This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL

Towards Modeling Large-Scale Data Flows in a
Multidatacenter Computing System With Petri Net

Weijing Song, Lizhe Wang, Rajiv Ranjan, Joanna Kolodziej, and Dan Chen

Abstract—There are several use cases that involve the need to
transfer data between datacenters when processing large-scale
data sets. Data transmission in a multidatacenter computing sys-
tem has new characteristics that are hard to express and han-
dle using traditional methods. Thus, it is necessary for a new
transmission strategy to be developed for users of multidatacenter
computing systems. This paper gives a general data model, a net-
work model, and a multidatacenter model to describe the research
problem clearly. We propose four new methods to meet the new
features of data transmission among datacenters. Based on these
models and methods, we propose a new data flow transmission
model and analyze its validity.

Index Terms—Large-scale
computing, Petri net.

data flow, multidatacenter

I. INTRODUCTION

HE multidatacenter infrastructure is promising in that it

provides feasible implementation for data-intensive com-
puting. Data-intensive tasks running in multidatacenters may
require large amounts of data to be transferred [19]. For exam-
ple, the user downloads data to the TB level every month from
the NASA datacenter [1] for his or her applications. If the com-
putation and data are not available from the same datacenter,
it might also be necessary to transfer data in order to complete
the task [20]. Another example is the Chinese 863 project of
2013 called the Comprehensive Quantitative Remote Sensing
System with Satellite, Aircraft and Receiving Station and Ap-
plication Demonstration. This would achieve the capability of
automatically and rapidly producing more than 80 kinds of
multiscale, multiterm quantitative remote sensing at the global
level. It can be used for comprehensive applications, such
as detecting global food security, forest carbon sinks, cross-
border rivers, and the ecological environment. The 80 kinds
of quantitative remote sensing algorithm can be deployed for

Manuscript received March 12, 2013; revised September 3, 2013; accepted
September 22, 2013. The work of L. Wang was supported by the National Nat-
ural Science Foundation of China under Grant 61361120098. (Corresponding
authors: L. Wang and D. Chen.)

W. Song is with the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100094, China, and also with the University of
Chinese Academy of Sciences, Beijing 100049, China.

L. Wang is with the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100094, China, and also with the School of
Computer Science, Chinese University of Geosciences, Wuhan 430074, China
(e-mail: lizhe.wang @gmail.com).

R. Ranjan is with the ICT, CSIRO, Clayton, Vic. 3169, Australia.

J. Kolodziej is with the Institute of Computer Science, Cracow University of
Technology, 31-155 Cracow, Poland.

D. Chen is with the School of Computer Science, Chinese University of
Geosciences, Wuhan 430074, China (e-mail: danjj43 @gmail.com).

Digital Object Identifier 10.1109/JSYST.2013.2283954

eight different datacenters. Quantitative remote sensing prod-
ucts can be divided into special and common remote-sensing
products. Each special remote-sensing product requires several
common remote-sensing products; for example, in the produc-
tion of special products in terms of the country of crop growth,
nine different common products are required. Therefore, in or-
der to generate global remote-sensing products, more than one
datacenter must be combined to process the data. As a result,
large-scale data flow transmission based on multidatacenter
architecture is required.

Data movement and storage management toolkits, such as
GridFTP, GLobus Online, Data Mover-Lite (DML), and Bulk
Data Mover (BDM), have been developed for large-scale data
transmission in datacenters [2]. GridFTP allows files to be
downloaded in pieces simultaneously from multiple sources, or
even in separate parallel streams from the same source, which
allows the bandwidth to be used more efficiently. DML supports
downloading of a single file by splitting into multiple HTTPS
connections for faster downloads. Specifically, partial files are
downloaded from each https stream to compose a whole file, or
partial files are downloaded from multiple replicas to compose
a whole file. BDM may be good at processing different kinds
of files, handling extreme variance in file sizes efficiently, and
supporting many kinds of transfer protocols. Therefore, data
can be transferred in various forms. Data flow models can be
supported by those data movement and storage management
toolkits.

Based on the works discussed above, some research has
focused on data flow analysis. Some of this information has
been applied toward standard program optimization [3]. Data
flow models are often used to specify the behavior of sig-
nal processing and data flow applications as a set of tasks,
actors, or processes with data and control dependence re-
lations [4], [5]. The differences between various data flow
models can be characterized by their expressive power and
the availability of techniques to analyze the correctness of
the model and performance properties such as throughput and
absence of deadlock. Such analysis is becoming very important
for hardware/software codesign of modern streaming systems.
However, previous studies have only considered the case of
single-path transmission and are not suitable for new features
of data transmission using multiple datacenters. Furthermore,
the methods of data partition are not taken into account in these
models.

Traditional approaches to data transmission, such as single-
path transmission, are likely to cause communication blockages
on a single path due to the amount of data being transmitted,
thereby reducing the transmission efficiency. When multiple

1932-8184 © 2013 IEEE

mailto: lizhe.wang@gmail.com
mailto: danjj43@gmail.com

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

datacenters cooperatively process a data-intensive task, data
transmission speed relative to the speed of data processing
is the main bottleneck. Therefore, it is necessary to improve
the efficiency of data transmission. With the popularity of
high-speed Internet and the enhancement of personal computer
computing and storage capacity, peer-to-peer (P2P) transmis-
sion technology has been rapidly developing. Compared with
the conventional transmission mode, this has many significant
advantages, specifically its decentralization, scalability, robust-
ness, high cost, privacy protection, load balancing, and so on.
The core idea of P2P technology is that each node acts both
as a server and as a user enjoying the services provided by
other nodes. However, it mainly considers the selection of a
single datum from multiple data and does not take advantage of
multiple data together.

In order to transform large-scale data rapidly and accurately,
a model is needed to describe them in a simple and intuitive
way. The graphic description for a data flow such as a directed
acyclic graph (DAG) or Petri net is an intuitive approach
compared with script-based methods. DAG is easier to use and
more intuitive. However, it offers only a limited expression.
Moreover, as DAG only has a single node type, data flows
through the net cannot be easily modeled [6]. Petri net is a
modeling tool used for modeling discrete, dynamic, parallel,
and asynchronous systems. Because of the simple graphical
description and interpretation ability, Petri net has been widely
used for system modeling and performance analysis in recent
years. Many studies have already used this method to estab-
lish workflow models [6]-[8], [15], [23]; for example, [18]
applies colored time Petri nets to express various authorization
constraints to be modeled, including role, temporal, cardinal-
ity, binding of duty, separation of duty, and role hierarchy
constraints.

