Future Generation Computer Systems 29 (2013) 739-750

journal homepage: www.elsevier.com/locate/fgcs e

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

T
FIGICIS!

G-Hadoop: MapReduce across distributed data centers for

data-intensive computing

Lizhe Wang®P*, Jie Tao¢, Rajiv Ranjan¢, Holger Marten ¢, Achim Streit¢, Jingying Chen®, Dan Chen

2School of Computer, China University of Geosciences, PR China

b Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, PR China
¢ Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany

4 ICT Centre, CSIRO, Australia

€ National Engineering Center for E-Learning, Central China Normal University, PR China

a, %%

ARTICLE INFO

ABSTRACT

Article history:

Received 15 November 2011
Received in revised form

1 September 2012

Accepted 3 September 2012
Available online 3 October 2012

Keywords:

Cloud computing

Massive data processing
Data-intensive computing
Hadoop

Recently, the computational requirements for large-scale data-intensive analysis of scientific data have
grown significantly. In High Energy Physics (HEP) for example, the Large Hadron Collider (LHC) produced
13 petabytes of data in 2010. This huge amount of data is processed on more than 140 computing
centers distributed across 34 countries. The MapReduce paradigm has emerged as a highly successful
programming model for large-scale data-intensive computing applications. However, current MapReduce
implementations are developed to operate on single cluster environments and cannot be leveraged for
large-scale distributed data processing across multiple clusters. On the other hand, workflow systems are
used for distributed data processing across data centers. It has been reported that the workflow paradigm
has some limitations for distributed data processing, such as reliability and efficiency. In this paper, we
present the design and implementation of G-Hadoop, a MapReduce framework that aims to enable large-
scale distributed computing across multiple clusters.

MapReduce

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The rapid growth of the Internet and WWW has led to vast
amounts of information available online. In addition, social, scien-
tific and engineering applications have created large amounts of
both structured and unstructured information which needs to be
processed, analyzed, and linked [1-3]. Nowadays data-intensive
computing typically uses modern data center architectures and
massive data processing paradigms. This research is devoted to a
study on the massive data processing model across multiple data
centers.

The requirements for data-intensive analysis of scientific data
across distributed clusters or data centers have grown significantly
in recent years. A good example for data-intensive analysis is
the field of High Energy Physics (HEP). The four main detectors
including ALICE, ATLAS, CMS and LHCb at the Large Hadron Collider
(LHC) produced about 13 petabytes of data in 2010 [4,5]. This
huge amount of data are stored on the Worldwide LHC Computing

* Corresponding author at: Center for Earth Observation and Digital Earth,
Chinese Academy of Sciences, PR China.
** Corresponding author.
E-mail addresses: Lizhe.Wang@gmail.com (L. Wang), danjj43@gmail.com
(D. Chen).

0167-739X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.09.001

Grid that consists of more than 140 computing centers distributed
across 34 countries. The central node of the Grid for data storage
and first pass reconstruction, referred to as Tier 0, is housed
at CERN. Starting from this Tier, a second copy of the data is
distributed to 11 Tier 1 sites for storage, further reconstruction and
scheduled analysis. Simulations and USER ANALYSIS are performed
at about 140 Tier 2 sites. In order to run the latter, researchers
are often forced to copy data from multiple sites to the computing
center where the DATA ANALYSIS is supposed to be run. Since the
globally distributed computing centers are interconnected through
wide-area networks the copy process is tedious and inefficient. We
believe that moving the computation instead of moving the data is
the key to tackling this problem. By using data parallel processing
paradigms on multiple clusters, simulations can be run on multiple
computing centers concurrently without the need of copying the
data.

Currently data-intensive workflow systems, such as DAGMan
[6], Pegasus [7], Swift [8], Kepler [9], Virtual Workflow [10,11],
Virtual Data System [12] and Taverna [13], are used for distributed
data processing across multiple data centers. There are some lim-
itations for using workflow paradigms across multiple data cen-
ters: (1) workflow system provides a coarse-grained parallelism
and cannot fulfill the requirement of high throughput data pro-
cessing, which typically demands a massively parallel processing.
(2) Workflow systems for data intensive computing typically

http://dx.doi.org/10.1016/j.future.2012.09.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:Lizhe.Wang@gmail.com
mailto:danjj43@gmail.com
http://dx.doi.org/10.1016/j.future.2012.09.001

740 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

require large data transfer between tasks, sometimes it brings un-
necessary data blocks or data sets movement. (3) Workflow sys-
tems have to take care of fault tolerance for task execution and
data transfer, which is not a trivial implementation for data in-
tensive computing. Given the wide acceptance of the MapReduce
paradigm, it would be natural to use MapReduce for data process-
ing across distributed data centers, which can overcome the afore-
mentioned limitations of workflow systems.

In this paper, we present the design and implementation of
G-Hadoop, a MapReduce framework that aims to enable large-
scale distributed computing across multiple clusters. In order to
share data sets across multiple administrative domains, G-Hadoop
replaces Hadoop’s native distributed file system with the Gfarm
file system. Users can submit their MapReduce applications to
G-Hadoop, which executes map and reduce tasks across multiple
clusters. The key differentiators between traditional Hadoop and
the proposed G-Hadoop framework includes

e Unlike the Hadoop framework which can schedule data pro-
cessing tasks on nodes that belong to a single cluster, G-Hadoop
can schedule data processing tasks across nodes of multiple
clusters. These clusters can be controlled by different organi-
zations;

e By duplicating map and reduce tasks across multiple cluster
nodes, G-Hadoop presents a more fault-tolerant data process-
ing environment as it does not rely on nodes of a single cluster;

e G-Hadoop offers access to a larger pool of processing and stor-
age nodes.

G-Hadoop provides a parallel processing environment for mas-
sive data sets across distributed clusters with the widely-accepted
MapReduce paradigm. Compared with data-intensive workflow
systems, it implements a fine-grained data processing paral-
lelism and achieves high throughput data processing performance.
Furthermore, by duplicating map and reduce tasks G-Hadoop can
provide fault tolerance for large-scale massive data processing.

The rest of this paper is organized as follows. Section 2 discusses
background and related work of our research; Section 3 presents
the G-Hadoop design. The G-Hadoop attributes and features are
discussed in Section 4 and the G-Hadoop performance is tested and
evaluated in Section 5. Finally Section 6 concludes the paper and
points out the future work.

2. Background and related work

2.1. Cloud computing

A computing Cloud is a set of network enabled services, pro-
viding scalable, QoS guaranteed, normally personalized, inexpen-
sive computing infrastructures on demand, which can be accessed
in a simple and pervasive way [14,5,3,15,16]. Conceptually, users
acquire computing platforms, or IT infrastructures, from comput-
ing Clouds and execute their applications inside them. Therefore,
computing Clouds render users with services to access hardware,
software and data resources, thereafter an integrated computing
platform as a service. The MapReduce paradigm and its open-
sourced implementation—Hadoop has been recognized as a rep-
resentative enabling technique for Cloud computing.

2.2. Distributed data-intensive computing

To store, manage, access, and process vast amounts of data
represents a fundamental requirement and an immense challenge
in order to satisfy needs to search, analyze, mine, and visualize

the data and information. Data intensive computing is intended to
address these needs. In the research of data intensive computing,
the study on massive data processing paradigm is of high interest
for the research community [17-19]. Our research in this paper
is on the implementation of a data processing paradigm across
multiple distributed clusters.

There have been some successful paradigms and models for
data intensive computing, for example, All-Pairs [20], Sector/
Sphere [21], DryadLINQ [22], and Mortar [23]. Among aforemen-
tioned technologies, the MapReduce [24] is a widely adopted mas-
sive data processing paradigm, which is introduced in the next
section. Our work implements the MapReduce paradigm across
distributed clusters.

