
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 1 

  
Abstract—Remote sensing applications in Digital Earth are 
overwhelmed with vast quantities of remote sensing (RS) image 
data. The intolerable I/O burden introduced by the massive 
amounts of RS data and the irregular RS data access patterns 
has made the traditional cluster based parallel I/O systems no 
longer applicable. We propose a RS data object-based parallel 
file system for remote sensing applications and implement it with 
the   OrangeFS file system. It provides application-aware data 
layout policies, together with RS data object based data I/O 
interfaces, for efficiently support of various data access patterns 
of RS applications from server side.  With the prior knowledge of 
the desired RS data access patterns, HPGFS could offer relevant 
space-filling curves to organize the sliced 3-D data bricks and 
distribute them over I/O from the servers. In this way, data 
layouts consistent with expected data access patterns could be 
created to explore data locality and achieve performance 
improvement. Moreover, the multi-band RS data with complex 
structured geographical metadata could be accessed and 
managed as a single data object. Through experiments on remote 
sensing applications with different access patterns, we have 
achieved performance improvement of about 30% for I/O and 20% 
for total. 
 

Key word: Parallel File System; Parallel I/O; Data-intensive 
Computing; Digital Earth; Big Data; Remote Sensing Image 
Processing 
 

I. INTRODUCTION 
igital Earth[1], a global information model of earth’s 
surface, plays a significant role in addressing challenges 

in global resources and environmental change. The digital 
earth approach is to exploit regional to global covered remote 
sensing data for processing. With recent advances in remote 
sensing technology, the latest-generation space-borne sensors 
are continuously producing massive quantities of 
high-dimensional remote sensing (RS) image data in Digital 
Earth at a rate of several terabytes per day [2,3]. Meanwhile, 

 
Lizhe Wang and Yan Ma are with the Institute of Remote Sensing and 

Digital Earth, Chinese Academy of Science, Beijing, China 100094. Albert Y. 
Zomaya is with the School of Information Technologies, the University of 
Sydney, Australia. Dan Chen is with the School of Computer, China 
University of Geosciences. Rajiv Ranjan is with ICT/CSIRO, Australia. 
Corresponding author: Yan Ma, phone/fax: 86-10-82178970; e-mail: 
yanma@ceode.ac.cn; 

 

remote sensing data processing for digital earth is commonly 
recognized as typical data-intensive applications. The 
large-scale RS applications like continental mosaicking for 
Global Rain Forest Mapping [4] normally require processing 
thousands of imageries that adds up to nearly terabytes of data.  
 Incorporation of distributed cluster-based high-performance 
computing (HPC) with remote sensing applications in Digital 
Earth is an effective solution for addressing these 
computational challenges introduced by massive data. 
However, the performance gap between I/O and computing is 
gradually widening by further growth of computing capability, 
especially in cluster scenarios with thousands of cores. In this 
case, the data processing has to wait for several CPU cycles 
for data accessing [5]. Withal, most of the remote sensing 
applications are significantly challenged with the specific 
complex data access patterns that result from different 
correlations between computation and data.  These complex 
data access patterns perform intensive small non-contiguous or 
irregular I/O over multiple data files and vary across different 
applications. The data I/O then turns out to be an expensive 
burden for remote sensing applications in digital earth. 
Remote sensing image data sets, in particular, are 
characterized by multi-dimensional image data structure and 
abundant geographical metadata. Consequently, offering direct 
and efficient storing and accessing of these special structured 
RS datasets in traditional file system could be rather 
cumbersome, although it remains paramount. 
 The intolerable I/O burden introduced by massive quantities 
of RS data and the complex data access patterns has rendered 
traditional I/O systems no longer applicable. Employing a 
parallel file system with Parallel I/O [6,7] is an effective 
challenges encountered in remote sensing applications. The 
I/O parallelism is commonly achieved by block-wise striping 
of large data across a great number of storage blocks with a 
fixed stripe size. This method allows applications to access 
data from multiple I/O servers or storage concurrently. 
However, despite the high I/O parallelism, parallel file 
systems continue to  suffer from the relatively poor 
performance of non-contiguous I/O patterns. The reason for 
this is that most of the mainstream parallel file systems seldom 
directly support these data accesses patterns properly [8]. 
Furthermore, although the standard data striping method and 
round-robin data layout scheme can benefit some data access 

A Parallel File System with Application-aware 
Data Layout Policies For Massive Remote 
Sensing Image Processing in Digital Earth 

Lizhe Wang, Senior member, IEEE, Yan Ma, Member, IEEE, Albert Y. Zomaya, Fellow, IEEE,  Rajiv 
Ranjan, Member, IEEE, and Dan Chen 

D 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 2 

patterns, this is not the case for others [9]. In fact, the 
mismatch between the data access pattern and the physical 
data layout over I/O servers would inevitably introduce a 
workload imbalance among I/O devices and result in I/O 
inefficiency [10]. Besides, general-purpose file systems could 
not directly support the special data structure of remote 
sensing image datasets consisting of multi-dimensional image 
data and various geographical metadata. Therefore, trying to 
get a parallel file system to offer efficient managing and 
high-performance non-contiguous or irregular parallel 
accessing of RS data remains quite a challenge for remote 
sensing applications. 

OrangeFS [11,12] is a configurable open source research 
platform with high-performance parallel I/O and scalable 
physical data layout scheme interfaces. We address the issue 
described above by proposing HPGFS, a RS data object based 
parallel file system implemented with OrangeFS and designed 
for massive remote sensing image processing. The main 
contribution of HPGFS is that it introduces application aware 
data layout policies together with RS data object based data 
parallel I/O interfaces to provide direct and efficient accessing 
of RS data for various remote sensing applications. As a 
special-purpose file system, HPGFS uses a logical distributed 
RS data object to describe the remote sensing image datasets 
and their relevant basic data operations. The complex 
structured geographical metadata are stored to or indexed from 
distributed metadata servers in a key-value pair manner. While, 
the multi-dimensional image data are scattered across I/O 
servers using application aware data layout policies. With the 
prior knowledge of the different I/O characteristic of 
applications, HPGFS could provide suitable space-filling 
curves for organizing the sliced multi-dimensional data bricks 
and distributing them among I/O servers. This method would 
create a physical storage layout consistent with expected data 
access patterns in order to explore data locality and achieve 
performance improvement. Moreover, HPGFS proposed an 
RS data object based I/O interfaces to describe the direct 
non-contiguous or irregular access of RS data for remote 
sensing applications. This native application-oriented 
noncontiguous data access support in the file system is 
recognized as being critically important to I/O efficiency [13]. 

The rest of this paper is organized as follows. The next 
section overviews some related work, and section III discusses 
the data access patterns of remote sensing applications and 
defines the I/O problems encountered in massive remote 
sensing processing with a parallel file system. In section IV, 
we address the design and implementations of the HPGFS 
with application-aware data layout strategies. Section V 
discusses the experimental analysis of HPGFS’s I/O 
performance for remote sensing applications with different 
data access patterns, and section VII concludes this paper. 

II. RELATED WORK 
Parallel file systems with scalable parallel I/O are widely 

employed in modern clusters where I/O emerges as the main 
bottleneck [14], especially for data-intensive applications [15]. 
Significant efforts have focused on cluster-based file systems, 
such as OrangeFS [12], PVFS [16], Lustre [17], PanFS [18] 

