeroing
edges, (2) cluster merging if the number of task clusters is greater
than the number of PE, (3) task execution ordering in each task
cluster, (4) each task cluster is allocated with a PE.

Traditional task clustering algorithm reduces the makespan by
zeroing edges of high communication costs. Our Power Aware
Task Clustering (PATC) algorithm, on the contrary, guides the edge
zeroing process with objective of reducing power consumption. As
shown in Algorithm 2, the PATC algorithm firstly marks all edges
as unexamined and allocates each task a separate cluster. After
sorting all edges in descending order of communication time, the
PATC algorithm repeatedlymerges tasks by zeroing the edges with
high communication cost if the total power consumption is not
increased. How to scale non-critical jobs’ voltage and calculate the
power consumption of a scheduled task graph have been discussed
in Section 5.

Algorithm 2 The PATC algorithm
1 BEGIN
2 Initially all edges are marked unexamined and each task forms a
separate cluster
3 Sort all edges in a descending order according to their
communication costs
4 REPEAT
5 Zero the highest unexamined edge in the sorted list if the power
consumption of the scheduled task graph does not increase
6 Mark the edge examined
7 When two clusters are merged, the tasks are ordered according
to their b_level.
8 UNTIL all edges are marked examined
9 END

Inside each cluster, tasks are executed in the order of their
b_level. b_level is a normal priority assignment for jobs, which is
defined as the length of a longest path from that job to the exit job.
b_level is calculated with Algorithm 3.

7. The PALS algorithm

This section presents the Power Aware List-based Scheduling
(PALS) algorithm for parallel tasks. The PALS algorithm (shown in
Algorithm 4) firstly employs the ETF (Earliest Task First), a list-
based scheduling algorithm (shown in Algorithm 5), to find the
best-effort task response time for T . Then, it tries to reduce the
energy consumption with the following methods:
• Scale down PE’s voltages to a proper level, thus extending the

execution time of the non-critical jobs without affecting the
critical path.
• Scale the PE’s voltage when it is idle or when it is in the data

communication phase.

1666 L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670
Algorithm 3 b_level calculation
1 BEGIN
2 r_list ← a list of all jobs Jobi ∈ J sorted in a reversed partial order
3 Initialize all jobs in rtopo_list: b_level(Jobi)← 0
4 FOR each Job Jobi ∈ rtopo_list DO
5max_length← 0
6 FOR each immediate succeeding job Jobj of job Jobi DO
7 length← b_level(Jobj)+ ei,j.cost
8 IF (length > max_length) THEN
9 max_length← length
10 ENDIF
11 ENDFOR
12 b_level(Ti)← Jobi.weight +max_length
13 ENDFOR
14 END

Algorithm 4 The PALS algorithm
1. schedule tasks via the ETF scheduling Algorithm 5
2. scale down PE’s voltages for all non-critical jobs with

Algorithm 1

Given a parallel task T , the ETF algorithm [38,39] is described in
Algorithm 5. Algorithm 5 allocates each job with a priority which
can be calculated via different methods, for example, bottom level
and top-level [40]. In our implementation, we use the bottom
level. The bottom level of a node (job) in a DAG is the longest
path beginning with the node and the top-level is the longest path
reaching the node. The length of a path is defined as the sum of the
weights of its nodes and edges. Then, Algorithm5 selects ready jobs
with the highest priority and schedules it on the PE with earliest
task starting time.

Algorithm 5 The ETF scheduling algorithm
1 jobn.level: priority of task jobn ∈ J
2 ready_job_list: list of jobs that are ready to be executed
3 PE_list: list of PEs
4 pek.tavailable: PE’s available time.
5 BEGIN
6 FOR each job jobn ∈ J DO
7 compute jobn.level
8 ENDFOR
9 put all ready jobs into ready_job_list
10 sort all jobs jobn ∈ ready_job_list in decreasing order of
jobn.level
11 put all PEs into PE_list
12 sort all PEs pek.tavailable = 0
13 REPEAT
14 IF (ready_job_list ≠ ∅) THEN
15 get a job, jobn, from ready_job_list
16 get a PE, pek, which has the earliest available time pek.tavailable
17 schedule jobn on pek
18 arrange the communicate phase, calculate starting time and
finish time of jobn on pek
19 delete the task from ready_job_list
20 update PE_list with increasing order pek.tavailable
21 ENDIF
22 update ready_job_list
23 UNTIL (every job jobn ∈ J has been scheduled)
24 END

8. SLA management for green computing

In previous sections, we make a study on reducing power
consumption without increasing task execution time, which is
termed as the ‘‘best-effort scheduling issue’’. This section we
analyze an interesting scenario: if a user is environmental respect
and want to reduce power consumption by increasing its task
execution time.

