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Big Data, a large and complex collection of datasets characterized by four V’s (volume, variety, veracity, and velocity), 
is difficult to deal with using traditional data processing algorithms and models. A proposed dictionary learning 
algorithm, which extends the classical method that uses the K-means and Singular Value Decomposition (K-SVD) 
algorithm by incrementally updating atoms, will ably represent the spatiotemporal remote sensing of Big Data and 
do so both efficiently and sparsely.

B
ig Data is a collection of datasets so large 
and complex that it’s difficult to work with 
using traditional data processing algorithms 
and models. The challenges include data 

acquisition, storage, search, sharing, transfer, analy-
sis, and visualization. Scientists regularly encounter 
limitations due to large datasets in many areas, such 
as geosciences and remote sensing, complex physics 
simulations, and environmental research. In remote 
sensing applications, the size of the dataset grows 
in part because data are increasingly being gathered 
by many different satellite sensors with different 
resolutions and different spectral characters; more 
importantly, the data are with high spatial and tem-
poral resolution.

Big Data is difficult to deal with using 
traditional methods. How to represent a big dataset 
is a fundamental problem in Big Data research, as 
most data processing tasks rely on an appropriate 
data representation. For many tasks, such as 
sampling, reconstruction, compression, retrieval, 
communication, classification, and so on, a sparse 
data representation is preferable. And for remote-
sensing Big Data, sparseness is increasingly important 
for many algorithms such as image segmentation, 
image fusion, change detection, feature extraction, 
and image interpretation. We can sparsely represent 

the data by a basis set, that is, a dictionary. Most 
commonly, we’d use either an analytic dictionary or 
an unanalytic dictionary (see the “Related Work in 
Sparse Representation” sidebar for more details.)

Many recent algorithms for unanalytic diction-
ary learning are iterative batch procedures. They 
access the whole training set at each iteration and 
minimize the cost function under some constraints. 
However, these algorithms can’t deal efficiently with 
very large datasets, or dynamic data changing over 
time. To address these issues, researchers proposed 
the popular Online Dictionary Learning (ODL) 
method.1 Another, competitive method is the Re-
cursive Least Squares Dictionary Learning (RLS-
DL) algorithm.2 Both ODL and RLSDL have the 
ability to train large data sets. ODL and RLSDL, 
in theory, are not dictionary methods specialized to 
a particular (small) training set, however, they may 
encounter some problems while dealing with real 
remote-sensing Big Data. First, ODL and RLSDL 
update all atoms for every new sample, which may 
be unrealistic given the many atoms in a truly big 
dataset; second, the fixed number of atoms in the 
dictionary learning process isn’t very adaptable. For 
the dictionary learning of a big dataset, the process 
should be dynamic given how many atoms there are 
and which atoms need to be updated.
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Here, we propose the Incremental K-SVD  
(IK-SVD) algorithm, which yields dynamic 
dictionaries by sequentially updating dictionary 
atoms one at a time. Furthermore, when the 
number of atoms changes with the training process, 
the dictionary is able to represent spatiotemporal 
remote-sensing Big Data efficiently and sparsely.

Dictionary Learning for Finite 
Training Datasets
Classical dictionary learning techniques for 
sparse representation that consider a data sample 
y ∈ Rh can be described as y = Dα, where D ∈ 
Rh×n is a dictionary with n atoms, and α ∈ Rn 
is the coefficients for the sparse representation. 
We typically consider the case n > h, suggesting 
that the dictionary is redundant. The number 
of nonzero coefficients in the representation is 
denoted as k = ||α||0, where k is expected to be very 

small (see Table 1). Y = Dα implies that the sample 
y can be characterized as a linear combination of a 
few columns from the dictionary D ∈ Rh×n, which 
is also referred as to the set of atoms. Then, the 
problem is

min .
,D

y D k
α

α α= − ≤
2

2

0subject to � (1)

In another expression of the object function 
and constraints, we can also control the error of the 
reconstruction as y D− ≤α σ

2

2 . Usually, there’s a 
group of samples that need to be represented, so it’s 
denoted as Y = {y1, . . . , yr}, and the coefficients set is 
denoted as X = {α1, . . . , αr}, where X ∈ Rn×r. Now, 
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Related Work in Sparse Representation

Earlier research studies on sparse representation focused on 

analytic dictionaries. For example, the Fourier dictionary 

was for smooth functions, whereas the wavelet dictionary was for 

piecewise-smooth functions with point singularities. Recently, 

Emmanuel Candès and his colleagues proposed the idea of 

curvelet transform,1 whereby each curvelet atom associates with 

a specific location, orientation, and scale, which together make 

the atom efficiently represent the smooth curves. The bandelet 

transform2 represents one of the most recent contributions in 

the area of signal-adaptive transforms. Some other adaptive 

analytic dictionaries, such as directionlet transform3 and grou-

plet transform,4 which are also popular in sparse representation 

research areas.