and GPFS[19]. These file systems converge the 
direct-attached storage of each node with networking 
techniques [20] and strip the data across this storage, in order 
to offer high throughput concurrent I/O. However, only one 
tenth of the peak I/O performance is achieved by most 
scientific applications [14,21], that perform small 
non-contiguous I/O [8]. This is because most of the 
mainstream file systems are optimized for large contiguous 
data accessing. Overall, their parallel I/O interfaces and 
physical data layout over storages do not match the expected 
data access patterns of the applications [22,23].  
 A fair amount of research works on parallel I/O libraries has 
been devoted to the optimization of non-contiguous I/O. 
ROMIO [13] is a well-known implementation of portable 
MPI-IO [21] interfaces that has extended many optimization 
techniques to handle non-contiguous data accesses. Data 
sieving [24,25] is one of the most widely accepted 
optimization techniques for many applications. It reduces I/O 
calls by reading a large contiguous chunk of data and sieving 
out non-requested ones, but with the penalty of reading and 
extracting extra data. Two-phase I/O [21][26] introduces 
Gather-Scatter communication in an extra exchange phase to 
merge non-contiguous I/O requests for exploring data locality, 
but this approach inevitably brings in extra communication 
overhead. The combination of data sieving with two-phase I/O 
by collective I/O [24] allows collection of small 
non-contiguous requests into a large contiguous one. This 
approach could greatly reduce I/O requests and achieve a 
better ratio of actually accessed data. Therefore, these 
techniques achieve I/O performance improvement by merging 
or reducing small non-contiguous data requests. 
 The data layout policy of a parallel file system that 
organizes the physical data layout over I/O servers is a key 
factor in determining parallel I/O performance. Proper data 
layout policies would lead to data locality and workload 
balance among I/O servers. Instead of the standard simple data 
striping approach, OrangeFS offers interfaces for customizing 
data layout policies. The data replication [28,29] schemes 
reorganize data layout by creating data replicas across I/O 
servers. These concepts focus on amortizing I/O requests and 
exploring data locality, but with the penalty of sacrificing 
storage capacity. In addition, Song et al. [1] have proposed a 
segment-level adaptive data layout scheme for variable I/O 
patterns. This method uses different stripe sizes in different 
file segments for an overall I/O performance optimization. 
 A large body of research [30] has focused on the algorithm 
optimization to address the computational challenges of 
remote sensing applications. By contrast, the parallel I/O 
efficiency of remote sensing applications and incorporation of 
parallel file systems have received little attention. Some 
limited work has attempted to building cluster-based I/O 
systems for managing massive RS data [31][30]. Other works 
has opted for the data prefetching techniques [33] employed 
by many remote-sensing applications [30][34] with intensive 
non-contiguous I/O. Explicit overlapping of the I/O operation 
with computing can hide the I/O latency to a certain extent. 
Nevertheless, data prefetching cannot completely eliminate 
inefficient non-contiguous or irregular I/O requests. In 
addition, some data layout optimization work from server side 
in parallel file system accompanies it [35][36]. In any case, the 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 3 

RS applications still remain extremely troubled by intensive 
and cumbersome RS data accessing. 
 The HPGFS put forward in this paper aims at coping with 
these I/O burden issues. It offers RS data object based 
distributed storing and parallel I/O interfaces for native and 
efficient support of RS data accessing. It relies on the 
application aware data layout policies and thereby provides 
optimal organization and storage layout of multi-dimensional 
RS data that are consistent with the specific I/O pattern of RS 
applications. Overall, HPGFS develops its implementation on 
the prototype of OrangeFS by leveraging its high 
configurability. 

III. PROBLEM DEFINITION 
This section demonstrates the primary issues related to the 

parallel I/O system for massive remote sensing image 
processing in a cluster scenario. The problem has three key 
aspects: massive remote sensing data with high dimensionality, 
complex data access patterns of remote sensing applications, 
and the parallel I/O performance. The first issue involves the 
proper support of the distributed storage of large amounts of 
complex structured RS data and offering an easy to use RS 
data object based data operations (Section III-A). The second 
issue concerns the intensive but miserable RS data access 
patterns of applications, which perform non-contiguous I/O 
across many data files (Section III-B). The third issue 
concerns the creation of an optimal storage data layout that 
will allow extensive exploration of data locality (Section 
III-C). 

A. Massive RS Data with High Dimensionality 
The remote sensing image processing applications are 

overwhelmed with incredible amounts of RS data. Generally, 
the data amount of a single RS dataset would be several 
gigabytes. Large-scale remote sensing applications like those 
for global climate change may require processing thousands of 
multi-temporal RS data that add up to several terabytes. 
Accordingly, the intensive I/O result from massive RS data 
and increasing real-time processing requirements have become 
the main factors that restrict the data processing speed of 
applications. 

Normally, the RS imagery from hyper-spectral sensors 
would have hundreds of spectral bands. However, the high 
dimensionality of RS data complicates the storage and access 
of distributed data in parallel I/O systems. The difficulties lie 
in mapping multi-dimensional imageries to 1-D data array. For 
specific, it may include appropriate data partitioning and data 
organization by the choice of suitable space-filling curves. On 
the other hand, RS datasets usually include associated 
complex- structured geographical metadata, which makes 
support of efficient storage and indexing of geographical 
metadata rather cumbersome on parallel I/O systems. 
Moreover, geographical metadata are always involved in 
computation. In case of the RS data accessing, a recalculation 
of the geographical metadata (like latitude, longitude) would 
be necessary for requests.  

B. Irregular Data Accessing Patterns of RS Applications 
In most cases, remote sensing applications show different 

computation features: different degrees of dependency 
between computation of algorithm and RS data. This is 
because the computation of each pixel usually depends on its 
neighborhood or even the data from other spectral bands. 
These dependencies involve data independent computation 
and regional dependent computation, as well as band 
dependent computation.  

Generally, the data  dependencies,  to  various  degrees, 
would result in different data access patterns that vary across 
applications. Except for the data independent computation 
featured applications, most of the RS applications usually 
perform non-contiguous or irregular I/O. The applications that 
feature regional dependent computation tend to request many 
small data blocks scattered throughout the file in one logical 
I/O. Overall, the applications with band dependent 
computation normally access small data regions from multiple 
band files simultaneously. Unfortunately, these data access 
patterns are seldom natively supported by most of the popular 
parallel file systems. Traditionally, the non-contiguous I/O is 
implemented by repeatedly calling a number of individual data 
requests, each of which accesses a small chunk of consecutive 
data, while band related I/O is translated into many separate 
data requests, each of which accesses from one band file. 
Obviously, this kind of implementation is rather 
time-consuming and tedious. 

MPI-IO library has provided derived MPI datatypes to 
reflect the desired non-contiguous I/O pattern in a uniform 
style. The <length,stride> tuples are used to describe the 
arrangement of the non-contiguous data. However, these 
requested non-contiguous RS data usually cover a rectangular 
or irregular shaped region of the image. Even worse, the 
requested RS data may be scattered over multiple band files. 
As a result, relying on MPI-IO to describe the specific I/O 
pattern of RS applications becomes quite clumsy and difficult. 
Therefore, a more intuitive, elegant and effective solution that 
is  natively supported by PFS is clearly necessary.  

C. Parallel I/O Performance 
The existing I/O optimization techniques like data sieving 

and collective I/O do not overcome the poor parallel I/O 
performance of data-intensive RS applications that incorporate 
PFS. The main reason is the mismatch between the storage 
data layout and the I/O patterns of RS applications.  

Historically, the parallel file systems and applications are 
designed separately for transparency. Hence, parallel file 
systems commonly adopt a simple data striping method, but 
have no idea of the data access patterns of the applications. In 
case where the data layout created with a certain stripe size is 
not consistent with the desired data accessing patterns, poor 
data locality and imbalance of I/O workloads arise, ultimately 
leading to an I/O bottleneck. Consequently, proper data layout 
policies especially designed for the data access patterns of 
remote sensing applications are critically important for elegant 
data locality and parallel I/O performance. 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 4 

IV. RS DATA AND RS DATA ACCESS PATTERNS 
In this section, we introduce the data structure of RS data 

and probe into the I/O characteristics of RS data access 
patterns performed by various remote sensing applications. 

A. Data Structure of Multi-dimensional RS Data 
RS images are generally acquired from different sensors, 

like such as optical, hyperspectral, and SAR images. Unlike 
normal imgages, RS data consist of geographical metadata that 
vary with different sensors and multi-band images whose 
pixels are of high dimensionality. 

1) Image Data with High Dimensionality (T)  

 
Fig. 1.  3-D Image of A RS Data 

The image data T of the RS data records the spectral 
information and spatial location of the land surface features. 
For simplicity, we ignore the temporal dimension of RS 
data here. Then, a RS data object corresponds to a regular 
3-D remote sensing image dataset as is showed in figure 1. 
Accordingly, each pixel of the RS image may be expressed 
as (𝑥, 𝑦, 𝑟(𝑏!, 𝑏!,… , 𝑏!)), where (x,y) express the spatial 
location of each pixel and  𝑟(𝑏!, 𝑏!,… , 𝑏!) is the DN value 
array of spectral reflectance across different spectral bands.   
Mathematically, the RS image T with k bands of images in 

size of m lines and n pixels could be organized as a 3-D matrix 
(Equation 1).  For different computation requests, the image T 
could be arranged as a band major order (BSQ), a band 
interleaved by pixel (BIP), or a band interleaved by line order 
(BIL). 