Green computing is a research topic to make computing with
environmental concerns [41], for example, reduced energy con-
sumption and reduced CO2 emissions. We develop power aware
scheduling for parallel task in the context of green SLA (Service
Level Agreement for Green Computing). Users can specify not only
performance requirements for computing services, but users can
also specify green computing requirements for executing their
jobs. We define the green SLA in three phases:
• Green SLA contract definition.

Our previous work [41] has summarized a number of
green computing metrics, such as Data Center Infrastructure
Efficiency (DCiE) [42,43], Power Usage Effectiveness (PUE) [43],
Data Center energy Productivity (DCeP) [44], Space Watts
and Performance (SWaP) [45], storage, network, and server
utilization. The green SLA contract definition phase creates
various green SLA templates based on above green computing
metrics. Typical metrics includes task response time, CO2
emission, and power consumption. This phase also contains
green SLA template publication and discovery.
• Green SLA negotiation and monitoring.

Users develop their green SLA specification based on SLA
templates and make a negotiation with computing resources,
for example, a high performance cluster. Here are some
examples of green computing service specifications:
– Establish an execution service for xminutes if the total carbon

emission of the service is below y tons.
– I would like to accept z% task execution time increase to

reduce w energy consumption.
• Green SLA enforcement.

When a green SLA is reached, computing resources then
execute the specified green services. For example, schedule
tasks based on specified task execution time, CO2 emission
and power consumption. We develop energy aware scheduling
algorithms for parallel tasks based on user’s green SLA
specifications.

Fig. 4 shows the conceptual framework for green SLA-based on
energy aware scheduling in a cluster. Before a resource consumer
submits a parallel job to a cluster, she/he firstly negotiates with
a resource provider with normal performance metrics, like job re-
sponse time, aswell aswith greenmetrics, for example, power con-
sumption or CO2 emission. After an agreement is reached, the user
then submits his/her job to the resource. The resource provider
then schedules the incoming job to an energy aware cluster to
guarantee the green metrics and computing performance.

With the green SLAnegotiation, users agree to accept a tolerable
performance loss, for example, additional 10% of task execution
time, to reduce more energy consumption and make their
computing more green. In contrast to the best-effort scheduling
research problem, we term this research issue as the energy-
performance tradeoff scheduling issue, whose main objective is to
reduce energy consumption for task execution with an acceptable
performance punishment.

The energy-performance tradeoff scheduling issue can be
defined as: given parallel task T , a cluster C , and the schedule
length makespanbest , of a best-effort schedule, find a feasible
schedule which tries to minimize energy consumption by giving
Task Execution Timemakespan ≤ (1+ η)×makespanbest . η > 0 is
the accepted task execution time extension, which is determined
by the green SLA negotiation.

9. Energy-performance tradeoff scheduling algorithm via
green SLA

Now we discuss the energy-performance tradeoff problem: if a
user agrees to tolerate an increase of his/her job execution time,

L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670 1667
Fig. 4. Concept framework for green SLA-based energy aware scheduling in a
cluster.

Fig. 5. Energy-performance tradeoff power Gantt chart.

for example, η of schedule length of the best-effort scheduling
algorithm, how to schedule jobs to save more energy?

The energy-performance tradeoff algorithm is shown in Algo-
rithm 6. It firstly gets the best-effort scheduling length via Algo-
rithm 5. Then, it scales both the critical time slots in Algorithm 7
and non-critical time slots in Algorithm 1.