In this paper, models for large-scale data flows based on
multiple datacenters are proposed. From the new features of
large-scale data transmission, several methods are considered
to improve data transfer rates. According to these models and
methods, a large-scale data flow model is presented in this
paper. This is validated using reachability tree techniques, and
its completeness is demonstrated.

This paper is organized as follows: Section II discusses
new data transmission characteristics of datacenters, whereas
Section IIT presents the data model running in multiple data-
centers, the network model among datacenters, and the multi-
datacenter model. Section IV presents four methods to improve
the data transmission rate. The large-scale data flow model is
proposed in Section V. Section VI gives a validated analysis of
the model. Finally, Section VII concludes our work.

II. DATA TRANSMISSION CHARACTERISTICS OF
DATACENTERS

Large-scale data processing in datacenters generally follows
the near-data principle. That is to say, if the computing and
data for an application are not located in the same datacenter,
computing is usually moved to the datacenter where the data
are stored. However, there are still some cases where data need
to be transferred.

IEEE SYSTEMS JOURNAL

A. Cases Requiring Data Transfer

Original Data Are Unevenly Distributed: For remote sens-
ing data, for example, each data-receiving station’s received
data are generally based on geographical segments, and a
range of regional data is stored. Each data-receiving station has
overlapping but not identical information. This means that the
data distribution is uneven. Original and large-scale data with
complete product information and unique characteristics belong
to the simple point-to-point transmission mode.

Algorithms in Datacenters Are Distributed Based on Specific
Applications: At NASA, for example, the data management
centers are divided according to different functions and the
generation of different types of products. Therefore, more than
two kinds of algorithm processing for a datum are needed, it
is necessary to transfer data between datacenters. Such data
generally use the multiple-to-single transmission mode.

Multiple Datacenters Require Coprocessing: For example,
senior products for remote sensing applications concerning the
detection of vegetation and climate change in a certain region
in the last ten years have require synergy among datacenters
with different data and computing resources. Products that users
demand are gradually developed from junior to senior. There is
also a need for coprocessing between datacenters.

B. New Features of Datacenters

The data transmission speed is an important factor affecting
data processing. In order to improve this speed, it is necessary
to understand the data transmission features. The new features
of datacenters are described below.

Simple Network Environment and Fixed Bandwidth: Com-
pared with a variety of data transmission systems on the Inter-
net, data transmission between multiple datacenters typically
uses a dedicated high-speed bandwidth to transmit the data to
ensure the speed and efficiency of data transmission. Therefore,
the network transmission environment involves a single and
fixed bandwidth.

Finite Data Sources: The data transfer between datacenters
mainly from datacenters. Thus, the data source is known and
limited.

Transmission Path Is Finite: The network interconnection
between multiple datacenters is known, whereas the number
of datacenters is limited, so that the transmission path between
datacenters is both known and limited. It is possible to recog-
nize the optimal paths from one to another.

C. New Transmission Features

Based on the new transmission features of multidatacenters
mentioned above, it is clear that conventional transmission can-
not meet the demand for data transmission between datacenters.
The traditional data transmission mode, which focuses on the
optimization of a single transmission path, does not consider
the optimization of multiple transmission paths. For example,
when it is necessary to distribute to several datacenters, the
conventional transmission strategy creates an equal number

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SONG et al.: LARGE-SCALE DATA FLOWS IN A MULTIDATACENTER COMPUTING SYSTEM WITH PETRI NET 3

of paths and respectively transmits to the specific datacenter,
without full use of the data processing flow.

The traditional data transmission strategy generally involves
divided data blocks for large-scale data transmission, but the
partitioning strategies do not consider the need for a data
processing algorithm. Therefore, the data need to be rechunked
during processing, increasing I/O times [22].

The conventional data transmission scheme uses a single path
to transmit data with a single destination. This easily leads to
the blocking of a single path, as it is not suitable for large-scale
data transmission.

Given these considerations, a new data transmission model
incorporating multiple datacenters is necessary to cope with the
new features of data transmission.

III. MODELING CONDITIONS

This section presents the multidatacenter model, the data
model running in multiple datacenters, and the network model
among datacenters. First, we analyze transmission involving
multiple datacenters. The multidatacenter system is composed
of multiple datacenters, which are peer, hierarchical, unified, or
middle deployed. They provide services to the user through a
gateway, which coordinates management of each datacenter’s
resources. Multidatacenter architecture allows users not only
to process data through a single datacenter but also to handle
large-scale data from multiple datacenters.

A. Multidatacenter Architecture

In order to clarify the multidatacenter paradigm, before dis-
cussing the multidatacenter architecture, we give an example
of a multidatacenter called the earth system grid (ESG) center.
Thus uses new technologies, having successfully established a
new capability for serving data from distributed centers. The
ESG Federation effectively combines the new P2P architecture
with the more traditional client-server model. The infrastruc-
ture forms the network of a geographically distributed global
federation that is based on standard protocols and application
programming interfaces, such as OpenlD, Solr, Security Asser-
tion Markup Language (SAML), and Open Archive Initiative
(OAI), thereby allowing seamless access to a large and diverse
user community [2].

First, the ESG offers gateways that form the main entry
points for users to access the data and services. Gateways allow
users to browse and search for data, examine detailed metadata,
download and subset files, request high-level data products such
as analysis and visualization, and register and apply for specific
group memberships. The ESG data node was developed to act
as the data services back-end to the user interface provided
by a gateway. Each ESGF node can offer different services,
depending on how it is configured; nodes with different flavors
can be scaled differently (for example, to provide increased
computational resources or failover search capabilities), and all
nodes interact as equals, so there is no single point-of-failure.

In order to meets different kinds and different data trans-
mit requests, many data movement and storage management

v

data management center

I gateway | I gateway
gsub FTP qsub FTP
CE > SE CE l€>| SE
(computing (storage (computing (storage
clement) clement) clement) element)

Fig. 1. Multidatacenter architecture.

toolkits are required, for example, GridFTP, GLobus Online,
DML, and BDM. GridFTP allow files to download in pieces
simultaneously from multiple sources, or even in separate par-
allel streams from the same source, which allows the bandwidth
to be used more efficiently; DML supports downloading of a
single file by splitting into multiple HTTPS connections for
faster downloads. BDM can efficiently handle extreme variance
in file sizes and supports multiple transfer protocols. Therefore,
data can be transferred in various forms.

The system enables users to access, analyze, and visualize
data using a globally federated collection of networks, comput-
ers, and software. It currently provides more than 25 000 users
access to more than half a petabyte of climate data (from models
and observations) and has been the topic of over 1000 scientific
publications.