𝑇 =
𝑟!!! ⋯ 𝑟!!!
⋮ ⋱ ⋮

𝑟!!! ⋯ 𝑟!!"

𝑟!"" ⋯ 𝑟!"!
⋮ ⋱ ⋮

𝑟!!! ⋯ 𝑟!!"
⋯

𝑟!!! ⋯ 𝑟!!!
⋮ ⋱ ⋮

𝑟!"! ⋯ 𝑟!"#
  (1) 

 
2) Geographical Metadata (P) 

 
Fig. 2. The Data Structure of Geographical Metadata 

The geographical data P are self-descriptive metadata and 
always participate in the computation of RS algorithms. As 
depicted in Figure 2, these includes image info, map info, 
satellite & sensor parameters and projection parameters. The 
image info describes the size, data type and the data 

organization of RS data. The map info records the spatial 
location of data, like latitude/longitude and x/y values of four 
corners respectively in geographical and projected coordinate 
system. However, the data items as well as the data structure 
of projection parameters vary with different projection 
methods. The same situation holds for satellite and sensor 
parameters. Therefore, expression of these metadata in a 
standard yet normalized fashion is critical for the storage of 
RS data in I/O systems. 

B. I/O Characteristics of RS Data Access Patterns 
The different degree of dependency between computation 

and RS data means that remote sensing applications perform 
different RS data access patterns. 

1) Consecutive-Lines Access Pattern for Pixel-Based 
Processing 

Pixel-based processing refers to the data independent 
algorithms whereby each pixel can be computed without 
requesting for context. This category of algorithms, likes 
radiometric correction and SVM classifier, perform 
consecutive-lines access pattern with perfectly contiguous I/O. 
When these algorithms are implemented in parallel, each 
processor requests multiple consecutive image lines in a 
logical data access. These data correspond to a continuous 
stream of bytes in a file view, and as many contiguous data 
stripes distributed over storage in PFS. With MPI-IO, data 
could be requested in a <offset,count> tuple. 

2) Rectangular-Block Access Pattern for Neighbor-Based 
Processing 

 
Fig. 3. Rectangular-Block Access Pattern for Neighbor-Based Processing 
Neighbor-Based Processing refers to regionally dependent 

algorithms, where the calculation of each pixel depends on its 
corresponding close neighbors (rectangular window in figure 
3(a)). This category of algorithms such as the convolution 
filter and image resampling perform a rectangular-block 
access pattern. This is a non-contiguous I/O pattern commonly 
seen in RS algorithms, but one that is not well supported by 
normal PFS. As drawn in figure 3(b), each processor requests 
one rectangular shaped data block at one time. In a file view, 
these data correspond to many small non-contiguous data 
fragments scattered throughout the file with same stride and 
size. These data are accessed by repeated read/write operations, 
each of which requests a small fragment of contiguous data. 
With MPI derived datatypes, this I/O pattern could be 
reflected uniformly but it has miserable performance.  

The extreme case would be the columns access pattern, 

Y

Band Dimension
(Spectral Direction)

X

B
�	��
 Dimension
(���� Direction)

�	�� Dimension
(���	��	�� Direction)

��� 
Metadata

Image Info Map Info Projection Para
(differ with projections)

Satellite & Sensor Para
(differ with sensors)

UTM
Ellipsoid
Datum
UTM Zone
…..

Transvers 
Mercator

Ellipsoid
Datum
Central meridian
Coordinating orgin
……

ETM+

Sensor type
Orbit
Semi-major
Semi-minor
Orbital Inclination
…..

Radarsat

Sensor type
Orbit
Wave length
Range Resolution 
Azimuth Resolution
……

Image

Memory

File

Read/Write

(b) Rectangular-Block Access Pattern 

�1

MPI_IO <offset,count=2>

�0

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Input

Output

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

�2 �3

Read/Write

r43 r44r33 r34

r43 r44

r52r51 r53 r54 Read/Write

r53 r54

r33 r34 r53 r54

���	�� �	��

���
���	�	
��

����
������

����
������

����
������

r43 r44

r53 r54

r33 r34

(a) Neighbor-Based Processing(Regional dependent)



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 5 

where each processor requests one column and a single I/O 
operation only accesses one pixel. As a result, the bytes used 
to describe data fragments in <offset,count> tuples would 
even exceed the actual requested image data. 

3) Cross-File Access Pattern for Band-Related Processing 

 
Fig. 4. Cross-File Access Pattern for Band-Related Processing 

Band-Related Processing refers to cases where the 
computation of a single pixel requires its context across 
several image band files. These algorithms, such as fusion and 
NDVI, perform a cross-file data access pattern (figure 5(a)). 
Each processer rquests small consecutive or rectangular 
shaped data from multiple band images simultaneously in a 
single logical data accessing. In the file view, these data are 
small non-contiguous fragments scattered across hundreds of 
image files in the same manner. This is generally translated 
into large numbers of read/write operations, each of which 
only request a small fragment of contiguous data located in a 
single image file. As a result, implementing this kind of data 
access pattern ends up being very cumbersome and 
time-consuming.   

4) Irregular Access Pattern for Irregular Processing 

 
Fig. 5. Irregular Access Pattern for Irregular Processing 

Irregular Processing features algorithms whose single 
computation depends on the irregularly shaped data or even 
the entire image. Examples of this category are FFT, image 
warping and information extraction. These algorithms perform 
irregular access patterns including the diagonal and polygon 
access patterns. Each processor requests an irregularly shaped 
data region. For diagonal access patterns, the accessed data are 
located along the diagonal direction in the image view, while  

polygon access patterns request irregular polygon-shaped data 
regions in the image view. While, the polygon access pattern 
request a polygon shaped irregular data region in image. In a 
file view, these data are small non-contiguous data fragments 
with different size and they step over different strides. In some 
circumstances, parameters like offset, stride, and size cannot 
be determined in advance. The difficulties lie not only in the 
poor I/O performance but also the description of the irregular 
data regions.  

V. DESIGN AND IMPLEMENTATION OF HPGFS 
We propose HPGFS, a RS data object based file system for 
remote sensing applications. It offers a more efficient and 
easy-to-use solution from the server side that natively supports 
the direct distributed storage and concurrent accessing of 
massive RS data objects in different irregular I/O patterns. 
Based on the analysis of RS data along with the I/O 
characteristics of RS applications (Section IV), we design and 
implement HPGFS with an OrangeFS prototype. In HPGFS, a 
logical distributed RS data object model is adopted to organize 
the RS image datasets with complex data structure (Section 
V-A). Meanwhile, it also provides I/O interfaces with RS data 
operation semantics  (Section V-C), together with application 
aware data layout policies (Section V-B) associated with 
expected data access patterns of applications.  

The OrangeFS file system is an advanced branch of PVFS. 
It provides interfaces for data layout policy customization and 
distributed, distributed metadata management, as well as the 
native list-I/O interfaces for non-contiguous I/O description. 
Therefore, we adopt this research oriented open source 
platform as a desired parallel file system prototype for HPGFS 
implementation. 

 
Fig. 6.  Architecture of HPGFS Implementation 

As is depicted in Fig.6, the HPGFS is implemented in a 
cluster scenario where each node is equipped with a 
direct-attached storage. This storage could be a single disk or a 
local disk array with different RAID levels. By virtue of 
OrangeFS, nodes in a cluster, with direct-attached storage, act 
as I/O servers and are converged as a single file system mirror 
for remote sensing image datasets. In OrangeFS, the nodes 
may serve three different roles including I/O server, metadata 
server, and computing node (client). Actually, a single node 

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44
Image

Memory

File

Read/Write

(b) Cross-File Access Pattern 

MPI_IO <offset,count>

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Output

Read/Write

r43 r44r33 r34

�1�0

�2 �3

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

�����	 ���	

���
���
�	����

����
������

����
������

����
������

r43 r44r33 r34

(a) Band-Related Processing(Band dependent)

Input

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

Input

Input

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r43 r44r33 r34 r43 r44r33 r34

r43 r44r33 r34

r43 r44r33 r34

r43 r44r33 r34

r43 r44r33 r34

r43 r44r33 r34

����
��	��

����
��	��

����
��	��

Read/Write
Read/Write

Image

Memory

File

Read/Write

(b) Diagnal Access Pattern 

�1

MPI_IO <offset,count=1>

�0

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Input

Output

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

�2

�3 Read/Write

r33 r44

r52r51 r53 r54

Read/Write

�����	 ���	��

���
�������
�

����
������

����
������

����
������

r22r11

r33 r44

(a) Irregular Processing(Global or Irregular Dependent)