Another large branch is the un-analytic dictionary. Un-

like decompositions based on a predefined analytic base (such 

as wavelet) and its variants, we can also learn an overcomplete 

dictionary without analytic form, which neither have fixed forms of 

atoms nor require orthagonal basis vectors. The basic assumption 

of the learning approach is that we can extract the structure of 

complex incoherent characters directly from the data rather than 

by using a mathematical description. The Method of Optimal Direc-
tions (MOD)5 is one of the earliest unanalytical methods. Another 

un-analytic method is Generalized Principal Component Analy-
sis (GPCA),6 in which represent each sample by only one of the 

subspaces. K-SVD7 focuses on the same sparsification problem as 

the MOD and employs a similar block-relaxation approach. K-SVD’s 

main contribution is its method of updating atoms. Rather than 

using a matrix inversion, K-SVD updates atoms one at a time in a 

simple and efficient process. Nonparametric Bayesian dictionary 

learning,8 another un-analytic method, employs a truncated beta-

Bernoulli process to infer an appropriate dictionary, and it obtains 

significant improvements in image recovery.8
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It’s equal to

min
,D X

Y DX X− +2
2

0λ ,� (3)

where ||⋅||2 is L2 norm, ||⋅||0 is L0 norm, and λ is a 
regularization parameter. It’s well-known that L0 
regularization yields a sparse solution for X, which 
scientists have proved earlier.3 This problem to 
search X is also known as the Lasso or basis pursuit. 
To prevent the dictionary D from having arbitrarily 
large values (which would lead to arbitrarily small 
values of α), it’s common to constrain its atoms D = 
{d1, . . . , dn} to have an L2 − norm less than or equal to 
one.4 The problem of minimizing the object function 
in Equation 3 is a joint optimization problem with 
respect to the dictionary D and the coefficients X in 
the sparse decompositions. The object function isn’t 
jointly convex, but it’s convex with respect to each of 
the two variables D and X when the other one is fixed.

There’s a large body of research1,2,4,5 that focuses 
on how to find a good dictionary by training samples 
and how to represent a small dataset Y = {y1, . . . , yr} 
sparsely. Under most circumstances, there are two 
stages in the dictionary leaning algorithms: one is the 
sparse coding stage, which searches for the optimal 
solution of Equation 4,

min
α

α λ αY D− +2
2

0 .� (4)

With a fixed dictionary D, the sparse coding 
problem of Equation 4 is an L0 regularized 
problem. It can be solved using many methods.6,7 
The other problem is the atoms-updating stage, 
which means finding the solution of Equation 5:

min
D

Y D− α 2
2 .� (5)

The atoms-updating stage in Equation 5 is the 
main characteristic that distinguishes many different 
popular dictionary learning methods. The ODL and 
RLSDL methods employ dynamic schemes in the 
atom-updating stage, so that they can, theoretically, 
train an infinite dataset. The classical K-SVD 
method has very good performance on small data, 
but it’s impossible to perform K-SVD dictionary 
learning for Big Data because we could neither read 
all data samples into the computer memory nor 
perform Singular Value Decomposition (SVD) 
decomposition of a very large matrix.

However, K-SVD has its own advantages. 
Its dictionary update scheme is a good model 
with clear mathematics and physics meanings. 

To sparsely represent the big dataset from remote 
sensing, we’ll extend the K-SVD algorithm and 
explore the redundant features of a spatiotemporal 
remote-sensing image set.

In this article, we propose the incremental 
K-SVD algorithm, which can introduce new atoms 
into the dictionary and update the small part of the 
dictionary by using only the current sample set, step 
by step in each iteration. We’ll discuss in detail how 
to train a dictionary from a large spatiotemporal 
dataset by our algorithm.

Dictionary Learning by IK-SVD
We’ve already analyzed the classical K-SVD 
method, which is applicable to small datasets. Now 
assume that there’s a big dataset {Y1, . . . , Ys}, where s 
means a different time or a different location. These 
multi-spatiotemporal data share similar features 
and differences. Since redundancy information 
always exists in a large spatiotemporal dataset 
{Y1, . . . , Ys}, it’s possible to represent it sparsely by 
dictionary learning.

Most traditional methods aren’t applicable to 
every large dataset. This means that we can’t train 
all the samples in a big dataset {Y1, . . . , Ys} at one 
time to get the final dictionary D. In a learning 
algorithm for a big dataset, both the number of 
atoms and the samples to be used should change 
dynamically. Therefore, the problem becomes this: 

Table 1. Notation.