2.3. MapReduce and Hadoop

2.3.1. MapReduce paradigm

The MapReduce [24] programming model is inspired by two
main functions commonly used in functional programming: Map
and Reduce. The Map function processes key/value pairs to
generate a set of intermediate key/value pairs and the Reduce
function merges all the same intermediate values. Many real-world
applications are expressed using this model.

The most popular implementation of the MapReduce model
is the Hadoop framework [25], which allows applications to run
on large clusters built from commodity hardware. The Hadoop
framework transparently provides both reliability and data trans-
fer. Other MapReduce implementations are available for various
architectures, such as for CUDA [26], in a multicore architecture
[27], in FPGA platforms [28], for a multiprocessor architecture [29],
in a large-scale shared-memory system [30], in a large-scale
cluster [31], in multiple virtual machines [32], in a.Net environ-
ment [33], in a streaming runtime environment [34], in a Grid en-
vironment [35], in an opportunistic environment [36], and in a
mobile computing environment [37].

The Apache Hadoop on Demand (HOD) [38] provides virtual
Hadoop clusters over a large physical cluster. It uses the Torque
resource manager to do node allocation. myHadoop [39] is a sys-
tem for provisioning on-demand Hadoop instances via traditional
schedulers on HPC resources.

To the best of our knowledge, there is no existing implemen-
tation of the MapReduce paradigm across distributed multiple
clusters.

2.3.2. Hadoop

The MapReduce programming model is designed to process
large volumes of data in parallel by dividing the Job into a set of
independent Tasks. The Job referred to here as a full MapReduce
program, which is the execution of a Mapper or Reducer across a
set of data. A Task is an execution of a Mapper or Reducer on a slice
of data. So the MapReduce Job usually splits the input data set into
independent chunks, which are processed by the map tasks in a
completely parallel manner.

The Hadoop MapReduce framework consists of a single Master
node that runs a Jobtracker instance which accepts Job requests
from a client node and Slave nodes each running a TaskTracker
instance. The Jobtracker assumes the responsibility of distributing
the software configuration to the Slave nodes, scheduling the job’s
component tasks on the TaskTrackers, monitoring them and re-
assigning tasks to the TaskTrackers when they failed. It is also
responsible for providing the status and diagnostic information
to the client. The TaskTrackers execute the tasks as directed by
the JobTracker. The TaskTracker executes tasks in separate java
processes so that several task instances can be performed in
parallel at the same time. Fig. 1 depicts the different components
of the MapReduce framework.

L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

Master node

TaskTracker

TaskTracker

Task Instance

Task Instance

Slave node Slave node

Fig. 1. Hadoop MapReduce.

Fig. 2 illustrates the high-level pipeline of the Hadoop
MapReduce. The MapReduce input data typically come from the
input files loaded into the HDFS. These files are evenly distributed
across all the nodes in the cluster. In Hadoop, computer nodes and
data nodes are all the same, meaning that the MapReduce and
HDEFS run on the same set of nodes. At the mapping phase, the
input file is divided into independent InputSplits and each split of
these Splits describes a unit of work that comprises a single map
task in the MapReduce job. The map tasks are then assigned to the
nodes in the system based on the physically residence of the input
file splits. Several map tasks can be assigned to an individual node,
which attempts to perform as many tasks in parallel as it can. When
the mapping phase has completed, the intermediate outputs of the
map tasks are exchanged between all nodes; and they are also the
input of the reduction tasks. This process of exchanging the map
intermediate outputs is known as the shuffling. The reduce tasks

DataNode DataNode

741

are spread across the same nodes in the cluster as the mappers.
The output of the reduce tasks is stored locally on the slave node.

2.3.3. HDFS

The HDFS has some desired features for massive data parallel
processing, such as: (1) work in commodity clusters with hardware
failures, (2) access with streaming data, (3) deal with large data
sets, (4) employ a simple coherency model, and (5) portable across
heterogeneous hardware and software platforms.

The HDFS has a master/slave architecture (Fig. 3). A HDFS
cluster consists of a single NameNode, a master server that
manages the file system namespace and regulates access to files
by clients. In addition, there are a number of DataNodes, usually
one per node in the cluster, which manage storage attached
to the nodes that they run on. HDFS exposes a file system
namespace and allows user data to be stored in files. Internally,
a file is split into one or more blocks and these blocks are
stored in a set of DataNodes. The NameNode executes file system
namespace operations like opening, closing, and renaming files
and directories. It also determines the mapping of blocks to
DataNodes. The DataNodes are responsible for serving read and
write requests from the file systems clients. The DataNodes also
perform block creation, deletion, and replication upon instruction
from the NameNode.

2.4. Gfarm file system

The Gfarm file system [40] is a distributed file system designed
to share vast amounts of data between globally distributed clusters
connected via a wide-area network. Similar to HDFS the Gfarm file
system leverages the local storage capacity available on compute
nodes. A dedicated storage cluster (SAN) is not required to run the

DataNode
% 2 % %
) 00 7

Mapper

= || (

)| -

Shuffle
process

Reducer

(

—
e

Reducer

—

Reducer

/

.

DataN
DataNode ataNode

Legend:

intermediate

DataNode

output §

data data N

Fig. 2. Hadoop high level data flow.

742 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

query/update —-b-

block operation

Metadata operation

write
read
\ \ N
] \5 0o oo
Data node I%l /D l:l D I:b\l
rack J k replication —/ b|06’k

Fig. 3. HDFS architecture.

Gfarm file system. Fig. 4 shows the high-level architecture of the
Gfarm file system.

In order to foster performance, the Gfarm file system separates
metadata management from storage by leveraging a master/slave
communication model. The single master node called a Metadata
Server (MDS) is responsible for managing the file system’s
metadata such as file names, file locations and a file’s access rights.
The metadata server is also responsible for coordinating access to
the files stored on the cluster.

The multiple slave nodes, referred to as Data Nodes (DN),
on the other hand, are responsible for storing the raw file data
on local hard disks using the provided local file system by the
operating system of the slave node. A data node runs a daemon that
coordinates the access to the files on the local file system. Direct
access to the files is possible, but not encouraged due to the risk of
corrupting the file system.

In our work, we use the Gfarm file system as a global distributed
file system that supports the MapReduce framework.

The Gfarm file system does not use block based storage. Split-
ting files into blocks significantly increases the amount of meta-
data and hence inherently impacts sacred latency and bandwidth
in wide-area environments. To improve overall performance, the
Gfarm file system uses a file based storage semantics. These per-
formance improvements come at a cost: the maximal file size that
can be managed by the Gfarm file system is limited by the capacity
of disks used in Data Nodes of the distributed cluster.

Client node

Gfarm Client

query metadata ———————»

T —
o
/ Local file
l system

2.5. Resource management for clusters

The main task of a Distributed Resource Management System
(DRMS) for a cluster is to provide the functionality to start, monitor
and manage jobs. In our initial implementation, we use the Torque
Resource Manager [41] as a cluster DRMS. Distributed Resource
Management Application API (DRMAA) [42] is a high-level API
specification for the submission and control of jobs to one or more
DRMSs within a distributed Grid architecture.

In this research, we use DRMAA as an interface for submitting
tasks from G-Hadoop to the Torque Resource Manager.