�4

�5 Read/Write

r11 r22

r11 r22 r33 r33

Image

Memory

File

Read/Write

(c) Polygon Access Pattern 

MPI_IO <offset,count>

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

Read/Write

r31 r32

r52r51 r53 r54

Read/Write

�����	

���
�������
�

����
������

����
������

����
������

r22 r31r33

r42

r42r22 r33

r22 r31 r32 r33 r42

r32

�����	

���	
	�	�
������

���������� ���������� ����������

Metadata

Geodata

���������� ���������� ����������

���	
	�	�
������

Metadata

Geodata

���	
	�	�
������

Metadata

Geodata

���������
��
�

���������
��
�

���������
��
�

���������
��
�

Direct-Attached 
Storage

Direct-Attached 
Storage

Direct-Attached 
Storage

Direct-Attached 
Storage

Direct-Attached 
Storage

Direct-Attached 
Storage

Distributed Storage of RS Data Objects

Geodata/Metadata Access Image Data Access

Network

Clients

Servers

��	
�
���
���
���

Image Brick Geodata

��	
�
���
���
���



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 6 

could perform all tree roles at the same time. Instead of 
introducing a new node role “Geodata Server,” we extend the 
metadata server of OrangeFS to support the management of 
the geographical metadata of RS data object. This is because 
the introduction of a centralized “Geodata Server” would 
inevitably ruin scalability and give rise to single point of 
failure (SPOF). 
The issues mentions in Section 3.1 are resolved here by 
modeling the RS image data set (consisting of 
multi-dimensional images and geographical metadata together 
with data operations) as a logically distributed RS data object, 
where the light-weight Berkely DB in distributed metadata 
servers is adopted for storing and managing the complex 
structured geographical metadata in a key-value fashion. This 
method allows simple retrieval of the data items of the 
geographical metadata.  

  We address the problem discussed in Section 3.2 by 
designing and implementing a set of RS data object oriented 
I/O interfaces. For a more intuitive and simple description of 
the RS data access patterns semantics (section IV-B), we 
provide some RS data structures to reflect the requested data 
region instead of uniformed <offset,length> tuples. These data 
structures include RSBlock, RSRect, RSDiagonal.  
Accordingly, the required data consist of many small 
non-contiguous data slices or even reside across band files 
could be easily requested in a one single logical I/O. 

We tackle the I/O performance issue in Section 3.3 by 
proposing application aware data layout policies to support the 
specific data access patterns of RS applications from server 
side. Except for the data striping method with fixed or variable 
stripe size, we adopt a RS brick based data slicing policy, 
where the sliced data bricks are also multi-dimensional data 
scattered non-contiguously in file. With the awareness of the 
expected data access pattern of RS applications, multiple 
choice of space-filling curves like Z-order curve and Hibert 
curve are offered for access-pattern aware image data 
organization. Moreover, except for the standard round-robin 
policy, we have implemented different data distribution 
policies by extending policy-customizing interfaces, in order 
to create data layouts that are consistent with the desired I/O 
patterns. 

A. Organization and Management of RS Data Object 
1) Logical Model of Distributed RS Data Object 
In the HPGFS parallel I/O system, we adopt a logical 

distributed RS data object model to describe the multi-band 
RS image and geographical metadata, as well as relevant basic 
RS data operations.  

 
Fig. 7. Logical Model of Distributed RS Data Object	  

As is depicted in figure 7, the data items of geographical 
metadata are normalized in a uniform fashion and stored in the 
distributed metadata server using a <key,value> pairs, while 
the 3-D multi-band images are sliced and mapped into a 1-D 
data array using space-filling curves. The arranged data array 
is then scattered over a number of I/O servers with application 
aware data layout policies. A proper data layout consistent 
with expected RS data access pattern is then created for 
exploiting data locality and high throughput parallel I/O. 
Overall, the basic RS data operation includes some metadata 
inquiry interfaces and geographical operations like projection 
reform and resampling. 

2) Management of Geographical Metadata 
As showed in figure 2, the geographical data of a RS data 

object involves some metadata with variable data items and 
data structure. However, the metadata server has difficulty in 
supporting tree structured metadata in a simple <key,value> 
manner. Accordingly, we adopt a normalized XML string to 
express the projection parameters and satellite & sensor 
parameters with variable data items and tree style hierarchical 
structures. For a standard expression, we adopt a WKT 
(Well-known Text) string (projStr in figure 8) from the OGC 
(Open Geospatial Consortium) to normalize the projection 
parameters. The organization of the geographical metadata is 
shown in table I. 

 

���
��������� ����

������
����
������

����
������

��������
	�
�����������
��

Geographical Metadata
   Image Info
   Map Info
   Projection Para
   Satellite & Sensor Info
   ….

Image Data
   Image Band 1
   Image Band 2
   Image Band 3
   ….
   Image Band n

Basic Operations
   getGeoMetadata()
   setGeoMetadata()
   projectionReform()
   resampling()
   …..

Geographical�Metadata

Image 
Info

Map Info Projection Para
(differ with projections)

Satellite & Sensor Para
(differ with sensors)

UTM

Ellipsoid
Datum
UTM Zone
…..

Transvers Mercator

Ellipsoid
Datum
Central meridian
Coordinating orgin
……

ETM+
Sensor type
Orbit
Semi-major
Semi-minor
Orbital 
Inclination
…..

Radarsat
Sensor type
Orbit
Wave length
Range 
Resolution 
Azimuth
……

�
��	����
�
��
�

Metadata

Geodata

����
������

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

r16

r26

r36

r46

r56
r61 r62 r63 r64 r65 r66

r17

r27

r37

r47

r57
r67

r71 r72 r73 r74 r75 r76 r67

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

r16

r26

r36

r46

r56
r61 r62 r63 r64 r65 r66

r17

r27

r37

r47

r57
r67

r71 r72 r73 r74 r75 r76 r67

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

r16

r26

r36

r46

r56
r61 r62 r63 r64 r65 r66

r17

r27

r37

r47

r57
r67

r71 r72 r73 r74 r75 r76 r67

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

r16

r26

r36

r46

r56
r61 r62 r63 r64 r65 r66

r17

r27

r37

r47

r57
r67

r71 r72 r73 r74 r75 r76 r67



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 7 

 
 OrangeFS provides metadata accessing interfaces 

including PVFS_sys_setattr() and PVFS_sys_getattr(). As 
portrayed in figure 8, by virtue of OrangeFS meatadata 
operation interfaces, we normalize the geographical metadata 
into <key,value> pairs, and store them into the Berkeley DB. 
In this way, these metadata can be easily accessed and 
inquired.  

 
Fig. 8. Storing Geographical Metadata into Metadata Server	  

B. Application Aware Data Layout Polices for RS Data 
  

 
Fig. 9.  Building Data Layout with Application Aware Policies 

We provided efficient support of the specific data patterns 
performed by a variety of remote sensing applications by 
proposing a set of application. These polices could create a 
desirable RS data layout over I/O servers for some expected 
data access patterns. The construction of the RS data layout 
with application aware policies shown in figure 9 could also 
be described as follows: 

--Firstly, divide the entire 3-D multi-band RS images into 
small data fragment with brick-based 2-D data slicing method.  

--Secondly, arrange the sliced data bricks in a 2-D plane 
into an ordered 1-D data brick array, and also map the 3-D 
brick to a 1-D data array by space-filling curves. These 
space-filling curves are appropriately chosen according to the 
requested RS data access patterns. 