Algorithm 6 Energy-performance tradeoff scheduling algorithm
1. schedule tasks via the ETF scheduling algorithm 5
2. scale down PE’s voltages for critical jobs with Algorithm 7
3. scale down PE’s voltages for non-critical jobs with Algorithm 1

The Algorithm 7 firstly extends the critical time slots. Assume
jobn is a critical job and it is executed on pek. It has been proved
in [46] that distributing the free slack time ‘‘evenly’’ (proportional
to the original critical time) is optimal as the power consumption is
a convex function of PE frequency. Therefore jobn’s slack time can
be calculated as:

jobn · slack = jobn · t
0
× η (23)

where,

jobn · t0 is jobn’s execution time when pek is operated with fmax.
η is the agreed extension of parallel task’s execution time (see
Fig. 5).

pek’s operating frequency can be scaled to pek · f op,

pek · f op = fmax ×
jobn · t0

jobn · slack
. (24)

10. Algorithm complexity analysis

In this section, we present an analysis on the time complexity
of the algorithms discussed above.
Algorithm 7 Algorithm of voltage scaling for all time slots
1 BEGIN
2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek executes a critical job jobn THEN
5 calculate its jobn’s slack time as Eq. (23)
6 scale pek’s frequency to pek.f op as Eq. (24).
4 ENDFOR
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF
7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Eq. (21).
9 scale pek’s frequency to pek.f op as Eq. (22).
10 ENDIF
11 ENDFOR
12 ENDFOR
13 END

10.1. Analysis of the PTAC algorithm

10.1.1. Algorithm 1
Algorithm1 scales the supply voltage of a PE. Assumingwehave

K PE’s, with t time slots, line 2 will occur at most K times, where as
the inner loop starting at line 3 will occur t times. The operations
from lines 4 to 10 are constant time operations, thus the upper
bound of this algorithm is O(Kt).

10.1.2. Algorithm 2
This algorithm forms the task clusters. Line 2 is executed |E|

times. The sorting in line 3 can be done in |E|lg|E| time via
quicksort. Lines 5 and 6 are constant time operations, each ofwhich
is part of a loop of |E| iterations. Line 7 issues a call to Algorithm
3 when two clusters are merged. Since initially, each Task forms a
cluster,we have C clusters and a total of T tasks. Atmost, Algorithm
3 will be called CT times. O(|E| + |E|lg|E| + CT ∗ A3) where A3
represents the complexity of the b_level calculation, or Algorithm
3.

10.1.3. Algorithm 3
This algorithm computes the b_level for a task. This algorithm is

called by Algorithm 2. The sorting of line 2 can be done in |J|lg|J|
time. Line 3 is an initialization that occurs |J| times. Lines 4 and
6 are a double loop, however each loop inner loop only iterates
through a job J’s children. Thus, the total number of iterations
for lines 4–13 occurs |E| times. Thus, Algorithm 3’s complexity is
O(|J|lg|J| + |J| + |E|). Thus, our loose upper bound for the PTAC
algorithm is O(|E| + |E|lg|E| + C(|J|lg|J| + |J| + |E|)).

10.2. Analysis of the PALS algorithm

10.2.1. Algorithm 4
Algorithm 4 simply executes Algorithms 1 and 5. For example,

Algorithm 5will be executed T times, where T represents the total
number of tasks.

10.2.2. Algorithm 5
This algorithm schedules the jobs of a task on to the PEs. Lines

1–4 are simply descriptions, or comments. Lines 6–8 compute the
priority for each job in the task, and execute N times, where N
represents the number of jobs in the task. Line 9 is also execute
N times, and simply adds jobs to a list. The sorting of the jobs in
line 10 can be done in O(NlgN) time. Line 11 is linear complexity,

1668 L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670
Table 1
Operating points for the Turion MT-34 processor.

Frequency (GHz) Supply voltage (V)

1.8 1.20
1.6 1.15
1.4 1.10
1.2 1.05
1.0 1.00
0.8 0.90

like line 9, and simply places the PEs into a list. This is done K
times. The sorting in line 12 can be done in KlgK time. The loop
in lines 13–23 loops through each job in the list. This is done N
times. Each operation between lines 13–23 can be considered to
be done in constant time, for example, retrieving a job from the
list in line 15 is constant. The complexity for Algorithm 5 is thus
O(N + NlgN + K + KlgK).