3. System design of G-Hadoop

3.1. Target environment and development goals

Our target environments for G-Hadoop are multiple distributed
High End Computing (HEC) clusters. These clusters typically con-
sist of specialized hardware interconnected with high performance
networks such as Infiniband. The storage layer is often backed by a
parallel distributed file system connected to a Storage Area Net-
work (SAN). HEC clusters also typically employ a cluster sched-
uler, such as Torque, in order to schedule distributed computations
among hundreds of compute nodes. Users in HEC clusters gener-
ally submit their jobs to a queue managed by the cluster scheduler.
When the requested number of machines becomes available, jobs
are dequeued and launched on the available compute nodes.

We keep the following goals when developing G-Hadoop:

e Minimal intrusion. When leveraging established HEC clusters
with G-Hadoop, we try to keep the autonomy of the clusters,
for example, insert software modules in the cluster head node
and only execute tasks by talking with a cluster scheduler.

e Compatibility. The system should keep the Hadoop API and be
able to run existing Hadoop MapReduce programs without or
only with minor modifications of the programs.

3.2. Architecture overview

The proposed architecture of G-Hadoop represents a mas-
ter/slave communication model. Fig. 5 shows an overview of
G-Hadoop’s high-level architecture and its basic components: the
G-Hadoop Master node and the G-Hadoop Slave nodes.

For simplicity of illustration assume that the G-Hadoop Master
node consolidates all software components that are required to

MDS

MDS
daemon

Backend DB

L
remote file access update metadata
R R T H
i

i data node data node i ! data node data node data node :

1 1

] (- |

! Gfarm Client ! 4 !

] L 1

! 1/0 server | 1/0 server ‘ ! i [1/0 server | | 1/0 server ‘ | 1/0 server | i
I

: Local file Local file 1 ! Local file Local file Local file i

! system system : : system system system 1
I

E ¥ :

1 L 1

I 1 ! 1

Organization A

Organization B

Fig. 4. The Gfarm file system architecture.

L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750 743

G-Hadoop
Master Node

G-Hadoop G-Hadoop G-Hadoop
= e Slave Node R Slave Node mmme pmmma Slave Node ==
L b L i
] 1 1 o | '
TORQUE TORQUE TORQUE

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

Compute Node

s
: 1 Cluster A

Cluster B

Cluster C

Fig. 5. Architecture overview of G-Hadoop.

be installed at a central organization that provides access to the
G-Hadoop framework. A G-Hadoop Slave node, on the other hand,
consolidates all software components that are supposed to be
deployed on each participating cluster. Our G-Hadoop framework
respects the autonomy of the local cluster scheduler, as G-Hadoop
does not require any changes to the existing cluster system
architecture. Software components enabling G-Hadoop Slave node
functionalities only need to be installed on the cluster scheduler,
hence requiring no changes to the existing cluster configuration.

3.3. Gfarm as a global distributed file system

The MapReduce framework for data-intensive applications
heavily relies on the underlying distributed file system. In tradi-
tional Hadoop clusters with HDFS, map tasks are preferably as-
signed to nodes where the required input data is locally present.
By replicating the data of popular files to multiple nodes, HDFS is
able to boost the performance of MapReduce applications.

In G-Hadoop we aim to schedule MapReduce applications
across multiple data centers interconnected through wide-area
networks. Hence, applications running concurrently on different
clusters must be able to access the required input files indepen-
dent of the cluster they are executed on. Furthermore, files must be
managed in a site-aware manner in order to provide the required
location information for the data-aware scheduling policy on the
JobTracker.

G-Hadoop uses the Gfarm file system as its underlying dis-
tributed file system. The Gfarm file system was specifically de-
signed to meet the requirements of providing a global virtual file
system across multiple administrative domains. It is optimized for
wide-area operation and offers the required location awareness to
allow data-aware scheduling among clusters.

3.4. G-Hadoop master node

The master node is the central entity in the G-Hadoop archi-
tecture. It is responsible for accepting jobs submitted by the user,
splitting the jobs into smaller tasks and distributing these tasks

1 I
1 I
1 1
1 i
: Job Tracker :
1 I
] I
[1

GfarmFS
Hadoop-Plugin -

Meta Data Server

Fig. 6. Software components of the G-Hadoop master node.

among its slave nodes. The master is also responsible for manag-
ing the metadata of all files available in the system. The G-Hadoop
master node depicted in Fig. 6 is composed of the following soft-
ware components:

e Metadata server. This server is an unmodified instance of the
Metadata server of the Gfarm file system. The metadata server
manages files that are distributed among multiple clusters. It
resolves files to their actual location, manages their replication
and is responsible for keeping track of opened file handles in
order to coordinate access of multiple clients to files. The Gfarm
metadata server is also responsible for managing users access
control information.

e JobTracker. This server is a modified version of Hadoop’s orig-
inal JobTracker. The JobTracker is responsible for splitting jobs
into smaller tasks and scheduling these tasks among the partic-
ipating clusters for execution. The JobTracker uses a data-aware
scheduler and tries to distribute the computation among the
clusters by taking the data’s locality into account. The Gfarm
file system is configured as the default file system for the
MapReduce framework. The Gfarm Hadoop plug-in acts as glue
between Hadoop’s MapReduce framework and the Gfarm file
system.

744 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

TORQUE = Hadoop T Gfarm

i
<! = :
] =% I
Compute Node E ' | Tl diEa e ‘ 1 S0 ‘ 1/O server ‘ g
oo o, i
i
A i P i
Compute Node | ‘

Fig. 7. Software components of G-Hadoop’s slave node. The slave node acts as
a bridge between the G-Hadoop master node and compute nodes of the clusters.
A node in the cluster is chosen for installing the G-Hadoop slave components
including TaskTracker and the Gfarm I/O server. The slave node does not perform
any computation tasks, it is only responsible for submitting task to the queue of
the cluster scheduler via the DRMAA interface. To improve resilience to failures,
multiple slave nodes per cluster can be created.

3.5. G-Hadoop slave node

A G-Hadoop slave node is installed on each participating cluster
and enables it to run tasks scheduled by the JobTracker on the
G-Hadoop master node. The G-Hadoop slave node (see Fig. 7)
consists of the following software components:

e TaskTracker. This server is an adapted version of the Hadoop
TaskTracker and includes G-Hadoop related modifications. The
TaskTracker is responsible for accepting and executing tasks
sent by the DRMAA Gfarm Plugin.

e JobTracker. Tasks are submitted to the queue of the cluster
scheduler (e.g. Torque) using a standard DRMAA interface.
A DRMAA Java library is used by the TaskTracker for task
submission. Depending on the distributed resource manager
used in the corresponding cluster, an adopted library is
required. In order to access the files stored on the Gfarm file
system, the Gfarm Hadoop plug-in is used.

e 1/O server. A Gfarm I/O server that manages the data stored
on the G-Hadoop slave node. The I/O server is paired with
the Metadata server on the G-Hadoop master node and is
configured to store its data on the high performance file system
on the cluster. In order to address performance bottlenecks,
additional nodes with I/O servers can be deployed on the
individual clusters.

e Network share. The MapReduce applications and their configu-
ration are localized by the TaskTracker to a shared location on
the network. All compute nodes of the cluster are required to
be able to access this shared location with the localized job in
order to be able to perform the job’s execution. In addition, the
network share is used by the running map tasks on the compute
nodes to store their intermediate output data. Since this data is
served by the TaskTracker to a reduce task the performance of
the network share is crucial and depends highly on the perfor-
mance of the underlying network.