--Finally, scatter the stream of arranged image data with 
lower dimensionalities across multiple I/O servers with 
different data distribution methods. 
In this way, HPGFS could natively create an efficient RS data 
layout over I/O servers that is suitable for many desired I/O 
patterns. 
    1) Brick-Based Data Slicing Method 
Taking advantage of the regular geometric characteristic of RS 
image data, the RS applications normally divide the image 
with different data partition methods that exploit parallelism, 
since data partitions like line, row or diagonal partition could 
be created by rearranging the brick-based 2-D partition, where 
a data brick is a 3-D cubic data fragment with multiple bands 
that would normally be accessed together by remote sensing 
algorithms in one logical I/O. We considered the access 
patterns of RS applications by adopting a brick-based RS 
image partition (figure 9) as a basic data partition method in 
this paper. The brick-based 2-D partition is essentially a 
row-col division where all the multi-band images are first 
divided in a row direction, followed by division in column 
direction. In contrast to the data stripes in normal PFS, the 
most distinguishing thing is that the data bricks desired by RS 

//Set Projection Parameters
projStr = "PROJCS["Transverse_Mercator",GEOGCS["WGS84", 
                DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563, 
                  AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
                 PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433], 
                  AUTHORITY["EPSG","4326"]],
                 PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],
                 PARAMETER["central_meridian",117],PARAMETER["scale_factor",1],
                 PARAMETER["false_easting",500000],PARAMETER["false_northing",0],
                 UNIT["metre",1,AUTHORITY["EPSG","9001"]]]
GeoPFS_rsdata_handle  fd;
string  key=“ProjStr”;

GeoPFS_setGeoMeta (fd, key, ProjStr){
      key.buffer =key;
      key.buffer_sz = strlen(projectionInfo) + 1;
      val.buffer = projStr;
      val.buffer_sz = strlen(projStr) + 1;

      ret = PVFS_sys_setattr(resp_create.ref, &credentials, &key, &val, 0, NULL);

}

UL_X,UL_Y,
UL_Lantitude,
UL_Longtitude,
ProjectionPara,
SatellitePara,
SensorPara
....

Geo-Metadata

PVFS_sys_getattr()

PVFS_sys_setattr()

(Key , Value)
(UL_X , 306916.5)

Berkeley 
DB

Metadata Server

r43 r44

r34r33

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

r16

r26

r36

r46

r56
r61 r62 r63 r64 r65 r66

r17

r27

r37

r47

r57
r67

r71 r72 r73 r74 r75 r76 r67

r18

r28

r38

r48

r58
r68

r78
r81 r82 r83 r84 r85 r86 r87 r88

1 2

5 6

3 4

7 8

11 12

13 14 15 16

9 10

������������������
with Space-Filling Curves

3-� ���


Brick-Based
�� ���� ���������

(Access-Pattern Awared)

6

4

8

12

1615

11

7

32

6

10

1413

1

5

9

13 14 10 9 5 61 2 4 8 12 1615117 3

13

r43 r44

r34r33

r43 r44

r34r33

3-� ���


r43 r44

r34r33

r43 r44

r34r33

r43 r44

r34r33

r43 r44r34r33r43 r44r34r33r43 r44r34r33

14 10 9 5 1 2 6 7 3 4 8 12 11 15 16

Arranging Bricks
(Example:Hilbert Curve)

Data Organizing 
inside Bricks

(Example:Z-order Curve)

������������	�����
 (By Bricks)

����
������

����
������

����
������

����
������

Brick Array

Byte Array

Pixel Array

TABLE I 
DATA STRUCTURE OF GEOGRAPHICAL METADATA) 

Data Items KeyWord Data Type 

 
ImageInfo 

ImageLine integer 
ImageCol integer 
ImageType integer 
ImageBands integer 
ImageDataOrder string 
Compression string 

SatSensorPara SatSensorStr String 
(xml) 

ProjectionPara ProjStr String 
(WKT) 

MapInfo 

ULLatitude   string 
ULLongitude string 
LRLatitude   string 
LRLongitude string 
CenterPointLat  string 
CenterPointLon string 
XResolution decimal 
YResolution decimal 
ULXCoordinate decimal 
URXCoordinate decimal 
LLXCoordinate decimal 
LRXCoordinate decimal 
Units string 

StatInfo HistGram string 
LastModified date 

 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 8 

applications are non-contiguous data scattered throughout the 
file with fixed stride and size. 

2) Access-Pattern Aware Data Layout with Space-Filling 
Curves 

  

 
Fig. 10. Different Space-Filling Curves for Different Access Patterns 

We provide proper support for the different RS data access 
patterns of the applications by employing different choices of 
space-filling curves for optimal data organization, like the 
Hilbert curve [37][38] and Z-order curve [39]. Firstly, in the 
brick arranging stage, many sliced data bricks are organized 
into an ordered array of data bricks with Hibert space-filling 
curve as well as modified Z-order curves. The next step is data 
arranging inside bricks, where the pixels inside each of the 
3-D data bricks are mapped into a 1-D array of pixels with 
Z-order curve. Finally, all the data located in the entire 
multi-band image are arranged into a byte array ready for 
distribution over storage. 

For brick arranging, different 2-dimension space-filling 
curves shown in figure 10 are adopted for creating the brick 
layout with the prior knowledge of the data access patterns. 

The Z-Order is provided to organize the data bricks for the 
consecutive-lines access pattern. The data bricks located along 
the line direction would be arranged contiguously. These data, 
which are normally non-contiguous in a file view, would 
normally be accessed together in one logical I/O by some 
pixel-based processing featured applications. 

Vertical Z-order Curve is adopted for the columns access 
pattern of RS application. This kind of space-filling curve is a 
modified 1-order curve, which could be constructed by 
rotating the normal Z-order curve counterclockwise by 90 
degrees. With this curve, a brick layout that bricks located 
along same column direction would be ordered nearby. As a 
result, this brick layout will greatly facilitate the column 
access pattern, since the request non-contiguous bricks in one 
column are put in a contiguous layout that could be accessed 
in a single I/O. 

The Diagonal Curve is provided for the diagonal irregular 
data access pattern. The diagonal curve is a non-recursive 
2-dimensional curve. The data bricks located in a diagonal in 
the image space would be arranged as neighbors. Then, the 
non-contiguous data bricks in the diagonal could be accessed 
by applications with a single I/O for the contiguous brick 
layout created by curve. 
The Hilbert Curve (k-Order) is used for the rectangular-block 
access pattern. Given the RS images that slices into m*n 
bricks, a k-order Hilbert curve should be used for brick 
mapping, where k equals to the mine (log2

n,log2
m). Benefiting 

from the excellent data clustering of the Hilbert curve, the 
neighbor brick located in both the line and column directions 
in the image space would be ordered contiguously in the 
arranged brick array.  This brick layout is preferred by the 
applications performing rectangular-block access pattern that 
always request close neighbor in a single I/O. 
   When the sliced data bricks of multi-band images are 
mapped as a 1-D brick array, these data bricks would be 
scattered across I/O servers. For a consecutive-line access 
pattern, rearranged data bricks with Z-order curve would be 
then striped over I/O servers in a round-robin manner with a 
stripe size the length of a single image line. Then, the data 
bricks in the same image line would  reside together for a 
better data locality. For a columns access pattern, the 
rearranged data bricks with Vertical Z-order curve would be 
then striped in a round-robin manner with a stripe size of one 
image column. Thus,  the  data  bricks  would be located 
together in  one  column so  that  computing  nodes  could 
simulta-neously and efficiently request their desired column of 
bricks in one single I/O. Similarly, the data bricks rearranged 
with the Hilbert curve should be distributed with a stripe size 
of bricks in order for the neighbor bricks to reside together. In 
a diagonal access pattern, the data bricks rearranged with the 
Hilbert curve should be distributed with a variable strip size.  

Overall, the 3-D data bricks scattered to I/O servers should 
be mapped into a 1-D byte/pixel array in order to reside into 
the “dfile” data file in I/O servers. As depicted in figure 9, the 
pixels in each image plane of the 3-D brick are mapped into a 
pixel array with a 2-D Z-order curve. Then the pixel arrays of 
different image bands are arranged with band order. In this 
way, the same regions of different image bands are organized 
together as contiguous data. This kind of data layout would 
greatly benefit the band-related data access pattern, since the 
request data window across multiple band files could be laid 
out contiguously and be accessed in one single I/O operation.  