10.2.3. Algorithm 6
Algorithm 6 represents the energy-performance tradeoff algo-

rithm. Line 1 makes T calls to Algorithm 5, where T represents the
number of tasks. Likewise, in lines 2 and 3, Algorithm 6 calls Algo-
rithm7 andAlgorithm1 T times. Thus, the complexity of Algorithm
6 is O(T (Kt + N + NlgN + K + KlgK + A7)) where A7 represents
the complexity of Algorithm 7.

10.2.4. Algorithm 7
Algorithm 7 scales down the voltage for the critical path, thus

increasing the execution time of the task as awhole. The outer loop
on line 2 is executed K times for the K PEs. The first inner loop
on line 3 gets executed t times, where t represents the number of
time slots in the Gantt chart. Lines 4, 5, and 6 are constant time
operations.

The second inner loop has t loops, for each time slot in the Gantt
chart. Thus, the complexity for the PALS algorithm is O(Kt+Kt), or
simply O(Kt)

11. Performance study with simulation

We make a simulation study on the proposed best-effort
scheduling algorithmand energy-performance tradeoff scheduling
algorithm. Several task sets are generated with the Synthetic DAG
generation tool [47]. We simulate a cluster with multiple Turion
MT-34 processors, whose operating points are shown in Table 1.

In this simulation for best-effort scheduling, we are interested
how much energy is saved given various parallel tasks and PE
numbers in the cluster. We define the resource competition to
execute a parallel task, ζ (T), in a cluster as follows:

ζ (T) =
N
P

(25)

where, T is the parallel task, N is the job number of T , and P
is the PE number for executing T . Resource competition shows
the task execution situation, like how many precedences exist
between jobs, how many jobs are scheduled, and how many jobs
are executed on each PE.

The PATC and the PALS can achieve up to 39.7% and 44.3%
energy saving respectively in the simulation. Table 2 compares
our algorithmwith other energy aware DAG scheduling algorithms
in term of max energy saving. EADUS & TEBUS [29] use the
duplication strategies for scheduling DAG based parallel tasks in a
cluster to reduce power consumption. However, EADUS & TEBUS
do not use DVFS to reduce energy consumption, thus leading
less energy savings. Compared with LEneS [23], Energy Reduction
Algorithm [33], and ECS [32], the PATC and PALS can achieve more
energy saving as
Table 2
Comparison of energy savings between different energy aware scheduling
algorithm.

Energy aware DAG scheduling algorithm Maximum energy saving (%)

EADUS & TEBUS [29] 16.8
Energy reduction algorithm [33] 25
LEneS [23] 28
ECS [32] 38
PATC 39.7
PALS 44.3

Fig. 6. Energy savings of best-effort scheduling algorithm.

Fig. 7. Energy savings of best-effort scheduling algorithm (PE number = 50).

• The PATC and PALS reduce the energy consumption during the
communication phase
• The PATC and PALS reduce power consumption when a PE is

idle, and
• The PATC and PALS try to extend job slack time whenever it is

possible.

Fig. 6 shows the energy savings when running the PALS algo-
rithm in different scenarios of numbers of PEs and resource com-
petition. For a close view, Figs. 7 and 8 shows two special cases of
(1) Energy savings when running the PALS algorithm with differ-
ent scenarios of resource competition and PE number is set as 50;
(2) Energy savingswhen running the PALS algorithmwith different
PE numbers and resource competition is set as 6. From the above
figures we can see that the energy saved increases as the number
of PEs increases. This can be explained as follows: when the num-
ber of PEs increases, intuitively there are less jobs executed in a PE,
then the jobs have more of a chance to scale their execution time

L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670 1669
Fig. 8. Energy savings of best-effort scheduling algorithm (Resource competition =
6).

Fig. 9. Energy savings vs. makespan extension.

and PE supply voltages. If we fix the number of PEs, the energy sav-
ing firstly increases, achieves its maximum value, and then it de-
ceases. This can be explained by the fact that the percentage of jobs
on the critical path firstly increases then decreases. The length of
the critical path gives the limit that non-critical jobs can extend to.