Symbol Meaning

Y Sample data

Y = {y1, . . . , yr} Small dataset

{Y1, . . . , Ys}, Large dataset

α Coefficient vector

αi = {αi (1), . . . , αi (n)} αi with n components

X = {α1, . . . , αr} Coefficients set

{X1, . . . , Xs}, Large coefficients set

αT
j The jth row in X

d Atom

D = {d1, . . . , dr} Atoms set

λ Regularization parameter

ω αk i i r iT
k= ≤ ≤ ≠{ }1 0, ( ) Nonzero support of α

E Error matrix
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If for the dataset {Y1, . . . , Ys} we’ve already obtained 
its dictionary Ds = {d1, . . . , dn}, then for the next 
scene of image Ys+1 with the index s + 1, we need 
to find a new dictionary Ds+1 = {d1, . . . , dn+1, . . . , 
dn+m}, which has m more atoms as dn+1 . . . , dn+m 
added, and is able to sparsely represent, the dataset 
{Y1, . . . , Ys+1}.

Obviously, we hope that the latest atoms d1, . . . , 
dn are still reserved in the new dictionary {d1, . . . , 
dn, dn+1, . . . , dn+m}. We also hope that, when every 
new data subset Ys+1 is trained, only a few new 
atoms are added to Ds+1, so that we can efficiently 
and sparsely represent both {Y1, . . . , Ys} and Ys+1. As 
a result, in the training process, we could obtain 
{X1, . . . , Xs, Xs+1}, which is the sparse coefficients 
matrix sequence for the dataset {Y1, . . . , Ys, Ys+1}. 
Since we already defined that Ds is a part of Ds+1, 
and Ds can already sparsely represent {Y1, . . . , Ys}, 
we need only to update coefficients Xs+1, which 
relates to the sparse representation for Ys+1 based 
on dictionary Ds+1. Now we define the new object 
function for the incremental learning model as

min
,D X s s s s

s s

Y D X X
+ +

+ + + +− +
1 1

1 1 1 2

2
1 0

λ .� (6)

When training data Y1, . . . , Ys, Ys+1, we assume 
that they have the same number of r samples, and 
then we have 

Ys+1 = {y1, . . . , yr}.� (7)

Since there are r samples in each Ys+1, the 
corresponding coefficient Xs+1 is

Xs+1 = {α1, . . . , αr}.� (8)

In Equation 8, the coefficient vector αi with 
more components, where 1 ≤ i ≤ r, becomes

αi = {αi (1), . . . , αi (n), αi (n + 1), . . . , αi (n + m)}� (9)

We see that there are more components, such 
as αi (n + 1), . . . , αi (n + m), in the coefficient vector 
αi in Equation 9, because there are more atoms in 
the current dictionary Ds+1. Since we can’t train all 
the samples at one time, we construct and update 
every small group of atoms for every new training 
set Ys+1.

Actually, we care more about the current 
atoms dn+1, . . . , dn+m and their coefficients. In an 
extreme case, for the current Ys+1, if αi (1), . . . , αi 
(n) in every coefficient vector αi are efficient and 
sparse enough, even dn+1, . . . , dn+m aren’t necessary, 

and αi (n+1), . . . , αi (n+m) can all be zero. 
However, usually there are new atoms, such as 
dn+1, . . . , dn+m, that need to be added and updated. 
This is because, for a large spatiotemporal dataset, 
there are always some image features in Ys+1 that 
can’t be efficiently represented by atoms trained 
from {Y1, . . . , Ys}.

When we solve Equation 6, following the idea 
of classical K-SVD, the jth row in Xs+1 is denoted 
as αT

j  (this isn’t the vector α j, which is the jth 
column in X ). For an arbitrary new kth atom, the 
first term of the object function in Equation 6 can 
be denoted as

Y D X

Y d d

s s s

s j T
j

j T
j

j n

k

j

+ + +

+
= +

−

− =

− − −∑

1 1 1 2

2

1
1

1

α α
== = +

+

∑ ∑ −
1 1 2

2
n

j T
j

j k

n m

k T
kd dα α .

�

(10)

It is the changing form of the object function of 
the proposed incremental dictionary learning. In 
Equation 10, there are two obvious differences 
from the classical K-SVD model: one is that the 
current sample Ys+1 and the old atoms d1, . . . , dn 
trained by old samples are linked and combined 
into one object function; the other is n + 1 ≤ k 
≤ n + m, which means that for the new training 
samples Ys+1, we’ll update only the new atoms 
within dn+1, . . . , dn+m.

Therefore, the equation changes to

Y D X E ds s s s
k

k T
k

+ + + +− = −1 1 1 2

2
1 2

2
α ,� (11)

where

E Y d d ds
k

s j T
j

j T
j

j n

k

j

n

j T
j

j
+ +

= +

−

=

= − − −∑∑1 1
1

1

1

α α α
== +

+

∑
k

n m

1
.�(12)

We’ve decomposed the multiplication Ds+1Xs+1 
into the sum of n + m matrices. Among those n 
+ m, n + m − 1, terms are assumed fixed, and 
one (the kth) remains in question. However, it’s 
different from the traditional K-SVD method: 
for the new training sample data Ys+1, we’ll never 
update atoms of d1, . . . , dn that are already trained 
by {Y1, . . . , Ys}. Every time, what we’ll update are 
only atoms of dn+1, . . . , dn+m.