3) Implementation of Data Layout Policies 
OrangeFS as a highly configurable parallel file system that 

provides a set of PINT_dist_method interface for data layout 
customization. The main functional interfaces of the 
PINT_dist_method include logical_to_physical_offset, 
physical_to_logical_offset, and next_mapped_offset. With 
logical_to_physical_offset interface, we could define the 
spatial position mapping relationship from a multi-band image 
space to a physical datafile space in a certain I/O server, while 
logical_to_physical_offset could be used for define an inverse 
mapping of physical_to_logical_offset. In HPGFS, we defined 
four data layout methods including the line_brick_method for 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

13 14 10 9 5 1 2 6 7 3 4 8 12 11 15 16 13 9 14 5 10 15 1 6 11 16 2 7 12 3 8 4

���	�������������	�����
(Consecutive-Line Access Pattern)


����������	�������������	�����
(������ Access Pattern)

��������������
(�
�	���� Access Pattern)

��	�����������������
(������	��������� Access Pattern)

1,2,3,
4,9,10,11

,12

5,6,7,8
13,14,
15,16

1,5,9,13,
3,7,11,15

2,6,10,14,
4,8,12,16

9,10,13,14
,3,4,7,8,

1,2,5,6,
12,11,15,

16

13,9,14,1,6,
11,16,3,8,4

5,10,15,
2,7,12

15

1 2

5 6

3 4

7 8

11 12

13 14 16

9 10

15

1 2

5 6

3 4

7 8

11 12

13 14 16

9 10

15

1 2

5 6

3 4

7 8

11 12

13 14 16

9 10

15

1 2

5 6

3 4

7 8

11 12

13 14 16

9 10



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 9 

consecutive-lines access patterns, and the col_brick_method 
for columns access pattern, rect_brick_method for 
rectangular-block and band-related access patterns, as well as 
the diagonal_brick_method for diagonal irregular access 
patterns. 

C. I/O Interfaces with The Semantics of RS Access Patterns 
We facilitated the specific RS data access patterns of remote 

sensing applications by proposing a set of I/O interfaces with 
the semantics of these I/O patterns.  
 Enabled by generic RS data structures, the data region 
requested by different RS data access patterns that perform 
non-contiguous, cross-file or even irregular I/O pattern could 
be well reflected. These generic data structures offer a more 
intuitive and simpler method than that provided by a simple 
uniformed <offset,length> tuple.  

VI. EXPERIMENTS AND DISCUSSION 
HPGFS implemented with OrangeFS have successfully 

applied to the Parallel Image Processing System for remote 
sensing (PIPS) which works on top on MPI-enabled clusters. 
Lots of remote sensing applications in PIPS are benefiting 
from the RS I/O interfaces and application aware storage data 
layouts provided by HPGFS. For performance analysis, we 
would conduct two groups of experiments. Where one is the 
performance comparative experiment of different data access 
pattern conducted respectively on HPGFS and OrangeFS. The 
other one is the performance experiment on several remote 
sensing applications with different RS data access patterns on 
HPGFS. These algorithms were implemented on a big bj-1 image data with size of 
483430×19058.   

The performance comparative experiments were conducted 
on a cluster environment that equipment with 12 nodes. These 
computing nodes are connected by RDMA protocol supported 
Infiniband network with a bandwidth of 20 gigabyte. Each 
node is a blade server with dual Intel(R) Quad core CPU (3.0 
GHz) and 8GB memory. The operating system was Cent 
OS5.0, the C++ compiler was the Intel C/C++ Compiler with 
O3 optimizing level, and the MPI implementation was Intel 
MPI. 

A. Comparative Experiment on OrangeFS and HPGFS 
The performance comparison experiment was carried out on 

OrangeFS and HPGFS. We tested different data access 
patterns of RS applications by adopting a popular, we adopt a 
popular I/O benchmark tool IOR [38], which is capable of 
using MPI_IO interfaces.  The downside of IOR is that it is 
quite limited in its capabilities, only utilizing the sequential 
and strided I/O manners. Thus, we improved the IOR source 
code by integrating RS I/O interfaces of HPGFS, so as to meet 
the irregular I/O pattern requirements of RS applications.  

The performance of several different parallel data accessing 
patterns, including rectangular-block (RECT), columns (COL), 
and the normal random (RANDOM) access patterns were 
tested on both Orange FS and HPGFS. For experiment on 
Orange FS, IOR utilized the MPI_IO to implement these I/O 
patterns, while for HPGFS, IOR utilized the RS I/O interfaces 

provided natively by HPGFS. The comparative performance 
curves are also illustrated in Figure 11 and 12, where the total 
requested data amount adds up to about 512 gigabytes. 

Clients

1 2 4 8 16

R
ea

d 
M

B
/s

ec

200

400

600

800

1000

1200

1400

1600

1800

2000

OrangeFS_random
HPGFS_random
OrangeFS_block 
HPGFS_block
OrangeFS_col
HPGFS_col

 
Fig. 11  Parallel Read Performance of OrangeFS and HPGFS 

(I/O patterns: random, rectangular-bock, col) 

Clients

1 2 4 8 16

W
rit

e 
M

B
/s

ec

0

200

400

600

800

1000

1200

OrangeFS-random
HPGFS_random
OrangeFS_block
HPGFS_block
OrangeFS_col
HPGFS_col

 
Fig. 12 Parallel Write Performance of OrangeFS and HPGFS 

(I/O patterns: random, rectangular-bock, col) 
 From the experimental results demonstrated in figure 11 

and 12, we could tell that Orange FS had an excellent 
performance with random data access patterns, as its read 
performance scaled well with increasing computing nodes 
(clients). In contrast, when implementing rectangular-block 
(RECT) and columns (COL) access pattern, the performance 
of OrangeFS is relatively poor. With the number s of clients 
increasing to more than 4, the performance even goes down. 
In a word, OrangeFS shows its poor scalability for the RS data 
accessing patterns which performance non-contiguous I/O. 
The reason for that would probably be the mismatch between 
the required data access patterns and the native I/O interfaces 
together with the data layout of OrangeFS. This kind of 
mismatch increases actual I/O operations and also brings in 
more I/O penalty for exchanging data among I/O servers. 

Compared to OrangeFS, HPGFS have got an apparent 
performance improvement for RECT and COL data access 
patterns. The parallel read performance has improved by 6% 
to 18%, while the parallel write performance has improved by 
10% to 20%. With increasing scale of clients, HPGFS shows a 
better performance scalability. The reason for it goes with the 
RS I/O interfaces properly reflect the I/O pattern natively in 
file system as well as the appropriate data layout created by 
application aware data layout polices of HPGFS. The data 
layout consistent with desired I/O patterns gives rise to a 
better data locality of the file system. Benefiting from the 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 10 

optimized data layout, the RS data requested by each 
computing node of these applications can be then accessed 
locally through one single direct I/O locally. However, the 
performance of the random data access pattern is generally 
poor.  We could conclude that OrangeFS with striping method 
would more desirable for a random data access pattern.  

B. Comparative Experiment on RS Algorithms 
Three remote sensing image processing algorithms with 

different data access patterns are chosen for a comparative 
performance experiment on both HPGFS and Orange FS. 
These chosen algorithms are MTF, Band Registration (BR), 
and NDVI. This experiment analyzes both the total 
performance and the I/O and computation time penalties 
during the processing.. 

1) MTF Correction 
The MTF algorithm is also an example of a rectangular 

block data access pattern. Each computation of MTF will 
require a data window with a fixed round size. This means that 
for each computation, the algorithm has to request a whole 
rectangular data block, these are scattered throughout the 
whole image file. The performance of MTF accelerated with 
HPGFS (MTF_HPGFS) and Orange FS(MTF) are 
demonstrated in Figure 13. 
 The total runtime and I/O curves illustrated in Fig. 13 tell us 
that the total runtimes of both MTF and MTF_HPGFS 
decrease linearly with increasing computing nodes (cores). An 
increase in node scale from 1processor(4 cores) to 7 
processors (28 cores), gives an I/O time occupation of the total 
runtime of MTF on OrangeFS would be from 17 and 50 
percent. By contrast, the I/O time occupation of MTF_HPGFS 
would be from 13% to 43%. By comparison with the 
OrangeFS accelerated MTF algorithm, an improvement of 
about 28 percent in I/O performance from HPGFS accelerated 
MTF_HPGFS would lead to a reduction in the total runtime of 
19 percent (28 cores).  

The experimental results show that the rectangular-block 
shaped RS data with multiple bands could be requested 
directly and locally in one single I/O, while in the normal 
parallel I/O system, this might require many I/O operations 
that each access a small fragment of continuous data. 
Therefore, I/O overhead improvements would be expected 
from data layout optimization. 