3.6. Job execution flow

Submitting a job to G-Hadoop is not different from submitting
jobs to a traditional Hadoop cluster. Users write the MapReduce
application for the desired job, the application is compiled and then
run on the client node. When the program starts its execution the
job is submitted to the JobTracker located on the G-Hadoop master
node. The next stages of the job in the control flow managed by the
JobTracker are described below. Fig. 8 illustrates these stages:

1. Job submission. When the user starts a MapReduce application
on a client node, the method runjob() is called (a). This method
instantiates a JobClient (part of Hadoop’s MapReduce stack)

i Client Node 1 i G-Hadoop Master Node 1
! !
1 . 1 .
JVM Jvm
MapReduce
Program
2a. init job
1a. run job /\
1b. get new job ID
1d. submit job
JobClient JobTracker
} ! } !
! 1 ! |
| 1l ! |
I v A __ |
1c. copy job
resources 2b. retrieve input splits
3. heart beat
Gfarm get task
File System
4a. retrieve job resources
| B = =g~~~ =======~
1 ! 1 :
| TORQUE 5. enqueue =
<
= TaskTracker
o
o
JVM \
TORQUE G-Hadoop
i Master Node] i Slave Node |

6a. execute
:r _______________________________] 4b. localize
Child JVM
6b. get job
Remote | 6¢-run MapTask or resources
Child ReduceTask

1 Compute Node 1

Fig. 8. Execution flow of a MapReduce job in G-Hadoop.

which is responsible for submitting the jobs to the system. The
JobClient first contacts the JobTracker located on the G-Hadoop
Master node and requests a unique ID for the new job (b).
Upon a successful request the job client copies the MapReduce
executable (JAR), its configuration including parameters and
input files and additional resources to a designated working
directory on the Gfarm file system (c). The JobClient then
submits the job to the TaskTracker for execution (d).

. Job initialization. On the G-Hadoop Master node the JobTracker
initializes the job (a). The JobTracker then splits the job into
smaller tasks by invoking the generatelnputSplit() method of
the job. This method can be implemented by the user. The
default implementation contacts the Gfarm metadata server
and requests all locations (including replicas) of the job’s input
files (b). Since the Gfarm file system uses a file based approach
blocks of different sizes representing the files along with the
information on which cluster the files are located are returned.
The number of map tasks is set to the number of input files
configured by the user. Each task is configured to use one of the
files as its input data.

. Task assignment: The TaskTrackers of the G-Hadoop slaves
located on the participating clusters periodically ask the
JobTracker for new tasks using the heartbeat message protocol.
Based on the location information of the input files, tasks are
assigned preferably to those clusters where the required input
data is present. The JobTracker is able to answer the request
with multiple (hundreds) new tasks using a single heartbeat
message.

L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750 745

4. Task localization. When the TaskTracker receives a new task,
it localizes the task’s executable and resources by copying the
working directory from the Gfarm file system (a) to a network
share on the cluster (b).

5. Task submission. After the task is localized on the cluster by the
TaskTracker, the executable along with its working directory is
submitted to the cluster scheduler using the DRMAA interface.

6. Task execution. At some point the cluster scheduler selects an
idle compute node for the execution of the task (a). The compute
node gets the job’s executable from the shared location in the
job’s working directory (b). Required libraries (such as Hadoop
and Gfarm) must be accessible on a dedicated shared location
on the cluster. The job is executed by spawning a new JVM on
the compute node and running the corresponding task with the
configured parameters:

e Map task. If the task is a map task, it starts reading and
processing the input files associated with the task. The output
is written to a shared directory on the cluster and sorted
afterwards (c).

e Reduce tasks. If the Task is a reduce task it starts fetching the
outputs of the previously finished map tasks by contacting
the TaskTracker which was responsible for the execution of
the corresponding map task. If the TaskTracker is located at
the same cluster as the reduce task, the files are read from the
common shared location on the storage cluster. Otherwise
the reduce task fetches the required map output using a HTTP
request at the corresponding TaskTracker on the other cluster.
The results of a reduce task are usually written to the Gfarm
file system.

During the execution the tasks periodically report their health

status to the TaskTracker. After the task finishes its execution, it

reports its done status to the TaskTracker and exits.

7. Freeing the slot. The TaskTracker waits until the cluster sched-
uler executes the task, then frees the slot and is ready to
progress with the next task.

4. Discussion
4.1. Scalability

The MapReduce framework is known for its ability to scale
linearly when it comes to processing of large data sets. Due to
the fact that jobs can be split into a large amount of small and
independent tasks, building Hadoop clusters with about 3800
nodes (30,400 cores) is possible nowadays. G-Hadoop is designed
to build upon this approach on a global scale. The scalability of the
G-Hadoop is mostly affected by the communication between the
JobTracker and the TaskTrackers and the performance of the Gfarm
Grid file system backed by the parallel file system on the cluster.

4.1.1. Communication between JobTracker and TaskTracker

In order to enable scalability in wide-area environments, G-
Hadoop takes a different approach from the Hadoop implementa-
tion. In G-Hadoop each TaskTracker is responsible for a cluster with
hundreds or thousands of compute nodes instead of a single node.
The number of TaskTrackers therefore only grows with the num-
ber of the affiliated clusters. The number of compute nodes, how-
ever, grows with each additional cluster by the number of compute
nodes at the cluster. The hierarchical scheduling approach taken by
G-Hadoop enables a compound heartbeat for hundreds or thou-
sands of slots and encourage better scalability characteristics in
wide-area environments.

4.1.2. Performance of the distributed file system

The Gfarm file system is capable of scaling to thousands of
data nodes and thousands of clients. Although a minimal G-
Hadoop deployment only employs a single 1/O server per cluster,

the number of installed I/O servers is not limited by G-Hadoop's
architecture and may be increased as desired in order to improve
performance of the distributed file system.

In contrast to a traditional Hadoop cluster where data located
on the local file system is preferably used for data intensive tasks,
G-Hadoop’s compute nodes do not rely on local storage when
reading input data. Instead, the compute nodes retrieve their input
data over the high performance network through the Gfarm I1/O
server and induce a non-neglectable performance hit. To tackle
this problem we can leverage the fact that the Gfarm I/O servers
federate the underlying file system of the node the I/O server is
running on. Configuring the Gfarm I/O server to use a directory
on the parallel cluster file system and retrieving the local data
directly over the network (i.e., bypassing the 1/O server) in read
only mode may significantly improve the performance for data
intensive scenarios.

4.2. Fault tolerance

The G-Hadoop is built on Hadoop for executing MapReduce jobs
and the Gfarm file system as the underlying distributed file system.
Both components employ a master/slave communication model
where both masters induce a single point of failure. This section
discusses possible failures of individual components in G-Hadoop
and their impact on the G-Hadoop’s availability.

4.2.1. Task

In G-Hadoop hundreds of tasks are executed in child JVMs
running remotely on different compute nodes managed by a single
TaskTracker. A running task periodically informs the TaskTracker
about its current status. When the TaskTracker detects a failed task
it reports the failure to the JobTracker during the next heartbeat.
The default behavior of the JobTracker in this case is to re-schedule
the task on another TaskTracker rather than the one where the task
failed. If the task fails multiple times (on different TaskTrackers) the
whole job is assumed to be error-prone and typically fails.

This behavior is reasonable in traditional instances of Hadoop
with thousands of TaskTrackers and only a small number of parallel
tasks per TaskTracker. However, re-scheduling the failed task on a
different TaskTracker in G-Hadoop would imply the execution of
the task on another cluster most likely with off-site input data.
G-Hadoop can tackle this problem by allowing re-scheduling of
tasks to the same TaskTracker preferable. A more sophisticated
solution would be to allow the TaskTracker to reschedule failed
tasks transparently instead of reporting them to the JobTracker.