In the simulation for energy-performance tradeoff scheduling,
we are more interested in the relationship between the energy
saved and the extended task execution time, as shown in Fig. 9.
From Fig. 9 we can see that:

• When the makespan extension increases, the energy savings
also increase.
• Then energy savings increase much when the makespan

extension is less then 30%.

These observations can conclude that the green SLA negotiation is
feasible. When users pay additional tolerant task execution time,
which is less than 30%, less than 70% energy saving can be achieved.
This is a win–win game.

12. Conclusion and future work

Recently, the need for efficient algorithms to minimize wasted
server energy has become increasingly important. Dynamic volt-
age and frequency scaling (DVFS) technique has proven to be
a highly effective technique to achieve low power consumption
for high performance computing by dynamically scaling proces-
sor speed. We develop our research on minimizing energy for
precedence-constrained parallel task execution. This paper pro-
poses two scheduling algorithms in DVFS-enabled clusters for exe-
cuting parallel tasks: the PATC and PALS. The proposed algorithms
search the slack time for non-critical jobs without increasing
scheduling length. We also develop a green SLA-based mechanism
to reduce energy consumption by return users tolerant increased
scheduling makespan. The proposed scheduling algorithm is ex-
amined via a simulation study. Test results show that the schedul-
ing algorithm is efficient to reduce the power consumption of a
DVFS-enabled cluster. Future work includes the deployment of the
power aware scheduling algorithm in some real applications, for
example, the sparse Cholesky decomposition.

Acknowledgment

Dr. Lizhe Wang is supported by the ‘‘One hundred talents’’
program of Chinese Academy of Sciences.

Prof. Dan Chen’s work in this paper was supported in part
by National Natural Science Foundation of China (grant No.
61272314), the Program for New Century Excellent Talents in
University (grant No. NCET-11-0722), the Fundamental Research
Funds for the Central Universities (CUG, Wuhan), the Specialized
Research Fund for the Doctoral Programof Higher Education (grant
No. 20110145110010), and the Excellent Youth Foundation of
Hubei Scientific Committee (grant No. 2012FFA025).

References
[1] Gregor von Laszewski, Lizhe Wang, Andrew J. Younge, Xi He, Power-aware

scheduling of virtual machines in dvfs-enabled clusters, in: CLUSTER, 2009,
pp. 1–10.

[2] Lizhe Wang, Gregor von Laszewski, Jai Dayal, Thomas R. Furlani, Thermal
aware workload scheduling with backfilling for green data centers, in: IPCCC,
2009, pp. 289–296.

[3] William Forrest, How to cut data centre carbon emissions?Website, December
2008.

[4] Virginia Mary Lo, Heuristic algorithms for task assignment in distributed
systems, IEEE Trans. Comput. 37 (11) (1988) 1384–1397.

[5] John Zahorjan, Derek L. Eager, Edward D. Lazowska, Adaptive load sharing
in homogeneous distributed systems, IEEE Trans. Softw. Eng. 12 (5) (1986)
662–675.

[6] Y.Wang, R.J.T.Morris, Load sharing in distributed systems, IEEE Trans. Comput.
34 (3) (1985) 204–217.

[7] Rongheng Li, Huei ChuenHuang, List scheduling for jobswith arbitrary release
times and similar lengths, J. Sched. 10 (6) (2007) 365–373.

[8] Abdellatif Mtibaa, Bouraoui Ouni, Mohamed Abid, An efficient list scheduling
algorithm for time placement problem, Comput. Electr. Eng. 33 (4) (2007)
285–298.

[9] Sung J. Kim, A general approach to multiprocessor scheduling, Technical
Report, Austin, TX, USA, 1988.

[10] Min-You Wu, Daniel Gajski, Hypertool: a programming aid for message-
passing systems, IEEE Trans. Parallel Distrib. Syst. 1 (3) (1990) 330–343.

[11] Chung-Hsing Hsu, Wu chun Feng, A feasibility analysis of power awareness in
commodity-based high-performance clusters, in: CLUSTER, 2005, pp. 1–10.

[12] Chung-Hsing Hsu, Wu chun Feng, A power-aware run-time system for high-
performance computing, in: SC, 2005, p. 1.