Summarizing from the above example, we first give the
general single datacenter and multidatacenter architectures used
in this paper (see Fig. 1).

The general single datacenter is mainly composed of a
gateway, compute element (CE), and storage element (SE)
[9]. The multidatacenter architecture generally uses a hybrid
architecture [21] for workflow enactment based on a centralized
control flow and distributed data flow [17]. In detail, there
is a management center to manage resource and distribute
tasks. Tasks from users or management centers are submitted
to the gateway, which distributes the tasks to the CE, and
then data processing, which reads from the SE. Finally, the
result is returned by the FTP. For large-scale data processing
tasks, the data-management center distributes tasks to different
datacenters. It controls data transmission and is responsible for
returning the processing results. Datacenters interconnect with
each other and the main data management center. Therefore,
data can be directly transmitted among them.

Consequently, the multidatacenter architecture makes full
use of the advantages of P2P and the centralized structure. It
not only conveniently manages the overall information but also
effectively decreases intermediate data and network traffic.

The general transmission process in the datacenter is as
follows. First, data are transmitted to the appropriate datacenter,
where they are processed. Then, the processed data are ready
for transmission to another datacenter following the processing
order (see Fig. 2).

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

4
data management center
l v v l
. ’ gateway | . | gateway |
(data H---o-------- - » data M---o-------- D e
~—- v | -—- v |
qsub FTP qsub FTP
CE Lyl SE CE || SE
(computing (storage (computing (storage
element) element) element) element)
Fig. 2. Data flow in the multidatacenter architecture.

B. Multidatacenter Model

Based on the datacenter and multidatacenter architectures,
the major elements of the multidatacenter model can be iden-
tified as the number of datacenters, the data stored in each
datacenter, and the network among the datacenters. Therefore,
the multidatacenter model can be described as follows:

M = (C,ID,N).

1) C={Cy,Cy,...,Ck} is the collection of datacenters,
K is the number of datacenters.

2) ID ={ID¢,,ID¢,,...,ID¢c,} is the collection of
data in datacenters. I D¢, represents the data set in
datacenter C}. I D¢, consists of many data and is ex-
pressed as D¢, = {Idc, 1,1dc, 2, ..., Idc, N} Nk
is the number of data in datacenter C}. Data Idc, , in
datacenter C), can be divided into several data blocks,
Idc, ni,1dcy n2,--.,1dc, np; pis the number of data
blocks.

3) N is the network model among datacenters.

In order to describe the multidatacenter architecture clearly,
there are three elements that may need to be modeled. Data
represent the major parameter for data transmission. The data
information provides the relationship with others and deter-
mines whether the data in question need to be transmitted.
The data block is the unit of data and the unit of transmission.
Network influences how the data are transmitted, as well as the
speed of data transmission. Consequently, the data and network
models need to be clearly described.

C. Data Model

One of the data features is that data can be divided into
many data blocks. A data block not only represents independent
data for use but also can be divided again into smaller data
blocks. Therefore, the data and data block have the same
characteristics. The difference between them is that the data
block is usually smaller than the full data set. Generally, before
data processing begins, the complete information is called data.
The results of data block processing are called data blocks.
Thus, the same model could be used to describe data and data
blocks. Data may contain or intersect with one another or be

IEEE SYSTEMS JOURNAL

Fig. 3.

Data blocking example.

independent. In the data transmission process, whether the data
need to be transferred depends on whether they are stored in the
datacenter. Therefore, the data storage location is an important
data attribute.

The data model can be described as follows:

Id = {dn,lcs, S, E}.

1) dn is the data name.

2) les = (Is, cs) represents the number of lines and columns
of data Id.

3) S ={Ck,,Chy,...,Ck,} represents the data storage
location. This is a collection of datacenters, which
means that data dn are distributed in datacenter
Chyy Chyy oo, Cr;. C = {C1,C4, ..., Cy}is acollection
of all datacenters; Cy, , Ck,, . . ., Cj, belong to C. 7 is the
number of datacenters where data Id are stored.

4) E=(FEy, Es,...,E,;) records the division process of
generated data dn, whereas E; = (Dn;, F;) reflects the
relationship between dn and Dn,. Data dn are obtained

directly or indirectly by the data Dn,; diced. F; : (Z) =

(fi(z)
fi2(y)
umn function of data dn and data Dn;. f;;(x) is the
line function, and f;2(y) is the column function; these
may be linear or piecewise functions. v;; is the defined
domain of f;;(z), whereas ;5 is the defined domain of
fi2(y). Moreover, u and v represent the data line and
column variables, respectively, of data Id. If F;, =
(Dni+1, Fi+1), then E; and Ei+1 meet F; < Ei+1. Data
Dn; can be completely represented by Dn;yq. That is
to say, data Dn; are obtained by directly dividing data
Dn,; 4. Consequently, data dn is the data block that data
Dmny divides directly into. Data Dn,, are the raw and
undivided data. Finally, m is the number of partitions
from the original data to data dn.

)(JU € Y1,y € ;) represents the line and col-

For example, data 1 dez 'ns» Which is one data block divided
by raw data Idc, », in datacenter C, , needs to be transmitted
to datacenter Cy, (see Fig. 3).

Data Id can be represented as follows:

Idck17”1 = {Idcklﬂlu {Clﬁ }7 (77 12)7 <(Idck1m1) F)>}

()

(5)(1§x§7,1§y§12)-

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SONG et al.: LARGE-SCALE DATA FLOWS IN A MULTIDATACENTER COMPUTING SYSTEM WITH PETRI NET 5

Data Id; is denoted as follows:

Idez,ng = {Idckz,’nzﬂ {Ck13Ck2}7 (43 5)7 <(Idck1 N F)>}

U T —2
. = <z < <y <
F(v) <y_6)(3_z_6,7_y_11).

The data model reflects not only the storage location of data
but also the relationship between the data. In the following,
we need to define several operations between data, such as
contain, intersect, union, and subtract. These are similar to
the concepts used in discrete mathematics; however, they have
specific meanings in the field of data processing. We first
assume there are data /d¢, ; and data Idc, ;.
Idel,i = (d?’LZ‘, Si7 lCSi7 Ei), Ei = <Ei17 Eig, .

01ally Eim1 = (Dnlml 5 Fzml)

O) [—

2 Eim,), spe-

v

Idckz,j = (dnj, Sj, lCSj, Ej), Ej = <Ej1, Ejg, ..
01a11y Ejmg = (Dnjm27ij2)

Fim (u> N <§j:igg) (2 € Yjma1,Y € Yjmy2)-

v

-Ejm,), spe-

1) Contain means that a piece of data is part of another
one, represented by C or D. For example, [dck17i D)
Idc,, ; means that data Idc,, ; and data Idc, ; satisfy
Dnjp, = Dnjp, and ¥jm,1 € Yimg 1, Vjma2 € Yim,2-
If data Idc,, ; and Idc,, ; meet Idc, i 2 Idc,, ; and
Idel,i - IdckQ,j, called data Idel,i equals to data
Ide2,j represented by Idc, ; = Idc,, ;.