4.2.2. Metadata server

The metadata server manages file names, directories and other
essential metadata of all files in the system. If this server goes
down the whole file system cannot be accessed. Fortunately
the probability of the failure of a single machine is low and
can be reduced to a minimum by using more reliable hardware
architectures. In addition, the metadata server manages a backup
of its database on persistent storage. In case of a blackout for
example, this backup can be used to restore the metadata that is
usually held completely in memory for reasons of performance.

4.2.3. JobTracker

The JobTracker also represents a single point of failure in the
G-Hadoop architecture. Since the JobTracker runs on a single node
the chance of a failure is low and can be reduced using the
same strategies as for the metadata server. Unfortunately Hadoop’s
JobTracker does not provide any fail-over mechanisms yet. If the
JobTracker fails, all running jobs will fail and must be restarted by
the user again.

746 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

4.2.4. TaskTracker

The availability of the TaskTracker can be improved by increas-
ing the number of TaskTrackers used per cluster. Since TaskTrackers
periodically report their health status, the JobTracker is able to de-
tect a failed TaskTracker after the absence of the heartbeat for a con-
figurable amount of time. The TaskTracker is then marked as failed
by the JobTracker and the currently running tasks are re-scheduled
on another TaskTracker.

4.2.5. Gfarm I/O server

The impact of the failure of the Gfarm I/O server and its hosting
node depends on the replication factor that was configured by the
administration. Typically the number of replicas is set to at least
a number of two, so in case of a failure of a single I/O server, the
affected files can be restored from another location. We encourage
running multiple I/O servers on multiple nodes per cluster in order
to foster availability of the data and performance.

4.2.6. Cluster scheduler

The availability of a cluster scheduler usually depends on
the configuration made by the organization and is independent
of G-Hadoop. If the cluster scheduler fails, the individual tasks
submitted by the TaskTracker to the cluster scheduler fail. In
this case, the same mechanism as for the failing TaskTracker is
triggered: The JobTracker marks the TaskTracker as failed and re-
schedules all the tasks to other TaskTrackers.

4.2.7. Security model

Though G-Hadoop is a extension of the Hadoop MapReduce
Framework, it cannot simply reuse the user authentication and
task submission mechanism of Hadoop. This is mainly due to fact
that the security framework in Hadoop is designed for a single
cluster and hence does not cater well to the new challenges
raised by the distributed Grid (multi-cluster) environment. These
new challenges include heterogeneous resource control policies,
distributed organization, and multiple types of cluster resources.
In G-Hadoop, for example, an individual SSH connection has to
be built between the user and each cluster to which his task is
submitted. In addition, with the Hadoop security approach a user
must log on to each cluster in order to be authenticated before
being capable of deploying his tasks. Hence, the number of SSH
connections per user will grow as O(N) with the traditional Hadoop
security framework, where N is the number of clusters in the
system. Clearly, this is a tedious task for the users.

To overcome the aforementioned challenges posed by the Grid
environment, in our recent work [43] we designed and imple-
mented a new security approach for the G-Hadoop framework.
Here we will give a brief overview of the security model, however
interested readers may refer to the following paper [43] for more
details. The security model has the following features:

e Asingle sign-on process with a user name and password. A user
logs on to G-Hadoop with his user name and password. Fol-
lowing that, all available cluster resources are made accessi-
ble to the user via the same authentication and authorization
module. The procedure of being authenticated and authorized
across multiple clusters is performed automatically by the se-
curity framework behind the scene.

e Privacy of user’s credentials. The user’s credentials, such as
authentication (user-name, password, etc.) information, is
invisible to the slave nodes. Slave nodes accept tasks, which are
assigned to them by the master node, without being aware of a
user’s credentials.

e Access control. The security framework protects nodes of
distributed cluster resources from abuse by users. Only users
who possess appropriate credentials have the right to access the
cluster resources via an SSH connection.

e Scalability. A cluster can be easily integrated or removed from
the execution environment without any change of the code on
the slave nodes or any modification of the security framework
itself.

e Immutability. The security framework does not change the
existing security mechanism of the clusters. Users of a cluster
can still rely on their own authentication profiles for getting
access to the clusters.

e Protection against attacks. The new security framework pro-
tects the system from different common attacks and guarantees
the privacy and security by exchanging sensitive information
such as encrypted user-name and password. It is also capable of
detecting the fraudulent user who may try to fake credentials.

5. Tests and performance evaluation

This section discusses tests and performance evaluation for the
G-Hadoop implementation.

5.1. Test 1: performance comparison of Hadoop and G-Hadoop

5.1.1. Test setup

We have configured a cluster of test bed managed by Torque.
Each node is equipped with 2 Dual Core AMD Opteron'™ Processor
270, 4 GB system memory, 1 GB ethernet and 160 GB IDE Ultra
ATA133. The operating system is CentOS 5.5 64 bit (kernel 2.6.18-
194.26.1.el5).

For comparison purposes, we have performed the same exper-
iments on the following deployments of Hadoop (Scenario A) and
G-Hadoop (Scenario B):

e Scenario A is a deployment of an unmodified release of Hadoop
version 0.21.0, basically in its default configuration:
1 master node with a JobTracker and a NameNode (A.1),
8-64 slave nodes with a DataNode and TaskTracker per slave
node,
- 2 slots per TaskTracker, (mapreduce.tasktracker.map. tasks.
maximum = 2)
- Hadoop installed and executed from a NFS share,
- No additional optimization is applied.
e Scenario B is deployed using our prototype implementation of
G-Hadoop with the following configuration:
- 1G-Hadoop master node (B.1) with 1 JobTracker and 1 Gfarm
metadata server,
- 1 G-Hadoop slave node (B.2) with
B 1 TaskTracker configured to run 16-128 tasks simultane-
ously,
B 1 Gfarm DataNode,
B 1 Torque master (pbs_server),
B 1 Torque scheduler (default: pbs_sched),
- 8-64 Torque compute nodes each with 1 Torque slave (pbs_
mom),
- Hadoop installed and executed from a NFS share.

We execute the MapReduce implementation of the Bailey-
Borwein-Plouffe (BBP) [44] algorithm, which is part of the example
benchmarks distributed within Apache Hadoop software. Before
the job starts executing, the input splits for the configured number
of tasks are calculated in order to reach a fair distribution of the
workload.

We executed this benchmark on scenarios (A) and (B) with clus-
ter sizes from 16 to 64 compute nodes. The number of map tasks
is set depending on the cluster size to the number of cores/slots
(twice the number of nodes) and eight times the number of
cores/slots on the deployed system.

L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750 747

50001
A G-Hadoop, Scenario (B)
40001 ® Hadoop, Scenario (A)
3
<
S
3 3000t
@
£
<
2 2000t
=1
o
3
P
1000t
24 40 56 72 88 104 120
Size of cluster (cores)
Fig. 9. Execution times of BBP using 1 map task per core.
600071
500071
m
T A G-Hadoop, Scenario (B)
S 4000t ® Hadoop, Scenario (A)
v
£ 3000t
i=
L2
3 200071
X
w
10001
0

24 40 56 72 88 104 120

Size of cluster (cores)

Fig. 10. Execution times of BBP using 8 map tasks per core.

5.1.2. Test results and performance evaluation

Fig. 9 shows our measurements for running the “sort” bench-
mark tasks on a typical Hadoop environment with one TaskTracker
on each compute node (Scenario A) and a G-Hadoop installation
(Scenario B) with a single TaskTracker on the G-Hadoop slave node
backed by multiple compute nodes managed by the cluster sched-
uler. Fig. 9 shows that G-Hadoop can keep up with the performance
of the default Hadoop installation by a sheer margin of max. 6%.
Fig. 9 also shows that increasing the number of compute nodes in
the cluster results in a slight decrease of performance compared to
the default Hadoop installation deployed with the same number
of compute nodes. However, we believe that these penalties corre-
late with another observation we made during our tests: tasks are
submitted to the cluster scheduler using a sequential approach on
the TaskTracker. We observed that submitting hundreds of tasks at
once requires up to one minute until the cluster scheduler accepts
the last task into its queue.