Nodes(Cores)

1(4) 3(12) 5(20) 7(28)

Ti
m
e(
se
c)

0

100

200

300

400

500

600

MTF
MTF_HPGFS
IO(MTF)
IO(MTF_HPGFS)

 
Fig. 13 The Runtime and I/O Time of MTF 

 2) Band Registration 
The band registration algorithm always performs a 

rectangular-block data access pattern across two image files. 
Therefore, to some extent, band registration is also a simple 

example of a band-related data access pattern. Each 
computation of this algorithm will conduct a search operation 
for finding a matched pixel pair in a rectangular window of 
both two image bands. This means that for each computation, 
the algorithm must simultaneously  request two rectangular 
data blocks, which are scattered throughout two image files. 
The performance of band registration accelerated with HPGFS 
(BR_HPGFS) and Orange FS(BR) is demonstrated Figure 14. 

Nodes(Cores)

1(4) 3(12) 5(20) 7(28)

Ti
m
e(
se
c)

0

200

400

600

800

1000

1200

1400

1600

BR
BR_HPGFS
IO(BR)
IO(BR_HPGFS)

 
Fig. 14 The Runtime and I/O Time of Band Registration 

 The total runtime and I/O penalty curves of band 
registration algorithm illustrated in Fig. 14 reveal that the total 
runtimes of both MTF and MTF_HPGFS decrease linearly 
with increasing computing nodes (cores). These two 
algorithms both show excellent scalabilities. Since the BR 
algorithm also has relatively high degree of algorithm 
complexity, the occupation of I/O time in the total runtime is 
low. When the processor employed for implementation 
increases, the I/O time occupation of the BR algorithm on 
OrangeFS would be from 3%(1processor(4 cores)) to 20% (7 
processor (28 cores)). By contrast, the I/O time occupation of 
BR_HPGFS algorithm on HPGFS would be from 2.5% to 
15%. In other words, when compared with OrangeFS 
accelerated BR algorithm, the improvement in I/O 
performance of HPGFS accelerated BR_HPGFS would give 
rise to a reduction in the total runtime by 9.7% (28 cores). 

3) NDVI 
 The NDVI algorithm conducts a serial of arithmetic 
operations among multiple image bands inside a remote 
sensing image. Normally, we would have at least 3 image 
bands involved in the computation. During each computation, 
the same data window from multiple image band files should 
be requested simultaneously, so NDVI is a typical example of 
a cross-file data access pattern. The performance of MTF 
accelerated with HPGFS (NDVI_HPGFS) and OrangeFS 
(NDVI) is demonstrated in Figure 15. 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 11 

Nodes(Cores)

1(4) 3(12) 5(20) 7(28)

Ti
m

e(
se

c)

0

50

100

150

200

250

NDVI
NDVI_HPGFS
IO(NDVI)
IO(NDVI_HPGFS) 

 
Fig. 15  The Runtime and I/O Time of Band Registration 

 The total runtime and I/O curves shown in Fig. 15 indicate 
that both algorithms have excellent scalability. Since the 
NDVI algorithm has relatively low degree of algorithm 
complexity, the occupation of I/O time in the total runtime is 
relatively high. When the processor employed for 
implementing increases, the I/O time occupation of BR 
algorithm on OrangeFS ranges from  92%(1processor(4 cores)) 
to 99% (7 processor (28 cores)). By contrast, the I/O time 
occupation of NDVI_HPGFS algorithm on HPGFS ranges 
from 90% to 98%. In other words, when compared to the 
OrangeFS accelerated NDVI algorithm, about a 32.6% 
improvement in I/O performance with HPGFS accelerated 
NDVI _HPGFS give rise to a reduction in  the  total runtime 
of 32% (28 cores). From this experiment, we could say that for 
some algorithms like NDVI with low algorithm complexity 
but intensive I/O, the majority of the tie is spent in data 
accessing with relatively high latency. Therefore, in this 
situation, effective parallel I/O with high throughput would be 
paramount. 

VII. CONCLUSION 
Remote sensing applications are normally featured with 

intensive concurrent non-contiguous or even irregular I/O, 
which give rise to the  heavy I/O burden challenges. Even now, 
the most popular PFSs continue to suffer from low 
performance of RS data accessing. The main reason for this is 
the lack of I/O interfaces and optimized storage data layout 
consistent with RS data access patterns, as well as the 
capability of managing multi-dimensional RS data structures.  

This study presents HPGFS implemented with OrangeFS as 
a way to provide: 1) I/O interfaces oriented to RS data 
accessing patterns; 2) application aware data layout policies , 
and 3) direct management of multi-band RS data objects with 
geographical metadata. This method offers a more efficient 
and easier to use solution from the server side for native 
support of directly distributed storage and concurrent 
accessing of massive RS data objects in different irregular I/O 
patterns. Its reliance on the application aware data layout 
policies allows HPGFS to provide efficient data organization 
of multi-dimensional RS data optimized distributed data 
layouts for multi-dimensional RS data that are consistent with 
specific I/O patterns of RS applications. In this way, a more 
desirable data locality would be exploited for improved 
parallel I/O performance.  

The experimental results show that HPGFS has a better 
performance than OrangeFS and scales well when 
implementing some specific RS data access patterns of RS 
applications. A 20% to 30% I/O performance improvement 
was obtained for HPGFS compared to normal PFS, which 
would give  rise to a total performance improvement of nearly 
10% to 20%. We conclude that the RS data object based 
parallel I/O system HPGFS provided in this paper is efficient 
for managing remote sensing image data. 

没有 
 

REFERENCES 
[1] Guo H, Fan X, Wang C. A digital earth prototype system: DEPS/CAS[J]. 

International Journal of Digital Earth,  2(1): 3-15, 2009. 
[2] Huang, Bormin, and Antonio J. Plaza. "High-performance computing in 

remote sensing." Society of Photo-Optical Instrumentation Engineers 
(SPIE) Conf. Series. Vol. 8183. 2011. 

[3] Liu, Y., B. Chen, et al. (2011). Applying GPU and POSIX thread 
technologies in massive remote sensing image data processing, IEEE. 

[4] The Global Rain Forest Mapping project - A review A. Rosenqvist, M. 
Shimada, B. Chapman, A. Freeman, G. De Grandi, S. Saatchi, Y. Rauste  
Int’l J. of Remote Sensing  Vol. 21, Iss. 6-7, 2000 . 

[5] Xu R, Araya-Polo M, Chapman B. Filesystem Aware Scalable I/O 
Framework for Data-Intensive Parallel Applications[C]. Proceedings of 
the 2013 IEEE 27th International Symposium on Parallel and 
Distributed Processing Workshops and PhD Forum. IEEE Computer 
Society, 2013: 2007-2014. 

[6] Yong Chen; Xian-He Sun; Thakur, R.; Huaiming Song; Hui Jin, 
"Improving Parallel I/O Performance with Data Layout Awareness," 
Cluster Computing (CLUSTER), 2010 IEEE Int’l Conf. on , pp.302-311, 
Sept. 2010. 

[7] J. M. May, Parallel I/O for High Performance Computing. San Francisco, 
CA, USA: Morgan Kaufmann Publishers Inc., 2001. 

[8] Worringen, Joachim, Jesper Larsson Traff, and Hubert Ritzdorf. "Fast 
parallel non-contiguous file access." Proc. of the 2003 ACM/IEEE Conf. 
on Supercomputing. ACM, 2003. 

[9] Träff J L, Hempel R, Ritzdorf H, et al. Flattening on the fly: Efficient 
handling of MPI derived datatypes[M]//Recent Advances in Parallel 
Virtual Machine and Message Passing Interface. Springer Berlin 
Heidelberg,109-116,1999. 

[10] Song H, Yin Y, Sun X H, et al. A segment-level adaptive data layout 
scheme for improved load balance in parallel file 
systems[C]//Proceedings of the 2011 11th IEEE/ACM International 
Symposium on Cluster, Cloud and Grid Computing. IEEE Computer 
Society, 414-423,2011.. 

[11] Micheal Moore and et al. OrangeFS: Advancing PVFS.FAST Poster 
Session.2011. 

[12] OrangeFS: Orange File System Project. http://www.orangefs.org. 
[13] Thakur, Rajeev, William Gropp, and Ewing Lusk. "On implementing 

MPI-IO portably and with high performance." Proc. of the sixth 
workshop on I/O in parallel and distributed systems. ACM, 23-32,1999. 

[14] Wu J, Wyckoff P, Panda D. Supporting efficient noncontiguous access 
in PVFS over InfiniBand[C].Cluster Computing, 2003. Proceedings. 
2003 IEEE International Conference on. IEEE, 344-351,2003. 