Therefore, for Ys+1, we calculate only the 
current error matrix Es

k
+1, where n + 1 ≤ k ≤ n 

+ m. The meaning of Es
k
+1 differs from that in the 

work of Michael Aharon and his colleagues.4 The 
proposed matrix Es

k
+1 stands for the error for the 

current samples Ys+1 but not all history samples, 
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when atoms d1, . . . , dn are fixed and when the 
atom dk is removed, where n + 1 ≤ k ≤ n + m. 
Respectively, we also need to define a new ωk for 
new atoms as

ω αk T
ki i r i= ≤ ≤ ≠{ }1 0, ( ) ,� (13)

where n + 1 ≤ k ≤ n + m.
Note that the error matrix Es

k
+1 stands for how 

well the dictionary Ds+1 without dk can represent 
the current training data Ys+1, and the information 
from known atoms d1, . . . , dn is still associated with 
Es

k
+1. On the other hand, the initial value of the 

Ds+1 for the proposed method also differs from that 
of the traditional K-SVD, which we’ll discuss next.

Estimate the New Atoms’ Initial Value
Although we can add new atoms to the current 
dictionary, it’s still very difficult to set the initial 
value of the new atoms when a batch of new samples 
is introduced into the training process. If the old 
dictionary Ds can efficiently and sparsely represent 
the new samples Ys+1, we don’t need to create new 
atoms and put them into Ds+1. However, there are 
often new image features from the new samples, 
which can’t be efficiently represented by old atoms, 
so we often need to add new atoms. We’ll select 
special samples as the initial value of the new atoms. 
If we set improper initial values for the new atoms, 
the training process will be slow and inefficient. 
Therefore, it’s very important to make a good choice 
of new atoms for incremental dictionary learning.

When considering each new Ys+1, we first 
perform a sparse coding for Ys+1 using dictionary 
Ds to evaluate how well the old dictionary Ds could 
represent the current samples Ys+1. Then, there’s

min
X s s s s

s
Y D+ − +1 2

2

0
XX XXλ .� (14)

We call Equation 14 the initial representation. 
In this initial representation, for an arbitrary 
coefficient αi vector within X s, it has n components 
as Equation 15 but not n + m components:

αi = {αi (1), . . . , αi(n)}.� (15)

The coefficient αi characterizes the relationship 
between new samples Ys+1 and the old atoms Ds. To 
utilize the sparse coefficients to assist in introducing 
new atoms, we use the idea of active learning to set 
the initial value for new atoms.8 The basic idea of 
active learning is to iteratively enlarge the training set 
by requesting an expert to label new samples from 

the unlabeled set in each iteration.9 Here, we propose 
to use the entropy of information theory to decide 
which new samples will be the initial value of new 
atoms.

First, we select the samples from Ys+1 whose 
coefficients aren’t sparse enough when we solve 
Equation 14. Then, among all the samples that can’t 
be sparsely represented by old atoms, we need to 
select the samples showing maximal disagreement 
between the different atoms, which will be the 
initial value of the new atom. It’s a little similar 
to the active learning scheme, which employs a 
Mutual Information (MI)-based criterion.8 The 
difference is that we don’t label the new sample 
but treat it as a new atom. Now, we define the new 
atom dnew as

d H
i sX

inew = ∈ +

max ( )
α

α
1

,� (16)
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.� (19)

In iterating our proposed method, we first 
select a group of samples that can’t be sparsely 
represented by the old dictionary. Then we 
calculate their entropy by Equation 17 and select m 
samples with the largest entropy as the initial value 
of the new atoms.

Now, we summarize the proposed dictionary 
learning algorithm as follows:

1.	 The big dataset is {Y1, . . . , Ys, . . . , YS}, where 1 
≤ s ≤ S. Train the sample subset Y1 by classi-
cal K-SVD, and get the initial dictionary D1 = 
{d1, . . . , dn}. Set s = 2, and J = 1.

2.	 Solve object function (14), select m samples 
based on Equation 16, and D Ds

J
s

( ) = −1 ∪  d dn n m+ +{ }1, ,� .
3.	 For the sparse coding stage, use the Orthogonal 

Matching Pursuit (OMP) algorithm to com-
pute the representation Ys by the solution of
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    min ( )

X s s
J

s s
s

Y D X X− +
2

2

0
λ .� (20)

4.	 In the atoms-update stage, for each new 
atom dk in dictionary Ds

J( ), where k = n + 
1, . . . , n + m, update it as follows: Define 
the group of examples that use this atom  
dk,  ω αk T

ki i r i= ≤ ≤ ≠{ }1 0, ( ) .  Compute 
the overall representation error matrix by 
Equation 11, and get Es

k . Next, construct ^
Es

k  
by choosing only the columns corresponding 

to ωk within Es
k. Apply SVD decomposition 

E U Vs
k T^
= Λ  and choose the first column of 

U to be the updated atom dk. Update the co-
efficient vector αT

j  to be the first column of V 
multiplied Λ(1, 1).