Fig. 10 shows the results of another experiment similar to the
previous, but this time configured with eight times as many map
tasks as cores available in the cluster. In this experiment the single
TaskTracker on the G-Hadoop slave node (B2) must periodically
make sure to keep the queue of the cluster scheduler busy. Fig. 10
shows a notable performance decrease to up to 13% compared to
the equally sized Hadoop.

Figs. 11 and 12 show the bandwidth measured on the Hadoop
master node (A.1) and on the G-Hadoop master node (B.1) during
the execution of the job. Periodical peaks can be observed in
both experiments. Noteworthy is that the peaks of incoming data

350,000

A Sent bytes/s H Received bytes/s

300,000

250,000

>

200,000

150,000

100,000

Transfer rate (bytes per second)

50,000

100 200 300 400 500 600 700 800 900 1000
Execution time (seconds)

Fig. 11. Bandwidth usage on Hadoop master node (A.1).

110,0007
A Sent bytes/s M Received bytes/s
100,000t
a
90,000 T
5 80,0007 .
S B .
g 70,0007 . . .
g e0000f 4
F .
£ 500001 -
o 2 “
£ 40,000 T A - .
= 30,0001 =asé a
- ue
20,0001 o & - B
= ——————-——————IJ'-'-'.A
10,000 o
& - AA ' =
- A A A R
o/
100 200 300 400 500 600 700 800 900 1000

Time (seconds)

Fig. 12. Bandwidth usage on G-Hadoop master node (B.1).

are about half the size the peaks reached in the default Hadoop
deployment. Furthermore the bandwidth used on the Hadoop
master (A.1) shows a lot more traffic between 50 and 100 KB/s.
These observations can be traced back to the fact that every
TaskTracker on the Hadoop cluster (A) sends a heartbeat message
to the JobTracker. In comparison, the single TaskTracker on the
G-Hadoop cluster (B) sends accumulated information about all 128
concurrently running tasks instead of only 2.

Fig. 14 shows the accumulated traffic measured on the master
node of G-Hadoop (B.1). The combined amount of data required
for the execution of the BBP job measures about 5.5 MB. Executing
the same job on a Hadoop cluster with the same size, in contrast,
requires about 32 MB and therefore about six times as much data
to be transferred over the wide-area network. Fig. 13 depicts these
measurements.

5.2. Test 2: performance evaluation of G-Hadoop

5.2.1. Test setup

We setup the same test bed described in Section 5.1.1 with the
Amazon Elastic Compute Cloud.

We deploy the test on the test bed with the configuration
described in Scenario B (see Section 5.1). Each test cluster is setup
with 4, 8, 12, or 16 nodes and every cluster node is deployed with
8 mappers.

We used the Hadoop Sort benchmark [45] to evaluate our
implementation. In the Hadoop Sort benchmark, the entire test

748 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

24,000
22,000

20,000
M Sent data

18,000 M Received data

16,000
14,000
12,000
10,000

8000

Data transferred (kilobytes)

6000
4000
2000

0 4
0 200 400 600 800 1100

Execution time (seconds)

Fig. 13. Accumulated traffic on Hadoop master node (A.1).

4000 T
3500 t
3000 T M Sent data
— M Received data
[}
_'% 2500 1
o
2
< 2000 T
I
g
€ 1500 t
s
=
& 1000 T
500 1
0
0 200 400 600 800 1100
Execution time (seconds)
Fig. 14. Accumulated traffic on Hadoop master node (B.1).
32+
\ VY [[\
; MW\W INM
€ \K
=}
f=
x
[}
8 \
5 \
Q
Q
©
= M\AM

100 200 300
Task execution time (Second)

Fig. 15. Mapper task number during Sort benchmark execution with G-Hadoop.

dataset goes through the shuffle stage, which requires the network
communication between slaves. The Sort results generate the same
amount of data and save back to the HDFS in the reduce step.
Therefore the Hadoop Sort benchmark is a suitable benchmark to
evaluate the Hadoop deployment, network and HDFS performance.

Fig. 15 shows the number of active mapper tasks within one
cluster (node no. = 4) when executing the Sort benchmark
(2048 M). As every node is deployed with 8 mappers, the maximum
number of active mapper tasks inside one cluster is 32. In Fig. 15,
the running mapper task number increases quickly to reach its
maximum, then stays approximately constant during the map
stage. After entering the reduce stage, the running mapper task
numbers decrease to almost 0.

Fig. 16 shows the Sort benchmark task execution time with
G-Hadoop on the test bed with various sort data sets. We can see
that G-Hadoop scales well as the input workload (data size for

350
300

iz
/

150 / /E

100

Task Execution Time (Second)

50

0

128 256 512 1024 2048
Sort Data Set (MB)

== Node No. =4 <@=Node No.=8 Node No. = 12 =+ Node No. = 16
Fig. 16. Task execution time of Sort benchmark with various input data set.

350

N
w
o

/

N
o
o

[N
o
o

/
/

Task Execution Time (Second)

w
o

]

Node No. =4 Node No. =8 Node No. =12

Node number

Node No. = 16

== 128 MB =& 256 MB 512 MB =<1024 MB =¥ 2048 MB

Fig. 17. Task execution time of Sort benchmark with G-Hadoop clusters.

sort) increases. Fig. 17 shows the Sort benchmark task execution
time with G-Hadoop on the test bed with cluster node number.
Fig. 17 indicates that G-Hadoop has a similar behavior with Test
1 in Section 5.1 when cluster size scales.

6. Conclusion and future work

The goal of this research is to advance the MapReduce frame-
work for large-scale distributed computing across multiple data
centers with multiple clusters. The framework supports dis-
tributed data-intensive computation among multiple administra-
tive domains using existing unmodified MapReduce applications.
In this work, we have presented the design and implementation
of G-Hadoop, a MapReduce framework based on Hadoop that aims
to enable large-scale distributed computing across multiple clus-
ters. The architecture of G-Hadoop is based on a master/slave
communication model. In order to support globally distributed
data-intensive computation among multiple administrative do-
mains, we use the traditional HDFS file system with the Gfarm
file system, which can manage huge data sets across distributed
clusters.

We have managed to keep the required changes on existing
clusters at a minimum in order to foster the adoption of the
G-Hadoop framework. Existing clusters can be added to the G-
Hadoop framework with only minor modifications by deploying
a G-Hadoop slave node on the new cluster. The operation of the
existing cluster scheduler is not affected in our implementation.
Our work is fully compatible with the Hadoop API and does not
require modification of existing MapReduce applications.

Finally we validated our design by implementing a prototype
based on the G-Hadoop architecture. It executes MapReduce
tasks on the Torque cluster scheduler. We have run several
experiments on our prototype. The results show that G-Hadoop
has a comparable performance to the Apache Hadoop clusters and

L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750 749

scales nearly linearly with respect to the number of nodes in the
cluster.

To make G-Hadoop fully functional, in the next step we
plan to implement the coordinated peer-to-peer task scheduling
algorithms and security services for the G-Hadoop framework.