[13] Ian Gorton, Paul Greenfield, Alexander S. Szalay, RoyWilliams, Data-intensive
computing in the 21st century, IEEE Comput. 41 (4) (2008) 30–32.

[14] Wu chun Feng, Avery Ching, Chung-Hsing Hsu, Green supercomputing in a
desktop box, in: Proceedings of the 21th International Parallel and Distributed
Processing Symposium, IPDPS 2007, 2007, pp. 1–8.

[15] Wu chun Feng, Thomas Scogland, The green500 list: year one, in: Proceedings
of the 23rd IEEE International Symposium on Parallel and Distributed
Processing, 2009, pp. 1–7.

[16] Seung Woo Son, Konrad Malkowski, Guilin Chen, Mahmut T. Kandemir,
Padma Raghavan, Reducing energy consumption of parallel sparse matrix
applications through integrated link/CPU voltage scaling, J. Supercomput. 41
(3) (2007) 179–213.

[17] Rong Ge, Xizhou Feng, Wu chun Feng, Kirk W. Cameron, CPU miser: a
performance-directed, run-time system for power-aware clusters, in: ICPP,
2007, p. 18.

[18] Vincent W. Freeh, David K. Lowenthal, Using multiple energy gears in mpi
programs on a power-scalable cluster, in: Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’05, ACM, New York, NY, USA, 2005, pp. 164–173.

[19] Min Yeol Lim, Vincent W. Freeh, David K. Lowenthal, Adaptive, transparent
frequency and voltage scaling of communication phases in MPI programs,
in: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06,
ACM, New York, NY, USA, 2006.

[20] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy,
in: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, FOCS’95, IEEE Computer Society, Washington, DC, USA, 1995,
pp. 374–382.

[21] Ali Manzak, Chaitali Chakrabarti, Variable voltage task scheduling algorithms
for minimizing energy, in: Proceedings of the 2001 International Symposium
on Low Power Electronics and Design, ISLPED’01, ACM, New York, NY, USA,
2001, pp. 279–282.

[22] Gu yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos, Mark A. Horowitz,
A variable-frequency parallel i/o interface with adaptive power-supply
regulation, IEEE J. Solid-State Circuits 35 (2000) 1600–1610.

1670 L. Wang et al. / Future Generation Computer Systems 29 (2013) 1661–1670
[23] Flavius Gruian, Krzysztof Kuchcinski, LEneS: task scheduling for low-energy
systems using variable supply voltage processors, in: Proceedings of Asia and
South Pacific Design Automation Conference, 2001, pp. 449–455.

[24] Steven M. Martin, Krisztian Flautner, Trevor Mudge, David Blaauw, Combined
dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads, in: Proceedings of the 2002
IEEE/ACM International Conference on Computer-Aided Design, ICCAD’02,
ACM, New York, NY, USA, 2002, pp. 721–725.

[25] Jiong Luo, Niraj K. Jha, Power-efficient scheduling for heterogeneous
distributed real-time embedded systems, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 26 (6) (2007) 1161–1170.

[26] Jiong Luo, Niraj K. Jha, Li-Shiuan Peh, Simultaneous dynamic voltage scaling
of processors and communication links in real-time distributed embedded
systems, IEEE Trans. VLSI Syst. 15 (4) (2007) 427–437.

[27] Yumin Zhang, Xiaobo Sharon Hu, Danny Z. Chen, Task scheduling and voltage
selection for energy minimization, in: Proceedings of the 39th Annual Design
Automation Conference, DAC’02, ACM, New York, NY, USA, 2002, pp. 183–188.

[28] Marcus T. Schmitz, BashirM. Al-Hashimi, Considering power variations of DVS
processing elements for energy minimisation in distributed systems, in: ISSS,
2001, pp. 250–255.

[29] Ziliang Zong, Adam Manzanares, Brian Stinar, Xiao Qin, Energy-aware
duplication strategies for scheduling precedence-constrained parallel tasks on
clusters, in: Proceedings of the 2006 IEEE International Conference on Cluster
Computing, 2006.

[30] Sanjeev Baskiyar, Kiran Kumar Palli, Low power scheduling of dags to
minimize finish times, in: 13th International Conference on High Performance
Computing, 2006, pp. 353–362.