2) Intersect refers to the overlapping area between two data,
represented by N. For example, Idc, ;N Idc,, ; # ¢
means that data Idc,,; and data Idc, ; satisfy
Dniml = Dnjmg’ wjmgl N ¢im11 7& ¢’ and
Yima2 N Vimy2 # ¢ It Ide, N 1Ide,, j = ¢, that
is to say Dnim, 7# DNjmys Vimae1 N Pimg1 = @, OF
Yima2 N Vim,2 = ¢, called data Idck2 .j and data Idck1 i
Independent. For remote sensing image processing, the
block would have a fixed overlapping border area.
Therefore, two independent data refers to no other
overlapping part except a fixed overlapping boundary
area. The intersection of two data is expressed as
Idckl_’i N Idck2 g = (dnq, Sq,lcsg, Eq), Sq=95;US8;,

Eqm = (an'rnan'rn)a qu : (U> = (fqml(m))(37 €

v Jam2 (v)

wqml» Yy e ¢qm2)v 77[}qml = 1pimll N wjmgl, 1pqm2 -
’(/}im12 N wjm22~

3) Union means that the two data covering all ranges and
is represented by U. The union of data Idc,, ; and
data Idc,, ; can be expressed as Idc, .U ldc,, ;-
Two data must satisfy Dngp,, = Dnjpy,, constraints
in order to form a union. If Idel,i U Idckw‘ can be
expressed as Idg, i Uldc,, ; = (dng, Sy, lcsy, Ey),
then Sg = Si n Sj, Egm = (Dngm, Fgm)’
qu : (Z) = (;jz;gzg)(x € '(/)gmlay € wng),
Ygm1 = Vim,1 U Vjmat1, Ygm2 = Vimy2 U Wjmao.

4) Subtract means that [dck17i NI dckwj is removed from
the data Idc,, . as represented by Idc, . — Idc,, ;-
If Idckui — IdeQ-,j = (dTLh,Sh,ZCSh,Eh), then

Sh - Sz Ehm = (Dnhmthm), Fhm : (1;) -

(?Z:;Ezi >(‘r € YVhm1,Y € Yhm2)s Yhm1 = Yimy1 —

Yimi1 N Uimats Vhm2 = Vimi2 — Vimy2 N Vjima2.

D. Network Model

Datacenters interconnect using a high-speed bandwidth. Data
generally need to be divided when transmitting data great deal
of information. For traditional data transmission, the band-
width is the major parameter influencing the speed of data
transmission. Other parameters have little influence that can be
ignored, such as network delay and the time interval between
continued data blocking. When the data scale grows larger and
larger, such parameters cannot be ignored because they have
increasing influence on data transmission. Therefore, data block
transmission must consider not only the impact of the network
bandwidth but also the impact of the network delay, overhead,
and the time interval between continued data blocking. There-
fore, the network model can be represented as follows:

N ={L,o,9,B}

1) L: an upper bound on the latency or delay when trans-
mitting a small data block from datacenter to another
datacenter [10].

2) o: the overhead defined as the length of time wherein a
datacenter’s processor is engaged in the transmission or
reception of each message; during this time, the processor
cannot perform other operations [10].

3) g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive mes-
sage reception at a processor. The reciprocal of g cor-
responds to the available per-processor communication
bandwidth [10].

4) B: bandwidth, the matrix of bandwidth among data-
centers.

IV. METHODS OF IMPROVING THE DATA
TRANSMISSION RATE

This section analyzes approaches to improving the large-
scale data transmission rate among datacenters. Considering the
new transmission features among datacenters and the limita-
tions of the previous data transfer strategy, we propose several
methods to increase the transmission rate among datacenters as
follows.

1) Data reuse: In the context of maintaining data consis-
tency, data reuse means using a data copy for transmission
or processing. This reduces not only the amount of data
to be transmitted but also the data transmission time,
because the optimal path is selected.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

2) Data subblock: In the process of data transmission or
processing, particularly for large-scale data, data sub-
blocking means dividing data into blocks according to
a special data processing algorithm in order to facilitate
data transmission and processing. This can achieve the
goal of the block transmission and avoid rechunking for
data processing.

3) Data cache: A data cache is temporarily saved data for
read or reread purposes. For example, when data are
transmitted through a datacenter, they are temporarily
stored in the datacenter and can be used within the
validity period. When the number of data transmissions is
minimized, the cache increases the number of data copies.

4) Multipath transmission: Multipath transmission refers to
the selection of multiple paths to transfer data. This
generally relates to data blocking. If we divide data into
several data blocks and transmit them through multiple
paths, this will increase the data transmission rate and
make the distribution of data as uniform as possible.

Under the premise that no additional transmission tasks are
used, data reuse and data cache increase the number of data
copies as much as possible. The data subblock and multipath
transmission increase the transmission rate from one-path trans-
mission to multipath transmission. This means that parallel data
transmission is achieved. At the same time, the data subblock
strategy matches the algorithm, reducing the number of /O
operations and the processing time. Consequently, data reuse,
data cache, data subblock, and multipath transmission improve
the data transmission and processing efficiency in different
ways.

The data transfer scenarios in a multidatacenter strategy may
be divided into the following four cases: a single data source —
single datacenter, a single data source — multiple datacenters,
multiple data sources — single datacenter, and multiple data
sources — multiple data sources. This paper mainly considers
the case of a single data source — single datacenter and
multiple data sources — single datacenter.

Single data source — single datacenter means that there is
only one datum stored in one datacenter. For this kind of trans-
mission scenario, the methods of improving data transmission
efficiency are combined using data subblocking and multipath
transmission.

Multiple data sources — single datacenter means that there
are several data or data copies stored in several datacenters. For
this kind of transmission scenario, the methods of improving
data transmission efficiency are combined using data reuse,
data subblocking, and multipath transmission.