In future we would like to overcome the centralized network
design of G-Hadoop master node and tracker through implementa-
tion of scalable peer-to-peer message routing and information dis-
semination structure. This is to help us in avoiding the problems
of a single point of failure of the centralized network design ap-
proach. In particular, we will implement the distributed hash table
based decentralized resource discovery technique, which will have
the capability to handle complex cloud resource and G-Hadoop
services’ performance status (e.g., utilization, throughput, latency,
etc.). We will also extensively leverage our past work [46] on
grid resource provisioning for coordinating the scheduling decision
making among distributed G-Hadoop services.

Acknowledgments

LW'’s work is funded by the “One-Hundred Talents Program”
of the Chinese Academy of Sciences. DC's work is supported in
part by the National Natural Science Foundation of China (grant
No. 61272314), the Natural Science Foundation of Hubei Province
of China (grant No. 2011CDB159), the Program for New Century
Excellent Talents in University (NCET-11-0722), the Specialized
Research Fund for the Doctoral Program of Higher Education (grant
No. 20110145110010), and the Fundamental Research Funds for
the Central Universities (CUG, Wuhan).

References

[1] F. Berman, Got data?: a guide to data preservation in the information age,
Communications of the ACM 51 (2008) 50-56.

[2] Data intensive computing, Website.
http://en.wikipedia.org/wiki/Data_Intensive_Computing.

[3] L. Wang, M. Kunze,]. Tao, G. von Laszewski, Towards building a cloud
for scientific applications, Advances in Engineering Software 42 (9) (2011)
714-722.

[4] G.Brumfiel, High-energy physics: down the petabyte highway, Nature (7330)
(2011) 282-283.

[5] L. Wang, C. Fu, Research advances in modern cyberinfrastructure, New
Generation Computing 28 (2) (2010) 111-112.

[6] Condor dagman, Website. http://www.cs.wisc.edu/condor/dagmanj/.

[7] E. Deelman, G. Singh, M.-H. Su,]. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.

Vahi, G.B. Berriman, J. Good, A. Laity,].C. Jacob, D.S. Katz, Pegasus: a framework

for mapping complex scientific workflows onto distributed systems, Science

Programming 13 (2005) 219-237.

Y. Zhao, M. Hategan, B. Clifford, LT. Foster, G. von Laszewski, V. Nefedova, I.

Raicu, T. Stef-Praun, M. Wilde, Swift: fast, reliable, loosely coupled parallel

computation, in: IEEE SCW, IEEE Computer Society, Salt Lake City, Utah, USA,

2007, pp. 199-206.

L. Altintas, B. Ludaescher, S. Klasky, M.A. Vouk, Introduction to scientific

workflow management and the kepler system, in: Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, ser. SC'06, ACM, New York, NY,

USA, 2006.

[10] L. Wang, D. Chen, F. Huang, Virtual workflow system for distributed collabo-
rative scientific applications on grids, Computers & Electrical Engineering 37
(3)(2011) 300-310.

[11] L. Wang, M. Kunze,]. Tao, Performance evaluation of virtual machine-
based grid workflow system, Concurrency and Computation: Practice and
Experience 20 (15) (2008) 1759-1771.

[12] L. Wang, G. von Laszewski, J. Tao, M. Kunze, Virtual data system on distributed
virtual machines in computational grids, International Journal of Ad Hoc and
Ubiquitous Computing 6 (4) (2010) 194-204.

[13] P.Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams,
T. Oinn, C. Goble, Taverna, reloaded, in: Proceedings of the 22nd International
Conference on Scientific and Statistical Database Management, SSDBM’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 471-481.

[14] L. Wang, G. von Laszewski, AJ. Younge, X. He, M. Kunze,]. Tao, C. Fu, Cloud
computing: a perspective study, New Generation Computing 28 (2) (2010)
137-146.

[15] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, M. Parashar, Peer-to-peer cloud
provisioning: service discovery and load-balancing, Cloud Computing (2010)
195-217.

8

[9

[16] R. Buyya, R. Ranjan, Special section: federated resource management in grid
and cloud computing systems, Future Generation Computer Systems 26 (8)
(2010) 1189-1191.

[17] D. Chen, L. Wang, G. Ouyang, X. Li, Massively parallel neural signal processing
on a many-core platform, Computing in Science and Engineering (2011).

[18] X. Yang, L. Wang, G. von Laszewski, Recent research advances in e-science,
Cluster Computing 12 (4) (2009) 353-356.

[19] H. Zhu, T.KY. Chan, L. Wang, R.C. Jegathese, A distributed 3d rendering
application for massive data sets, IEICE Transactions 87-D (7) (2004)
1805-1812.

[20] C. Moretti, J. Bulosan, D. Thain, P.J. Flynn, All-pairs: an abstraction for data-
intensive cloud computing, in: IPDPS, April 2008, pp. 1-11.

[21] R. Grossman, Y. Gu, Data mining using high performance data clouds:
experimental studies using sector and sphere, in: Proceeding of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’08, ACM, New York, NY, USA, 2008, pp. 920-927.

[22] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda,]. Currey,
Dryadling: a system for general-purpose distributed data-parallel computing
using a high-level language, in: Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI'08, USENIX Association,
Berkeley, CA, USA, 2008, pp. 1-14.

[23] D. Logothetis, K. Yocum, Wide-scale data stream management, in: USENIX
2008 Annual Technical Conference on Annual Technical Conference, USENIX
Association, Berkeley, CA, USA, 2008, pp. 405-418.

[24]].Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Communications of the ACM 51 (2008) 107-113.

[25] Apache Hadoop project, Web Page. http://hadoop.apache.org/.

[26] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a mapreduce
framework on graphics processors, in: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT'08,
ACM, New York, NY, USA, 2008, pp. 260-269.

[27] R. Chen, H. Chen, B. Zang, Tiled-mapreduce: optimizing resource usages of
data-parallel applications on multicore with tiling, in: Proceedings of the
19th International Conference on Parallel Architectures and Compilation
Techniques, PACT'10, ACM, New York, NY, USA, 2010, pp. 523-534.

[28] Y.Shan, B. Wang, J. Yan, Y. Wang, N. Xu, H. Yang, Fpmr: mapreduce framework
on fpga, in: Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA’10, ACM, New York, NY,
USA, 2010, pp. 93-102.

[29] C. Ranger, R. Raghuraman, A. Penmetsa, G.R. Bradski, C. Kozyrakis, Evaluating
mapreduce for multi-core and multiprocessor systems, in: 13st International
Conference on High-Performance Computer Architecture, 2007, pp. 13-24.

[30] R.M. Yoo, A. Romano, C. Kozyrakis, Phoenix rebirth: scalable mapreduce
on a large-scale shared-memory system, in: Proceedings of the 2009 IEEE
International Symposium on Workload Characterization, IEEE, Austin, TX, USA,
2009, pp. 198-207.

[31] M.M. Rafique, B. Rose, A.R. Butt, D.S. Nikolopoulos, Supporting mapreduce on
large-scale asymmetric multi-core clusters, SIGOPS Operating Systems Review
43 (2009) 25-34.

[32] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, L. Qi, Cloudlet: towards
mapreduce implementation on virtual machines, in: Proceedings of the 18th
ACM International Symposium on High Performance Distributed Computing,
HPDC'09, ACM, New York, NY, USA, 2009, pp. 65-66.

[33] C. Jin, R. Buyya, Mapreduce programming model for.net-based cloud
computing, in: Euro-Par, in: Lecture Notes in Computer Science, vol. 5704,
Springer, 2009, pp. 417-428.

[34] S. Pallickara, J. Ekanayake, G. Fox, Granules: a lightweight, streaming runtime
for cloud computing with support for map-reduce, in: CLUSTER, IEEE, New
Orleans, Louisiana, USA, 2009, pp. 1-10.