5.	 Update the dictionary.
6.	 Set J = J + 1. Repeat steps 3 through 6 until 

convergence.
7.	 s = s + 1, n = n + m, and J = 1. Repeat steps 

2 through 7 until all the data in {Y1, . . . , YS} are 
trained.

Convergence means that, in the interloop, the 
error satisfies Y D Xs s

J
s− ≤( )

2

2
σ or the sparsity 

satisfies X ks 0
≤ . Figure 1 shows the flow chart 

of the algorithm.
Now, we can find the differences between 

the proposed IK-SVD, ODL,1 and RLSDL 
algorithms.2 For IK-SVD, we always update the 
atoms based on the new sample data that can’t be 
well represented by the old dictionary. The number 
of the atoms for IK-SVD changes in the training 
process, which makes IK-SVD very flexible. The 
atoms-updating stage of ODL is similar to the 
gradient descendent, therefore, the most important 
thing is to find an appropriate gradient that fits both 
new sample data and old sample data. The RLSDL 
algorithm is the same as the recursive least squares 
algorithm for adaptive filtering. Thus, a forgetting 
factor is very important to the atoms-update stage of 
RLSDL.

Experiments and Results
In our experiments, we used the image dataset of 
the Landsat satellite, which represents the world’s 
longest acquired collection of moderate-resolution 
remote-sensing data. In the past four decades, 
since July 1972, the imagery datasets from Landsat 
1 to Landsat 8 satellite missions have provided a 
unique and extremely rich resource for research on 
agriculture, geology, forestry, regional planning, 
education, mapping, and global change.

We’ve included different Landsat satellite 
datasets in our experiments because they have 
different resolution and spectral characteristics. 
Because the Landsat satellite series has con
tinuously acquired image data for four decades, the 
whole image data volume is large enough to qualify 
as Big Data. In general, as we’ve mentioned earlier, 
it’s hard to precisely model remote-sensing Big 
Data. Accordingly, we trained the samples in our 
experiments by randomly selecting Landsat data 
subsets.

Figure 1. Flow chart of the Incremental K-SVD (IK-SVD) algorithm.

{Y1,...,Ys,...Ys}

Train Y1 by K-SVD, get D1
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For our purposes, we compared our proposed 
algorithm, IK-SVD, with the two dictionary 
learning algorithms that we mentioned in the 
last section: ODL1 and RLSDL.2 The volume 
of the global Landsat data was so large, however, 
that it was unrealistic to put all of them into the 
dictionary learning process for the three algorithms. 
However, because of the highly redundant nature 
of the massive spatiotemporal remote-sensing 
image set, we could compare the three methods by 
randomly selecting sample data from Landsat data. 
We compared the performance of the algorithms 
in two respects: one was the precision of the 
reconstruction; the other was the sparse extent 
of the decomposition. The two characteristics are 
mutually restrictive. Therefore, we compared one 
feature of these different algorithms while the other 
feature was fixed. For convenience of comparison, 
we used the OMP method to reconstruct all 
three methods. This meant that we trained the 
dictionary using different models, but solved the 
sparse coefficients using the same reconstruction 
algorithm.

A subset of the Landsat global image dataset 
was selected for the validations. The data subset 
we used in these experiments ranges from the years 
2008 and 2009, which cover the whole area of 
China—more than 9 million square kilometers. In 
this data subset, only one multispectral image set 
was selected for every location of earth’s surface. 
The test dataset didn’t include some image data that 
either were destroyed or had too much cloud cover. 
The dataset volume with all bands was about 650 
Gbytes. We trained the dictionary by randomly 
selecting 30-Gbyte data samples within the dataset, 
and we validated the performance of the three 
algorithms by randomly selecting another 10-Gbyte 
data samples for each test.

Remote-sensing Big Data from Landsat 
satellites contain many long temporal sequence 
datasets for many locations of the earth’s surface. 
We selected the data subset for the Beijing area, 
in northern China, which covers 16,411 square 
kilometers. The time ranges from years 1983 to 
2013, and again some data with too much cloud 
cover were removed from the dataset. The area 
features many forests, cities, and mountains, 
which, along with the high degree of climatic 
seasonality, makes the texture information very 
rich. The volume of the tested data subset is about 
110 Gbytes.

We trained the dictionary by randomly 
selecting 3-Gbyte data samples within the dataset, 

and we validated the performance of the three 
algorithms by randomly selecting another 5-Gbyte 
data samples for each different test parameter. In 
our experiments, we set the size of the incremental 
data as 8 × 8 × 100B for each iteration for all three 
methods.