In the above two cases, the key issues are the data blocking
strategy and the multipath selection. First, the data block not
only meets the requirements of transmission for the data block
size—if the data block is too small, this will increase the
number of data being transmitted and the data transfer network
latency—but also makes full use of the blocking algorithm
for processing data. The data block not only ensures that data
can be freely split but also meets the traceability requirements.
Another key issue is the basis for the selection of multiple
paths. Multipath selection requires consideration of the data

IEEE SYSTEMS JOURNAL

transfer rate; at the same time, data processing flow information
is fully used, and datacenters require as much of these data as
possible. Finally, the most pressing problem is how to match
data blocks with multiple paths. There are two issues when it
comes to transmitting data blocks: One is how to select more
appropriate paths, and the other is how many data would be
most appropriate for each path. The optimal transmission rate
can be achieved according to the proportion of the bandwidth
allocated for the data block size (deduced from the optimal
solution by the least squares method). The data block cannot
be divided down in an unlimited capacity, because the more
data blocks, the more o and g time will be required in data
transmission. In order to achieve a better transmission speed,
it is necessary to meet the limiting conditions of the minimum
data block size and make the ratio of data block size as close to
the ratio of the bandwidth as possible.

Taking advantage of the proposed methods to improve the
data transfer rate, the optimal data transfer processing strategy,
which running on a multidatacenter system, is proposed below.

1) Checking whether datacenter Cj, stores data Idc, , or
not. There are three data processing cases. In the first,
there are integral data Idc, ., so data transfer is not nec-
essary. In the second, there are no data I'd¢, ,, so integral
data need to be transferred before step 3 is performed. In
the last case, part of the data Idc, , is stored, so that the
remaining part of the data is transferred before step 2.

2) Computing the size of data that needs to be transmitted,
equal to I'dc, », — Idc, n,q, then go to step 3.

3) Retrieving target data Idc, , or Idc, » — Idc, n,q. The
retrieval conditions are a subset of the target data and a
collection containing the target data.

4) Retrieving the maximum bandwidth path. First, it is
necessary to statics the datacenter that stores the data
sets retrieved in step 3. Then, the optimal path for each
datacenter to the destination datacenter C}, is calculated.

5) Sorting the data. First, the data are sorted in ascending
order according to the amount of data for each datacenter.
Then, they are sorted in descending order according to the
bandwidth of the datacenter.

6) Taking data sets’ union in the order of step 5, until the
union set contains the target data. Then, the data sets are
stored, and the order relations are retained.

7) Removing the same range of the data block in the order
of the path from short to long.

8) Processing data in reverse order. We assume that the
number of data is j = NUM. The purpose of this step
is to decide which data blocks require transfer. Now,
we may descript the operations using the following
pseudocode:

BEGIN
FOR j: NUM — 1DO
IF j == NUM THEN
IF Id¢, ; N Ide, n # ¢ OR
Ide, ;N (Ide, o — Idc, p.q) # ¢ THEN
Ide, j=Idc, », OR Idg, j=Idc, n—Idcy, g
ENDIF

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SONG et al.: LARGE-SCALE DATA FLOWS IN A MULTIDATACENTER COMPUTING SYSTEM WITH PETRI NET 7

ENDIF
FORwv:j7 — 1DO
IF Idc, ; N Idc, » # ¢ THEN
IdC,y,j = Idcivj NIldc, n—1Idec,
ENDIF
ENDFOR

ENDFOR
END

9)

10)
11)

12)

Checking the size of the data. If the size of data does not
meet the blocking requirements, then the data will wait
for transmission, and step 12 is initiated. If the size of the
data meets the requirements, then step 10 is carried out.
Choosing other paths except the optimal path for the data
that can be divided.

Dividing the data. This corresponds to the select paths
based on the transmission path selecting algorithm.
Ready to transfer data.

V. LARGE-SCALE DATA FLOW MODEL

Based on the above data transfer processing, this section
proposes the large-scale data flow model. This model is divided
into a decision-making model and a transmission model. We
first define the Petri net system.

The constraint token colored Petri net system:

1y

2)

3)

4)

5)

6)

7)

8)

9)

TCPN = {P,T;F,D,C,I,0,N,TCon, K, M}.

P is a finite set of places used to store tokens. Places
represent the state of the data in the data flow model. A
token stands for data or a data block.

T is a finite set of transitions processed for tokens. A
transition refers to processing of data or a data block.

F is a finite set of arcs connecting places and transitions.
F C (P x S)U(S x P).Thisis used to indicate the data
processing order.

D is a finite set of colors. This indicates data attribute
information.

C'is a finite set of color functions representing the corre-
spondence relationship between the state of the data and
data attribute information.

I and O are the input and output arc functions, re-
spectively. I denotes the attribute information that data
should have before the strike transition. O refers to the
attribute information that data should have after the strike
transition.

N is divided into iN and oN. iN represents the constraints
on the number of input tokens for transition T to be
triggered. oN represents the constraints on the number of
output tokens for the transition to be triggered.

K is a set of capacity functions. K : P — N Uw, N =
{1,2,3,...} and w denotes infinite. This represents the
capacity of the places.

MO is the initial token marking. This is the initial condi-
tion for the larger-scale data flow model.

Fig. 4.

th t14

11
0 d13

d4" d11

2
>)t
e
p14

R
U

13

Petri net of the decision-making model.

A. Decision-Making Model

Based on the constraint token colored Petri net system, we
proposed the decision-making model (see Fig. 4).

1y
2)

Idc

3)

4)

TCPN, = {P,T;F,D,C,I1,0,N,TCon, K, M,}.

P={pl<i<14);
T = {t;|1 <i < 14}, t1: submit the requirements of data
transmission (assuming the data are Idc, ,); t2 check
whether datacenter C, stores data Idc, , or not; t3:
check all the subsets of data Idc, , in datacenter Cj; t4:
retrieve the subset of the target data /dc, ,, and collection
containing the target data in all datacenters; ¢5: remove
the part of the data Idc, , ; already in the datacenter
Cr, Idcyn = Idc, n — {Idc, n ;|7 > 1} te: select data
based on the optimal path if the data are the same; ¢7: sort
the data. First, data are sorted according to the ascending
order of the amount of data for each datacenter. Then,
they are sorted according to the bandwidth descending
order of the datacenter; ¢g: the union set is obtained for
all data from front to back, until Uldc, ; first meets
Uldc, ; 2 Id;ty: data

71
i =1de,j = J Ide,» — (Ide, ; — Id) (j = N ...2)
v=1

are obtained; t1g: whether the size of data meets the
requirement of data blocking is determined; ¢;;: several
paths are retrieved based on the data storage location
for separable data; t15: the data Idc, ; are divided and
the data blocks made to meet the constraints. Vx w, st
Idc, j N 1dc, jw = ¢; ti3: the task request is elim-
inated and the task completed; t14: this is a complex
transition representing the data transfer process.
FC(PxS)U(SxP), F={{t.p),)
(t2,p2), (t2,p3), (t2,pa), (p2,t3), (t3,ps), (P5,t5)s
<t57p3>’ <p3;t4>’ <t47p6>’ <p67t6>’ <t67p7>’ <p77t7>’
(t7.ps)s (Ps,ts), (ts,pa)s (Po,ta). (to,P10)s (P10st10),
(ti0,p11), (t10,p13)s (P11,t11) (t11,p12), (P12,t12),
(t12,p13), (P4, t14), (t13, P14)s (t1a, P14), (P13, t14))5