[31] Ziliang Zong, Adam Manzanares, Xiaojun Ruan, Xiao Qin, EAD and PEBD:
Two energy-aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters, IEEE Trans. Comput. 60 (3) (2011) 360–374.

[32] Young Choon Lee, Albert Y. Zomaya, Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling, in:
CCGRID, 2009, pp. 92–99.

[33] Hideaki Kimura, Mitsuhisa Sato, Yoshihiko Hotta, Taisuke Boku,
Daisuke Takahashi, Emprical study on reducing energy of parallel pro-
grams using slack reclamation by DVFS in a power-scalable high performance
cluster, in: IEEE International Conference on Cluster Computing, vol. 0, 2006,
pp. 1–10.

[34] Georges Da Costa, Marcos Dias de Assunção, Jean-Patrick Gelas, Yiannis
Georgiou, Laurent Lefèvre, Anne-Cécile Orgerie, Jean-Marc Pierson, Olivier
Richard, Amal Sayah, Multi-facet approach to reduce energy consumption
in clouds and grids: the green-net framework, in: Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking, e-
Energy’10, ACM, New York, NY, USA, 2010, pp. 95–104.

[35] Damien Borgetto, Michael Maurer, Georges Da-Costa, Jean-Marc Pierson,
Ivona Brandic, Energy-efficient and sla-aware management of iaas clouds,
in: Proceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, e-Energy’12, ACM, New
York, NY, USA, 2012, pp. 25:1–25:10.

[36] Kyong Hoon Kim, Rajkumar Buyya, Jong Kim, Power aware scheduling of bag-
of-tasks applications with deadline constraints on DVS-enabled clusters, in:
CCGRID, 2007, pp. 541–548.

[37] Rong Ge, Xizhou Feng, KirkW. Cameron, Performance-constrained distributed
DVS scheduling for scientific applications on power-aware clusters, in: SC,
2005, p. 34.

[38] Behrooz A. Shirazi, Krishna M. Kavi, Ali R. Hurson (Eds.), Scheduling and Load
Balancing in Parallel and Distributed Systems, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1995.

[39] Qingzhou Wang, Kam Hoi Cheng, List scheduling of parallel tasks, Inform.
Process. Lett. 37 (1991) 291–297.

[40] Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu, Analysis, evaluation, and
comparison of algorithms for scheduling task graphs on parallel processors,
in: ISPAN, 1996, pp. 207–213.

[41] Gregor von Laszewski, Lizhe Wang, GreenIT service level agreements, in:
Service Level Agreements in Grids Workshop, colocated with IEEE/ACM Grid
2009 Conference, Banff, Canada, October 2009.

[42] Gary Verdun, The Green Grid metrics: data center infrastructure efficiency
(DCiE) detailed analysis, Technical Report, The Green Grid, February 2007.

[43] Christian Belady, The green grid data center efficiency metrics: PUE and DCIE,
Technical Report, The Green Grid, February 2007.

[44] The Green Grid, A framework for data center energy productivity, Technical
Report, February 2008.

[45] SWaP (Space, Watts and Performance) Metric, Web Page.
[46] Jiong Luo, Niraj K. Jha, Static and dynamic variable voltage scheduling

algorithms for real-time heterogeneous distributed embedded systems, VLSI
Des. (2002) 719–727.

[47] Frédéric SUTER, Synthetic dag generation, Web Page.

Lizhe Wang is a Principal Research Engineer at the
School of Informatics and Computing, Indiana University.
Dr. Lizhe Wang received his Bachelor of Engineering with
honors and Master of Engineering both from Tsinghua
University, PR China and his Doctor of Engineering with
magna cum laude from the University of Karlsruhe (now
Karlsruhe Institute of Technology), Germany. Dr. Lizhe
Wang serves as an Editor of the Journal of Cluster
Computing and Journal of Cloud Computing, Springer.
Samee Ullah Khan is Assistant Professor of Electrical and
Computer Engineering at the North Dakota State Univer-
sity, Fargo, ND, USA. Prof. Khan has extensively worked
on the general topic of resource allocation in autonomous
heterogeneous distributed computing systems. Recently
he has been actively conducting cutting edge research on
energy-efficient computations and communications. A to-
tal of 168 publications are attributed to his name. Formore
information, please visit: http://sameekhan.org/.