Figure 2. Different dictionaries trained by sample data. (a) IK-SVD,  
(b) Recursive Least Squares Dictionary Learning (RLSDL), and (c) On-Demand 
Localization (ODL). The atoms in the left column were trained with constraint 
parameter σ = 10; atoms in the right column were trained with σ = 20. Some 
atoms exhibit too much noise in RLSDL, and some atoms appear overly smooth 
with very few textures in ODL. The texture of the IK-SVD atoms is noticeably 
richer than the texture of those trained by the other two dictionaries.

(a)

(b)

(c)
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Figure 2 shows the dictionaries trained by 
different methods. Figure 2a shows the atoms 
trained by the proposed IK-SVD dictionary, 
Figure 2b shows the atoms trained by RLSDL, and 
Figure 2c shows the atoms trained by ODL. The 
number of atoms that were trained ranged from 
150 to 3,000, but for practical reasons only a very 
small number of atoms is shown.

On the basis of what the atoms looked like, it 
was impossible to precisely judge which method 
performed better in training. However, we could 
infer that they exhibited different effectiveness 
and adaptiveness for different textures of large 
datasets. Furthermore, we observed that some 
atoms had too much noise in RLSDL, and 
in ODL some atoms were overly smooth and 
contained very few textures. The texture of the 
IK-SVD atoms, however, appeared noticeably 
richer than those trained by the other two 
dictionaries.

Unlike some predef ined atoms of the 
analytic dictionary, the atoms in the adaptively 
learned unanalytic dictionary changed with the 
sparsity and presentation precision. We found 
some differences between atoms with different 
representation precision. In Figure 2, on the 
left, the error σ = 10, and on the right σ = 20. 
Therefore, we can observe that the features in the 
right column in Figure 2 are smoother than those 
in the left column.

In Figure 3, the precision of the reconstruction 
by different methods is compared. When com
paring reconstruction errors in Figure 3, for an 
arbitrary image data subset Ys = {ys, . . . , yr} the 
error is defined as

E y Di i
i

r

= −
=
∑ α

2

2

1

.� (21)

In these experiments, while training the 
atoms, we controlled the decomposition sparsity 
for each algorithm and compared the errors E in 
Equation 21 for different methods. Therefore, 
it’s the constrained optimal problem as Equation 
1 showed. To better validate the performance of 
the IK-SVD, ODL, and RLSDL methods while 
training the dictionary, we set the representation’s 
sparsity at 5 percent, 10 percent, and 15 percent. 
For ODL and RLSDL, it was easy to set the 
sparsity for training. But for our proposed 
IK-SVD algorithm, because we dynamically 
introduced new atoms to the model, we needed 
to set the threshold for when new atoms should 
be added.

Figure 3. Precision comparison of dictionary 
reconstructions with decomposition sparsity controlled. 
We show the sparsity at (a) 5 percent, (b) 10 percent, 
and (c) 15 percent.
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For a set of samples Ys+1, we used OMP to 
sparsely decompose the samples to meet the 
controlled sparsity k. If the peak signal-to-noise 
ratio for the sparse coding stage was smaller than 
34 decibels (dB), we introduced new atoms into 
the dictionary. For Big Data with an unlimited 
number of images, it’s impossible to use all the data 
as samples, so we randomly selected sample data 
just from the two datasets as already mentioned 
and experimented on both long temporal sequence 
data and large area data. 

When we controlled the coefficient sparsity in 
Figures 3a–3c (between 5 and 15 percent), we saw 
that the precision of IK-SVD fell roughly between 
that of ODL and RLSDL. Most IK-SVD results 
had higher precision than RLSDL but were close 
to that of ODL, although we selected different 
samples and set different sparsities.

Figure 4 shows how the coefficient sparsity 
of our three dictionary training methods 
compared. In these experiments, we controlled 
the error or Peak Signal-to-Noise Ratio (PSNR) 
of the sparse decomposition for each algorithm. 
Although the reconstruction error was fixed, 
the sparsity for the coefficients of every 
sample image differed for the three methods. 
To comprehensively validate the algorithms’ 
performance, we also tested the sparsity with 
the reconstruction error σ = 10, σ  = 15, and 
σ = 20. In this case, unlike the work shown in 
Figure 3, we experimented separately on long 
temporal sequence data and large-area data. 
Therefore, the left side of Figures 4a–4c shows 
the results of the Beijing area data subset for the 
years 1983 to 2013, and the right side of Figure 
4a–4c shows the results of the entire China area 
data subset for whole-year data from 2008 and 
2009. We can see that, for both long temporal 
sequence data and large-area data, the IK-
SVD method’s nonzero coefficients are fewer 
than with ODL and RLSDL. Furthermore,  
IK-SVD’s better sparsity feature is relatively 
steady, but is not obviously affected by the 
representation precision σ.