D = {d;|1 <i < 14}, dy: tasks submitted by users; ds:
the intersection of the data Idc, , and the data stored
in datacenter Cj, is a proper subset of data Idc, n; ds:
the intersection of data Idc, , and the data stored in
datacenter ('}, is a null set; d4: the intersection of data
Idc, », and the data storing in datacenter C} is data
Idc, n; ds: the data removed the intersecting part of
data; dg: data set UIdc, ; including the data that contains

<p13t2 5

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Idc, » and the data that Idc, , contains; d;: the data
set Uldc, ; with the optimal transmission path; dg: the
data set Uldc, ; after being sorted; dg: the data set that
first contains the data Idc, »; dio: the data set whose
intersection is empty and union; d;: the data set that
meets the requirements of data blocking; dio: the data
set that is ready to transfer; dy3: the data set with several
transmission paths and is ready to block; dy4: the data set
that does not require transfer;

5) C(p1) = {di1}, C(p2) = {da}, C(p3) = {d3}, C(ps) =
{da}, C(ps) ={ds}, C(ps) ={ds}, C(p7)={dr},
C(ps) = {ds}, C(p9) ={do}, C(p10) ={d10}, C(p11) =
{di1}, C(p12) ={d13}, C(p13) ={d12}, C(p1a) = {d1a};

6) VteT=1(t)—>D,0(t)—D: I(t;)=¢, I(ta)={d1},
I(ts) = {do}, I(ta)={ds}, I(t5)={ds},... . I(tn1)=
{di1}, I(ti2) = {d13}, I(t13) = {da}, I(t14) = {d12};
O(t1) ={d1}, Of(t2) = {da,ds,ds}, O(ts) = {ds},

O(ts) ={ds}, O(ts) ={ds}, Of(te) = {dr}....,
O(tg) = {dio}, O(tio) = {di1,d12}, O(t1) = {di3},
O(t12) = {d12}, O(t13) = {d1a}, O(t1a) = {d1a};

7 VteT = N(t) = (n1,n2)(n1,ne € Z), ny is the
input constraints for the number of tokens before touch
off transition, ny is output constraints for the number
of tokens after touch off transition, N(t1) = (¢, n),

N(tz2) =(1,1), N(t3) =(L,n), N(ts) =(1,k)
N(ts) = (n,1), N(te) = (k,k), N(t7) = (k,k),
N(ts) = (k,m), N(tg) = (m,p), N(tio) =
(p.p1 +p2), N(tin) = (p1.p1), N(ti2) = (p1,9)

N(t13) = (1,1), N(tw) = (p2+¢q,1), n,k,m,p>1,
P1,p2,¢ > 0,andp <m < k,p=p1 +p2,p1 < ¢

8) K(p1) = K(p3) =n, K(p2)=K(ps) = K(p1a) =1,
K(p;))=n(i=5...13);

9) My = {k,0,0,0,0,0,0,0,0,0,0,0,0},1 < k < n.

B. Transmission Model

In the decision-making model, transition ¢14 is a complex
transition and represents the transmission process. When data
are transferred to a datacenter, the datacenter not only transfers
data but also judges whether to save these data. Therefore, we
need give the transmission model.

The following gives the basic process of data processing
when the data are transmitted to a datacenter.

1) Storing a copy of data Idc, ,, when it is transmitted to

datacenter C}, .

2) Transferring the data to other datacenters.

3) Judging the relationship between data Idc, ,, and data
that are stored in the datacenter. If there are data contain-
ing data Idc,, », then the copy of data Idc, , is deleted.
If there are data that data Idc, ,, contains, then they are
deleted. If all data intersect data Idc, , equal to the null
set, then data Idc, ,, are stored. If the intersection is not
equal to the null set, then the intersection is removed and
the last is stored.

According to the above data processing, the transmission

model is as shown in Fig. 5.

TCPN, = {P,T;F,D,C,1,0,N,TCon, K, My}.

IEEE SYSTEMS JOURNAL

Fig. 5.

1y
2)

3)

4)

5)

6)

7

Petri net transmission model.

P ={p;|1 <i <10}

T = {t;]1 <4 <9}, ty: transfer data Id to datacenter
C',; to: produce a copy data of data Idc, ,; t3: transfer
data Idc, , from datacenter C, to other datacenters; ¢4:
retrieve the relationship between data Idc, ,, and the data
that is stored in datacenter C},, . There are three relations:
ANB=¢, B2 A, A— B # ¢; t5: determine whether
the data can be merged; ¢4: delete the data set where data
Idc, ., minus them not equal to null set; ¢7: delete the
copy of data Idc, »; ts: merge data that can be merged
with data I'd¢, ,; to: archive data

FC(PxS)U(SxP), ={({t1,p1), (p1,t2),
(t2,p2), (p2,t3), (p2,ta), <p2, ta), (ta,p3), (ta,pa),
(tasps), (p3,ts), (Paste)s (Psitr), (tsspe), (ts,p7)s
(te,pa), (t7.p10), (D6,ta), (p7,t8), (ts.p8), (Ps,la),

(P9, ta), (to, pr0) }3

D = {d;|1 <i <10}, d;: the data transferred to data-
center Cy,; do: the data transferred to datacenter Cf,
and its copy; ds: the data set that intersects with data
Idc, » equal to the null set; dy: the subset with data
Idc, », minus the data stored in datacenter CY, that is
not equal to the null set; ds: the data set that contains
data Idc, n stored in datacenter C'y, ; dg: the data set that
cannot be merged with data Idc, ,; dr: the data set
than can be merged with data Idc, ,; dg: the data set
after merging with data I'dc, ,; dy: the data set with the
portion already stored in datacenter C}, removed; do:
the data set archived in datacenter C'y ;

C(p1) = {d1}, C(p2) = {d2}, C(p3) = {ds}, C(ps) =
{da}, C(ps) ={ds} C(ps) ={ds}, C(pr)={dr},
C(ps) = {ds}, C(po) = {do}, C(p10) = {dro}s