[15] Furht, Borko, and Armando Escalante, eds. Handbook of data intensive 
computing. Springer, 2011 

[16] I. F. Haddad, “PVFS: A Parallel Virtual File System for Linux Clusters,” 
Linux Journal, p. 5, 2000. 

[17] “High-performance Storage Architecture and Scalable Cluster File 
System,” White Paper, December 2007. 

[18] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas Activescale 
Storage Cluster: Delivering Scalable High Bandwidth Storage,” Proc. of 
the 2004 ACM/IEEE Conf. on Supercomputing. Washington, DC, USA: 
IEEE Computer Society, 2004, p. 53. 

[19] Schmuck F B, Haskin R L. GPFS: A Shared-Disk File System for Large 
Computing Clusters[C].FAST. 2: 19, 2002.  

[20] Jain R, Sarkar P, Subhraveti D. Gpfs-snc: An enterprise cluster file 
system for big data[J]. IBM Journal of Research and Development, 
57(3/4): 5: 1-5: 10, 2013.  



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2322362, IEEE Transactions on Parallel and Distributed Systems

 12 

[21] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. Best. 
File-Access Characteristics of Parallel Scientific Workloads. IEEE Tran.  
on Parallel and Distributed Systems, 7(10):1075–1089, 1996. 

[22] Narayan, S.; Chandy, J.A., "I/O characterization on a parallel file 
system," Performance Evaluation of Computer and Telecommunication 
Systems (SPECTS), 2010 Int’l Sym. on , vol., no., pp.133,140, 11-14 
July 2010. 

[23] Thakur, R.; Gropp, W.; Lusk, E., "Data sieving and collective I/O in 
ROMIO," Frontiers of Massively Parallel Computation, 1999. Frontiers 
'99. The Seventh Sym. on the , vol., no., pp.182,189, 21-25 Feb 1999. 

[24] Lu, Yin, et al. "A New Data Sieving Approach for High Performance 
I/O." Future Information Technology, Application, and Service. 
Springer Netherlands, 111-121. 2012. 

[25] R. Thakur and A. Choudhary, “An Extended Two-phase Method for 
Accessing Sections of Out-of-core Arrays,” Sci. Program., vol. 5, no. 4, 
pp. 301–317, 1996. 

[26] P. M. Dickens and R. Thakur. Evaluation of collective I/O 
implementations on parallel architectures. J. of Par. and Dist. Comp., 
61(8):1052–1076, 2001. 

[27] Koller, Ricardo, and Raju Rangaswami. "I/O deduplication: Utilizing 
content similarity to improve I/O performance." ACM Tran. on Storage 
(TOS). vol. 6, no.3 ,pp. 13, September 2010. 

[28] Zhang, Jiaying, and Peter Honeyman. "Replication Control in 
Distributed File Systems." Technical Report, Center for Information 
Technology Integration, University of Michigan, 2004. 

[29] Y. Ma, L. Zhao, and D. Liu. "An asynchronous parallelized and scalable 
image resampling algorithm with parallel I/O." Computational 
Science–ICCS 2009. Springer Berlin Heidelberg, 357-366, 2009. 

[30] Keying Huang, Guoqing Li, Dingsheng Liu, Wenyi Zhang. "A parallel 
file system based on spatial information object." Network and Parallel 
Computing. Springer Berlin Heidelberg, 153-162. 2005. 

[31] Yu, Zhanwu, Zhongmin Li, and Sheng Zheng. "An object-based storage 
model for distributed remote sensing images." Geoinformatics 2006: 
GNSS and Integrated Geospatial Applications. Int’l Society for Optics 
and Photonics, 64180A--64180A. 2006. 

[32] Rafique, M. Mustafa, Ali R. Butt, and Dimitrios S. Nikolopoulos. 
"Dma-based prefetching for I/O-intensive workloads on the cell 
architecture." Proc. of the 5th Conf. on Computing frontiers. ACM, 
23-32, 2008. 

[33] Yanying Wang; Yan Ma; Peng Liu; Dingsheng Liu; Jibo Xie; , "An 
Optimized Image Mosaic Algorithm with Parallel IO and Dynamic 
Grouped Parallel Strategy Based on Minimal Spanning Tree," Grid and 
Cooperative Computing (GCC), 2010 9th International Conference on. 
IEEE, 501-506,2010.  

[34] Lawder, Jonathan K. "Calculation of mappings between one and 
n-dimensional values using the Hilbert space-filling curve." School of 
Computer Science and Information Systems, Birkbeck College, 
University of London, London Research Report BBKCS-00-01 August 
2000. 

[35] Sun X H, Chen Y, Yin Y. Data layout optimization for petascale file 
systems[C]. Proceedings of the 4th Annual Workshop on Petascale Data 
Storage. ACM,11-15, 2009. 

[36] Song H, Jin H, He J, et al. A server-level adaptive data layout strategy 
for parallel file systems[C]. Parallel and Distributed Processing 
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th 
International. IEEE, 2095-2103, 2012. 

[37] Moon, Bongki, et al. "Analysis of the clustering properties of the Hilbert 
space-filling curve." Knowledge and Data Engineering, IEEE Tran.  on 
13.1. 124-141. 2001. 

[38] Lawder, Jonathan. "The application of space-filling curves to the storage 
and retrieval of multi-dimensional data". Diss. Birkbeck College, 2000. 

[39] Shan, Hongzhang, and John Shalf. "Using IOR to Analyze the I/O 
performance for HPC Platforms". 2007. 

[40] F. Zhang, Q. M. Malluhi, T. Elsayed, “ConMR: Concurrent MapReduce 
Programming Model for Large Scale Shared-Data Applications”, 42nd 
International Conference on Parallel Processing (ICPP), Lyon, France, 
October, 2013. 

[41] F. Zhang, J. Cao, K. Hwang, and C. Wu, “Ordinal Optimized Scheduling 
of Scientific Workflows in Elastic Compute Clouds”, Proc. 3rd IEEE 
International Conference on Cloud Computing Technology and Science 
(CloudCom 2011), 9-17, Athens, Greece, 2011 

 
 
 

Prof. Lizhe Wang is a Professor at Institute of Remote 
Sensing & Digital Earth, Chinese Academy of Sciences 
(CAS), Beijing, China and a "ChuTian" Chair Professor at 
School of Computer Science, China University of 
Geosciences, Wuhan, China. Prof. Wang is a Fellow of IET 
and Fellow of BCS. 
 
 
Dr. Yan Ma is an assistant Professor at Institute of Remote 
Sensing & Digital Earth, Chinese Academy of Sciences 
(CAS), Beijing, China. Her research interests include high 
performance geo-computing and parallel remote sensing 
image processing.  
 
 
 
Albert Y. Zomaya is the Chair Professor of High 
Performance Computing & Networking and Australian 
Research Council Professorial Fellow in the School of 
Information Technologies, The University of Sydney. He is 
also the Director of the Centre for Distributed and High 
Performance Computing.  
 
 

 
Prof. Dan Chen is currently a Professor, Head of the 
Department of Network Engineering, and the Director of 
the Scientific Computing lab with School of Computer 
Science, China University of Geosciences, Wuhan, China. 
His research interests include computer-based modelling 
and simulation, high performance computing, and 
neuroinformatics. 
 

 
 

 Dr. Rajiv Ranjan is a Senior Research Scientist, Julius 
Fellow, and Project Leader in the CSIRO Computational 
Informatics, Canberra, where he is working on projects 
related to cloud and service computing. Previously, he 
was a Senior Research Associate (Lecturer level B) in 
the School of Computer Science and Engineering, 
University of New South Wales (UNSW). Dr. Ranjan 

has a PhD (March 2009) in Computer Science and Software Engineering from 
the University of Melbourne. He completed Bachelor of Computer 
Engineering from North Gujarat University, India, in 2002. Dr. Ranjan is 
broadly interested in the emerging areas of cloud, grid, and service computing. 
The main goal of his current research is to advance the fundamental 
understanding and state of the art of provisioning and delivery of application 
services in large, heterogeneous, uncertain, and evolving distributed 
systems(cloud, grids, data center, and web services). Rajiv has 84 (37 journal 
papers, 31 conference papers, 9 book chapters, 7 books) scientific publications, 
approximately 70% of his journal papers and 60% of conference papers have 
been A 
                                                                                                                                     
/A ranked publication, according to the ARC’s Excellence in Research for 
Australia (ERA).  