We also compared the time consumption 
(time spent training) for the three methods, 
as Table 2 shows. It’s hard to fairly compare 
the methods’ speed because of their different 
program styles, data structures, and I/O 
scheme. However, since the original intention 
of ODL and RLSDL was to design an algorithm 
competent to deal with unlimited large datasets, 
it was worth testing the algorithms using a large 

dataset. If we trained a large number of atoms, 
it should obviously have taken more time than 
a smaller number. Table 2 shows that, based on 
our experiments, when the number of atoms for 
RLSDL exceeded 500, the algorithm’s training 
time was unacceptable. Therefore, for Beijing-
area data, we had to set the number of atoms 
for RLSDL at 150 to make its training time 
acceptable.

The representation precision was an important 
factor for training time consumption, in dictionary 
learning. Very few errors made the proposed  
IK-SVD method create more atoms, and it 
slowed the training. In addition, controlling 
the sparsity also affected the training speed. 
The more the sparsity constraints controlled, 
the less time was used. We also found that the 
RLSDL’s performance wasn’t steady, as the time 
consumption dramatically increased and became 
unacceptable with the increasing number of atoms. 
For the same error or sparsity, ODL was very fast 
when the number of the atoms was small, but 
when the atoms exceeded 2,600, ODL was slower 
than IK-SVD. The fixed number of atoms made 
ODL obviously faster with fewer atoms. However, 
for IK-SVD, more atoms joined the new training 
process, which meant that the acceleration of IK-
SVD was not as obvious as with ODL when the 
number of atoms decreased.

To sparsely represent the spatiotemporal remote-
sensing Big Data, we extended the classical  

K-SVD dictionary learning method. We construct-
ed a new object function for big datasets, and in-
troduced the data samples into the learning process 
group by group. In the computation, the model 
mainly focused on the incremental parts that are 
hard to sparsely decompose using the last diction-
ary of the last iteration. New atoms were added for 
current data samples, and an active learning scheme 
based on maximum mutual information was em-
ployed to determine the initial value of the new at-
oms. We tested the proposed method on two data 
subsets from Landsat satellites: one a long tem-
poral sequence on a small area; the other, a large 
area over a two-year period. The experiments vali-
dated the proposed method’s good performance 
on both decomposition sparsity and reconstruc-
tion precision. We found that, while controlling 
the error of the training process, the proposed 
IK-SVD always achieves sparser representation  
for a spatiotemporal remote-sensing big dataset. 
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Figure 4. Sparsity of different methods while controlling the error. For each row, sparsity is (a) 10 percent, (b) 15 
percent, and (c) 20 percent. The left side shows the results of the Beijing area data subset for the years 1983 to 
2013, and the right side shows the results of the entire China area data subset for whole-year data from 2008 and 
2009.
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Furthermore, while controlling the sparsity of 
the training, we also found that the precision of 
the proposed IK-SVD algorithm generally falls 
between that of the ODL and RLSDL methods. 

Sparse coding stages of these methods are very 
similar to each other. It is the relative complex at-
oms updating scheme that makes IK-SVD slower 
than ODL in the experiments on controlling spar-
sity. Therefore, in future work we will focus on pro-
moting the computational efficiency of the atoms' 
updating in the proposed IK-SVD. Furthermore, 
the number of atoms also seriously influences the 
speed of the sparse representation. In future work, 
we will also consider how to merge and split the at-
oms in the dictionary. 

Acknowledgments
Lajiao Chen is the corresponding author for this article.

References
1.	 J. Mairal et al., “Online Dictionary Learning for 

Sparse Coding,” ICML Proc. 26th Ann. Int’ l Conf. 
Machine Learning, ACM, 2009, pp. 689–696.

2.	 K. Skretting and K. Engan, “Recursive Least 
Squares Dictionary Learning Algorithm,” IEEE 
Trans. Signal Processing, vol. 58, no. 4, 2010,  
pp. 2121–2130.

3.	 D.L. Donoho, “Compressed Sensing,” IEEE 
Trans. Information Theory, vol. 52, no. 4, 2006,  
pp. 1289–1306.

4.	 M. Aharon, M. Elad, and A. Bruckstein, “K-
SVD: An Algorithm for Designing Overcomplete 
Dictionaries for Sparse Representation,” IEEE 
Trans. Signal Processing, vol. 54, no. 11, 2006, 
pp. 4311–4322.

5.	 M. Zhou et al., “Nonparametric Bayesian Diction-
ary Learning for Analysis of Noisy and Incomplete 
Images,” IEEE Trans. Image Processing, vol. 21, no. 1, 
2012, pp. 130–144.

6.	 D.L. Donoho et al., “Sparse Solution of Un-
derdetermined Systems of Linear Equations by 
Stagewise Orthogonal Matching Pursuit,” IEEE 
Trans. Information Theory, vol. 58, no. 2, 2012, 
pp. 1094–1121.

7.	 D. Needell and J.A. Tropp, “CoSaMP: Iterative 
Signal Recovery from Incomplete and Inaccurate 
Samples,” Comm. ACM, vol. 53, no. 12, 2010, 
pp. 301–321.