VteT = I(t)— D, Ot)— D: I(t1) =¢, I(tz) =
{di}, I(ts) ={do}, 1I(ta) ={d2}, I(t5)={ds},
I(ts) = {da}, I(t7) ={ds}. I(ts) = {dr}. I(ts)=
{dg,ds,do}; O(t1) = {dr}, O(t2) = {d2}, O(t3) = ¢,
O(ts) = {ds,ds,ds}, O(ts) ={dr}, O(ts) = {do},
O(t7) = {dio}, O(ts) = {ds}, O(t9) = {d1o};

N :VteT = N(t) = (n1,n2)(n1,ny € Z), ny repre-
sents the input constraints for the number of fokens before
the touch off transition, ny denotes the output constraints
for the number of tokens after the touch off transition,
N(t) = (6,1), Nt2)= (1,2, N(ts) = (L,1),
N(tq)=(1,k(k1 + ko + k3)), N(t5)=(k1, k11 + k12),
N(tg)=(kz2,m), N(t7)=(ks,ks), N(ts)={(k12,n),
N(tg) <k11 +n+m,k11 +n+m>, kz].,]ﬂl, kz,

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SONG et al.: LARGE-SCALE DATA FLOWS IN A MULTIDATACENTER COMPUTING SYSTEM WITH PETRI NET

{1,0,0,0,0,0,0,0,0,0,0,0,0,0}

{0,0,0,1,0,0,0,0,0,0,0,0,0,0}

{0,0,0,0,0,0,0,0,0,0,0,0,0,1}
Fig. 6. Reachability tree for case 1.

ks, k11, k12, m, m all greater than or equal to O,
k=ki+ky+ ks, k1 = k11 + k12, n < kig, m < ko;
8) K(p)) =n(i=1...10), K(p2) = 2K (p1);
9) M, ={1,0,0,0,0,0,0,0,0,0}.

VI. VALIDITY ANALYSIS
A. Types of Graphics

Validity analysis is necessary for a model based on Petri
net to ensure the success of the model in practice. For the
decision-making model and the transmission model, we analyze
the structure to verify correctness. The main work in structure
analysis is reachable analysis. We can build reachability trees
for the decision-making model and the transmission model to
validate their reachability. The judgment conditions related to
whether Petri net is reachable or not are as follows.

1) The initial value only has the root node, i.e., the initial

state MO.

2) We assume that x is a leaf node. If any transition cannot
occur before ID x, then we call x a proper leaf node; if
another node y is on the path from the root node to X,
but My = Mx, then x is also called a proper leaf. If all
of the leaf nodes in the model are proper leaf nodes, the
algorithm is terminated.

3) If there exists a leaf node that is not a proper leaf node in
the model, at least one transition has occurred.

For the decision-making model, the initial state is My =
{1,0,0,0,0,0,0,0,0,0,0,0,0,0}, while the termination status
is {0,0,0,0,0,0,0,0,0,0,0,0,0,1}. There is a conditional-
decision transition in the decision-making model. In order to
clearly verify the reachability, we divide three cases to model
the reachability tree: 1) The data are stored in the target data-
center, as shown in Fig. 6; 2) the data are not stored in target
datacenter at all, as shown in Fig. 7; and 3) part of the data
is stored in the target datacenter. For this case, the initial state
is described as M, = {1,0,0,0,0,0,0,0,0,0,0,0,0, A1} be-
cause of the assumed conditions, as shown in Fig. 8.

The number of tokens in the reachability tree in Fig. 7
satisfies the following conditions:

Uldy D Id,al > 1
Uldyy = Uldgs = Uld,o = Uldg
a2>a3>ad>1
ad = a4l + a42
a4l > 0,a42 > 0

adl,ad2
U 1d;=1d.
J

{1,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,1,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,a1,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,a2,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,a3,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,a4,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,a4,0,0,0,0}

{0,0,0,0,0,0,0,0,0,0,a41,0,0,0} {0,0,0,0,0,0,0,0,0,0,0,0,a42,0}
v
{0,0,0,0,0,0,0,0,0,0,0,a41,0,0}

{0,0,0,0,0,0,0,0,0,0,0,0,a41,0}

{0,0,0,0,0,0,0,0,0,3,0,0,0,341 +ad2}

{0,0,0,0,0,0,0,0,0,0,0,0,0,1}

Fig. 7. Reachability tree for case 2.

{1,0,0,0,0,0,0,0,0,0,0,0,0,A1}
{01 ,0,0,0,0,&0,0,0,0,0,0,A1}
{0,0,0,0,1+A1,0,0,0,0,0,0,0,0,A1}
{0,0,A2,0,0,0,g,0,0,0,0,0,0,M}
{0,0,0,0,0,A3,0,0,0,0,0,0,0,A1}
{0,0,0,0,0,0,A4,0,0,0,0,0,0,A1}
{0,0,0,0,0,0,0,A5,0,0,0,0,0,A1}
{0,0,0,0,0,0,0,0,A6,0,0,0,0,A1}
{0,0,0,0,0,0,0,0,0,A6,0,0,0,A1}

{0,0,0,0,0,0,0,0¢0,0,A61,0,0,A1}

{0,0,0,0,0,0,0,0,0,0,0,A61,0,A1}

{0,0,0,0,0,0,0,0,0,0,0,0,A61,A1}

I
{0,0,0,0,0,0,0,0,0,0+,0,0,0,A61+A62+A1}

{0,0,0,0,0,0,0,0,0,0,0,0,0,1}

Fig. 8. Reachability tree for case 3.

The number of tokens in the following tree satisfies these
conditions:

Id,Uld C Id, Al > 1
UIdas = Id — UIday, A2 > 1
UIdag = UIdas = UIdas = UIdas = UId s
A3> A4 > A5 > A6 > 1
A6 = A61 + A62
A61 >0, A62 > 0

A61,462,A1
U 1d;=1d

J

For the data transmission model, the initial state is My =
{1,0,0,0,0,0,0,0,0,0,0,0,0,0}, while the termination status

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

{1,0,0,0,0,0,0,0,0,0}

{0,1,0,0,0,0,0,0,0,0)

(0,0,0,1,0,0,0,0,0,0} {0,0,0,0,1,0,0,0,0,0}

(0,0,0,0,0,1,0,0,0,0} (0,0,0,0,0,0,1,0,0,0)

{0,0,0,0,0,0,0,0,1,0} {0,0,0,0,0,0,0,0,0,1}

{0,0,0,0,0,0,0,0,0,1} {0.0,0,0,0,0,0,1,0,0} {0,0,0,0,0,0,1,0,0,0}

{0,0,0,0,0,0,0,0,0,1} (0,0.0,0,0,i),0.1,0,0}

{0,0,0,0,0,0,0,0,0,1}
Fig. 9. Reachability tree of the data transmission model.

is {0,0,0,0,0,0,0,0,0,0,0,0,0,1}. The reachability tree is
shown in Fig. 9. The imaginary line shows that only one path
can be activated at one time.