Dan Chen is a Professor, the Head of the Department
of Network Engineering, and the Director of the Scien-
tific Computing Lab with the School of Computer Science,
China University of Geosciences, Wuhan. His research
interests include computer-based modeling and simula-
tion, high-performance computing, and neuroinformat-
ics. Chen has a Ph.D. in Computer Engineering from
Nanyang Technological University, Singapore. Contact him
at dan.chen@ieee.org.

Joanna Kołodziej graduated in Mathematics from the
Jagiellonian University in Cracow in 1992, where she also
obtained the Ph.D. in Computer Science in 2004. She is
employed at Cracow University of Technology as an As-
sistant Professor. She has served and is currently serving
as PC Co-Chair, General Co-Chair and an IPC member of
several international conferences and workshops includ-
ing PPSN 2010, ECMS 2011, CISIS 2011, 3PGCIC 2011, CISSE
2006, CEC 2008, IACS 2008–2009, ICAART 2009–2010.
Dr. Kołodziej is the Managing Editor of IJSSC Journal
and serves as an EB member and Guest Editor of sev-

eral peer-reviewed international journals. For more information, please visit:
http://www.joannakolodziej.org/.

Rajiv Ranjan is a Research Scientist and Project Leader in
the CSIRO ICT Centre, Information Engineering Laboratory,
Canberra. Dr. Ranjan has a Ph.D. (2009) in Computer
Science and Software Engineering from the University of
Melbourne. Dr. Ranjan has 37 publications: in journals
with high impact factor (according to JCR published by ISI),
in proceedings of IEEE’s/ACM’s premier conferences and in
books published by leading publishers (5 Scholarly books,
10 journals, 14 conferences, 5 book chapters, and 3 Journal
editorials). Though a recent graduate, his h-index is 14,
with a total citation count of 710+. A journal paper that

appeared in the IEEE Communications Surveys and Tutorial Journal (impact factor
3.692 and the 5-year impact factor is 8.462)was named ‘‘Outstanding Paper onNew
Communications Topics for 2009’’ by the IEEE Communications Society, USA.

Cheng-Zhong Xu is a Professor of Electrical and Computer
Engineering at Wayne State University and the Director
of the Cloud and Internet Computing Laboratory (CIC).
His main research interests are networked computing
systems with an emphasis on resource management.
Dr. Xu obtained B.Sc. and M.Sc. degrees from Nanjing
University in 1986, and 1989, respectively, and a Ph.D.
degree from the University of Hong Kong in 1993, all in
Computer Science and Engineering. Dr. Xu is a recipient
of the ‘‘President’s Awards for Excellence in Teaching’’ of
Wayne State University in 2002 and ‘‘Career Development

Chair Award’’ in 2003.

Albert Y. Zomaya is currently the Chair Professor of High
Performance Computing and Networking in the School of
Information Technologies, The University of Sydney. He
is the author/co-author of seven books, more than 400
papers, and the editor of nine books and 11 conference
proceedings. He is the Editor in Chief of the IEEE Transac-
tions on Computers and serves as an Associate Editor for
19 leading journals. Professor Zomaya was the recipient of
the IEEE TCPP Outstanding Service Award and the IEEE TCSC
Medal for Excellence in Scalable Computing, both in 2011.

http://sameekhan.org/
mailto:dan.chen@ieee.org
http://www.joannakolodziej.org/

	Energy-aware parallel task scheduling in a cluster
	Introduction
	Related work
	Parallel task scheduling
	Energy reduction via DVFS techniques
	Power aware task scheduling

	System model
	DVFS model
	Energy model
	Resource model
	Parallel task model

	Research problem definition
	Voltage scaling for non-critical jobs
	The PATC algorithm
	The PALS algorithm
	SLA management for green computing
	Energy-performance tradeoff scheduling algorithm viagreen SLA
	Algorithm complexity analysis
	Analysis of the PTAC algorithm
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Analysis of the PALS algorithm
	Algorithm 4
	Algorithm 5
	Algorithm 6
	Algorithm 7

	Performance study with simulation
	Conclusion and future work
	Acknowledgment
	References