8.	 D. Tuia et al., “Active Learning Methods for Re-
mote Sensing Image Classification,” IEEE Trans. 
Geoscience and Remote Sensing, vol. 47, no. 7,  
pp. 2218–2232, 2009.

9.	 J. Li, J. Bioucas-Dias, and A. Plaza, “Hyperspec-
tral Image Segmentation Using a New Bayesian 

Table 2. The number of atoms and the training time for different methods and datasets.

Criteria Sparsity (%) Error (%)

Data Method 5 10 15 10 15 20

BJ*

IK-SVD atoms 895 205 175 2,610 1,260 410

time 1.7h* 2.8h 3.5h 10h 4h 1.5h

ODL atoms 895 205 175 2,610 1,260 410

time 2.5h 1.3h 0.7h 13.3h 2.8h 1.0h

RLSDL atoms 150 150 150 150 150 150

time 3.3h 4.2h 4.5h 4.1h 1.9h 0.8h

CH*

IK-SVD atoms 2,140 805 505 2,730 1,640 770

time 10.2h 5.9h 5.1h 11.4h 5.5h 1.75h

ODL atoms 2,140 805 505 2,730 1,640 770

time 9.6h 2.3h 1.6h 16.1h 5.7h 2.8h

RLSDL atoms 2,140 805 505 2,730 1,640 770

time — — 45.0h — — 28.5h

*BJ = dataset from Beijing area; CH = dataset from China area; h = hour.

CISE-16-04-Wang1.indd   51 28/07/14   6:49 PM



52	 � July/August 2014

Extreme Data

Approach with Active Learning,” IEEE Trans. Geo-
science and Remote Sensing, vol. 49, no. 10, 2011,  
pp. 3947–3960.

Lizhe Wang is a professor at the Institute of Remote 
Sensing and Digital Earth, Chinese Academy of Sciences, 
Beijing, China, and the ChuTian Chair Professor at the 
School of Computer Science, China University of Geo-
sciences. His research focuses on high-performance geo-
computing and spatial information processing. Wang 
has a PhD in applied computer science from University 
Karlsruhe (now Karlsruhe Institute of Technology). Con-
tact him at lizhe.wang@gmail.com.

Ke Lu is a professor at the College of Engineering and 
Information Technology, University of the Chinese Acad-
emy of Sciences, Beijing, China. His research interests in-
clude remote sensing image processing, signal processing, 
and medical image processing. Liu has a PhD in com-
puter science from Northwest University. Contact him at 
luk@ucas.ac.cn.

Peng Liu is an associate professor at the Institute of Re-
mote Sensing and Digital Earth, Chinese Academy of Sci-
ences, Beijing, China. His research interests are focused on 
remote-sensing image processing, scientific computation, 

and compressive sensing. Liu has a PhD in signal process-
ing from the Chinese Academy of Sciences. Contact him at 
pliu@ceode.ac.cn.

Rajiv Ranjan is a research scientist and a Julius Fellow 
at CSIRO Computational Informatics, Canberra, 
Australia (formerly known as CSIRO ICT Centre). His 
expertise is in datacenter cloud computing, application 
provisioning, and performance optimization. Ranjan 
has a PhD in engineering from the University of Mel-
bourne. Contact him at rajiv.ranjan@csiro.au

Lajiao Chen is an assistant professor at the Institute of 
Remote Sensing and Digital Earth, Chinese Academy 
of Sciences, Beijing, China. Her research interests are 
focused on geocomputing, as well as geographic infor-
mation systems/remote sensing techniques and their 
application to environmental modeling. She has a 
PhD in geographic information systems from the Chi-
nese Academy of Sciences. Contact her at chenlajiao@
ceode.ac.cn.

Selected articles and columns from IEEE Computer 
Society publications are also available for free at 

http://ComputingNow.computer.org.

Experimenting with your hiring process?
Finding the best computing job or hire shouldn’t be left to chance.
IEEE Computer Society Jobs is your ideal recruitment resource, targeting
over 85,000 expert researchers and qualified top-level managers in software
engineering, robotics, programming, artificial intelligence, networking and
communications, consulting, modeling, data structures, and other computer
science-related fields worldwide. Whether you’re looking to hire or be hired,
IEEE Computer Society Jobs provides real results by matching hundreds of
relevant jobs with this hard-to-reach audience each month, in Computer
magazine and/or online-only!

http://www.computer.org/jobs

The IEEE Computer Society is a partner in the AIP Career Network, a collection of online job sites for scientists, engineers, and
computing professionals. Other partners include Physics Today, the American Association of Physicists in Medicine (AAPM), American
Association of Physics Teachers (AAPT), American Physical Society (APS), AVS Science and Technology, and the Society of Physics
Students (SPS) and Sigma Pi Sigma.

CISE-16-04-Wang1.indd   52 7/28/14   7:44 PM