[35] C.Miceli, M. Miceli, S. Jha, H. Kaiser, A. Merzky, Programming abstractions for
data intensive computing on clouds and grids, in: Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 478-483.

[36] H.Lin, X. Ma, J. Archuleta, W.-C. Feng, M. Gardner, Z. Zhang, Moon: mapreduce
on opportunistic environments, in: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC' 10, ACM, New
York, NY, USA, 2010, pp. 95-106.

[37] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, V.H. Tuulos, Misco:
a mapreduce framework for mobile systems, in: Proceedings of the 3rd
International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA’10, ACM, New York, NY, USA, 2010, pp. 32:1-32:8.

[38] Apache Hadoop on Demand (HOD), Website. http://hadoop.apache.org/
common/docs/r0.21.0/hod_scheduler.html.

[39] S. Krishnan, M. Tatineni, C. Baru, myhadoop—hadoop-on-demand on tradi-
tional hpc resources, University of California, San Diego, Technical Report,
2011.

[40] O. Tatebe, K. Hiraga, N. Soda, Gfarm grid file system, New Generation
Computing 28 (3) (2010) 257-275.

[41] Torque resource manager, Website.
http://www.clusterresources.com/products/torque-resource-manager.php.

[42] Distributed Resource Management Application APl (DRMAA), Website.
http://drmaa.org/.

[43] W. Sun,]. Tao, R. Ranjan, A. Streit, A security framework in G-Hadoop for
data-intensive computing applications across distributed clusters, Journal of
Computer and System Sciences.

[44] D.H. Bailey, The bbp algorithm for pi, Sep. 2006. http://crd.Ibl.gov/dhbailey/
dhbpapers/bbp-alg.pdf.

http://en.wikipedia.org/wiki/Data_Intensive_Computing
http://www.cs.wisc.edu/condor/dagman/
http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://hadoop.apache.org/common/docs/r0.21.0/hod_scheduler.html
http://www.clusterresources.com/products/torque-resource-manager.php
http://drmaa.org/
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf
http://crd.lbl.gov/dhbailey/dhbpapers/bbp-alg.pdf

750 L. Wang et al. / Future Generation Computer Systems 29 (2013) 739-750

[45] Hadoop sort benchmark, Website. http://wiki.apache.org/hadoop/Sort.

[46] R. Ranjan, A. Harwood, R. Buyya, Coordinated load management in peer-to-
peer coupled federated grid systems, Journal of Supercomputing 61 (2) (2012)
292-316. http://dx.doi.org/10.1007/s11227-010-0426-y. [Online], Available.

Dr. Lizhe Wang currently is Professor at Earth Observation
and Digital Earth, Chinese Academy of Sciences. He also
holds a “Chutian Chair” professor at the China University
of Geosciences. Dr. Wang's research interests include data-
intensive computing, high performance computing, and
Grid/Cloud computing.

Dr. Jie Tao is a researcher at Steinbuch Centre for Com-
puting (SCC), Karlsruhe Institute of Technology (KIT), Ger-
many. Her research interests include parallel computing,
Grid computing and Cloud computing.

Dr. Rajiv Ranjan is a Research Scientist and Project
Leader in the CSIRO ICT Center, Information Engineering
" Laboratory, Canberra, where he is working on projects
related to cloud and service computing. Dr. Ranjan
is broadly interested in the emerging areas of cloud,
W grid, and service computing. Though a recent graduate,
. his h-index is 14, with a total citation count of 650+
(source: Google Scholar citations-gadget). Dr. Ranjan has
often served as Guest Editor for leading distributed
systems and software engineering journals including
Future Generation Computer Systems (Elsevier Press),
Concurrency and Computation: Practice and Experience (John Wiley & Sons),
and Software: Practice and Experience (Wiley InterScience). He was the Program
Chair for 2010-12 Australasian Symposium on Parallel and Distributed Computing
and 2010 IEEE TCSC Doctoral Symposium. He serves as the editor of IEEE TCSC
Newsletter. He has also recently initiated (as chair) the IEEE TCSC Technical area on
Cloud Computing. He has authored/co-authored 36 publications including 5 book
chapters, 4 books, 13 iournal papers, and 14 conference papers.

A journal paper that appeared in the IEEE Communications Surveys and
Tutorial Journal (impact factor 3.692 and the 5-year impact factor is 8.462)
was named “Outstanding Paper on New Communications Topics for 2009” by
IEEE Communications Society, USA. IEEE Communications Surveys and Tutorial is
ranked as no # 1 journal (among other journals including IEEE/ACM Transactions
on Networking, IEEE Communications Letters, IEEE Transactions on Wireless
Communications, [EEE Transactions on Communications, etc.) in the field of
communications based on the last five years’ impact factor.

Though his Ph.D. was awarded only two years ago, already the quality of
work undertaken as part of that degree and his subsequent post-doctoral research
undertaken at the University of Melbourne and UNSW has been recognised,
often cited, and adopted by both industry and academia. For example, the
Alchemi toolkit (http://www.cloudbus.org/alchemi/projects.html) is used by CSIRO
Physics, Biology, and Natural Sciences researchers as a platform for solving critical
problems; by e-Water CRC to create environment simulation models for natural

resource modelling; and by the Friedrich Miescher Institute (FMI), Switzerland; Tier
Technologies, USA; Satyam Computers, India; and Correlation Systems Ltd., Israel.
CloudSim (http://www.cloudbus.org/cloudsim/) is used extensively by Hewlett-
Packard Labs, Texas A&M University, and Duke University in the USA; and Tsingua
University in China to study and evaluate performance measurements of Cloud
resources and application management techniques.

Dr. Holger Marten is a researcher at Steinbuch Centre for
Computing (SCC), Karlsruhe Institute of Technology (KIT),
Germany. His research interests include Grid computing
and Cloud computing.

Dr. Achim Streit is the Director of Steinbuch Centre for
Computing (SCC), Karlsruhe Institute of Technology (KIT),
and a Professor for Distributed and Parallel High Perfor-
mance Systems, Institute of Telematics, Department of In-
formatics, Karlsruhe Institute of Technology (KIT), Ger-
many. His research includes high performance computing,
Grid computing and Cloud computing.

Dr. Jingying Chen is a professor at Central Noraml Univer-
sity of China. Her research includes pattern recognition, ar-
tificial intelligence, and distributed computing.

Dr. Dan Chen is a professor at School of Computer, Chinese
University of Geosciences. His research interests includes
GPGPU, neural signal processing and High Performance
computing.

http://wiki.apache.org/hadoop/Sort
http://dx.doi.org/doi:10.1007/s11227-010-0426-y
http://www.cloudbus.org/alchemi/projects.html
http://www.cloudbus.org/cloudsim/

	G-Hadoop: MapReduce across distributed data centers for data-intensive computing
	Introduction
	Background and related work
	Cloud computing
	Distributed data-intensive computing
	MapReduce and Hadoop
	MapReduce paradigm
	Hadoop
	HDFS

	Gfarm file system
	Resource management for clusters

	System design of G-Hadoop
	Target environment and development goals
	Architecture overview
	Gfarm as a global distributed file system
	G-Hadoop master node
	G-Hadoop slave node
	Job execution flow

	Discussion
	Scalability
	Communication between JobTracker and TaskTracker
	Performance of the distributed file system

	Fault tolerance
	Task
	Metadata server
	JobTracker
	TaskTracker
	Gfarm I/O server
	Cluster scheduler
	Security model

	Tests and performance evaluation
	Test 1: performance comparison of Hadoop and G-Hadoop
	Test setup
	Test results and performance evaluation

	Test 2: performance evaluation of G-Hadoop
	Test setup

	Conclusion and future work
	Acknowledgments
	References