VII. RELATED WORK

Data flow management has been extensively studied, and as
a result, it is well documented in related literature [16]—[18].
Much of this research has aimed at automating the execution
and enhancing the performance of workflows in parallel and
distributed systems [24], as well as scheduling and sending jobs
to compute nodes that are “close” to the requested data [25],
[26]. Some of this research has also utilized Petri nets or DAG
to model workflow execution [6]. However, we had noted that in
some cases, some data copies and data caches are not utilized.

Kosar and Balman in [16] discussed the limitations of the tra-
ditional schedulers in handling the challenging data-scheduling
problem of large-scale distributed applications and provided a
vision of a new paradigm in data-intensive scheduling. More-
over, they carried out a case study of the Stork data placement
scheduler. Importantly, the level parallelism and concurrence
increased, and for local area transfers, the transfer rate reached
a threshold, after which time they had a negative impact on the
transfer rate. However, the transfer rate incurred in the wide
area transfers increased as expected. The interesting observa-
tion is that the use of a combination of concurrence and paral-
lelism can result in higher performance than using parallelism
only or concurrence only. For a Stork with multiple connections
or single connections, the transfer speed slightly improved.
However, Stork involves end-to-end workflow, improving the
performance by increasing parallelism and concurrence levels.
Unfortunately, it does not consider the optimization of multiple
transmission paths. Transmitting data with a single destination
easily leads to the blocking of a single path.

Compared with pure orchestration and pure choreography,
Barker et al. in [17] introduced a hybrid architecture to
workflow enactment based on centralized control flow and
distributed data flow; they discussed web-services-based imple-
mentation that would decrease intermediate data and network
traffic. However, they focused on a single path and did not
consider reusing data duplicates and data caches.

Reference [6] modeled scheduling nets and job nets based on
Petri net techniques and proposed a hierarchical colored Petri
net for a scheduling net designed into four levels according
to the granularity of parallel applications. The hierarchical
scheduling model made each level scheduling pay attention

IEEE SYSTEMS JOURNAL

only to its responsibility and reduced structural complexity.
However, it did not consider multipath transmission and did not
attempt to use data copies and caches. A general scheduling
framework [7] modeled by Petri net was proposed located
on the layer of the grid scheduler, but this is only used for
independent tasks in a computational grid.

Compared with these models, the traditional data transmis-
sion strategy generally uses a single path to transmit data with
a single destination. The new model can avoid this effectively
and improve data transmission as much as possible.

VIII. CONCLUSION AND FUTURE WORK

This paper has discussed a large-scale data flow model in
multiple-datacenter architecture. First, we gave a detailed dis-
cussion of the new features and challenges in the research prob-
lem of transferring data among multiple datacenters. Second, in
order to adapt these new features and challenges, we proposed
four methods to increase the data transmission rate, specifically
data reuse, data subblocks, data cache, and multipath trans-
mission. Third, based on these methods, this paper defined a
general multidatacenter. Then, models for data stored in the
datacenter and a network between datacenters were proposed.
A multiple-datacenter model was also proposed in this paper.
Such models consider new features introduced by datacenter,
for example, finite data sources and transmission paths. Based
on these models, this paper gave a large-scale data flow model
consisting of a decision-making model to transfer data and
a transmission model. Then, we validate the decision-making
and transmission models using reachability tree technologies.
Validity analysis showed that the models are valid.

In the future, we will optimize these models further and em-
phasize the blocking algorithm in relation with the processing
algorithm.

REFERENCES

[1] B. R. Barkstrom, T. H. Hinke, S. Gavali, W. Smith, W. J. Seufzer, C. Hu,
and D. E. Cordner, “Distributed generation of NASA earth science data
products,” J. Grid Comput., vol. 1, no. 2, pp. 101-116, 2003.

[2] D. N. Williams, I. T. Foster, and D. E. Middleton, “DOE SciDAC’s earth
system grid center for enabling technologies (final report),” Lawrence
Livermore Natl. Lab., Livermore, CA, USA, ESG-CET Final Progress
Rep. LLNL-TR-501976, Oct. 1, 2006-Sep. 30, 2011.

[3] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,

S. V. Gheorghita, and S. Stuijk, “A scenario-aware data flow model for

combined long-run average and worst-case performance analysis,” in

Proc. 4th IEEE/ACM Int. Conf. Formal Methods Models Co-Design, 2006,

pp. 185-194.

S. Sadiq, M. Orlowska, W. Sadiq, and C. Foulger, “Data flow & validation

in workflow modeling,” in Proc. ACD, Dunedin, New Zealand, vol. 27,

pp. 207-214, Conferences in Research and Paractice in Information

Technology.

H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow

testing as model checking,” in Proc. 25th Int. Conf. Softw. Eng., 2003,

pp. 232-242.

X. Zhao, C. Wei, M. Lin, X. Feng, and W. Lan, “Parallel applica-

tion scheduling model based on petri net with changeable structure,” in

Advances in Petri Net Theory and Applications.. Rijeka, Croatia: Sciyo,

Sep. 2010, ch. 9, pp. 153, 175.

[7]1 Z. Hu, R. Hu, W. Gui, J. Chen, and S. Chen, “General scheduling frame-
work in computational grid based on petri net,” J. CSUT, vol. 12, no. 1,
pp. 232-237, Oct. 2005.

[8] Y. Han, C. Jiang, and X. Luo, “Resource scheduling model for grid
computing based on sharing synthesis of petri net,” in Proc. 9th Int. Conf.
Comput. Supported Cooperative Work Design, May 2005, pp. 367-372.

[4

=

[5

—_

[6

—_

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SONG et al.: LARGE-SCALE DATA FLOWS IN A MULTIDATACENTER COMPUTING SYSTEM WITH PETRI NET 11

[9] W. Zhang, L. Wang, W. Song, and D. Liu, “Towards building a multi-
datacenter infrastructure for massive remote sensing image processing,”
Concurrency Comput., Pract. Experience, vol. 25, no. 12, pp. 1798-1812,
Aug. 2013. [Online]. Available: http://onlinelibrary.wiley.com

[10] D. Culler, R. Karp, D. Patterson, and A. Sahay, “LogP: Towards a realistic
model of parallel computation,” in Proc. 4th ACM SIGPLAN Symposium
Principles Pract. Parallel Programm., San Diego, CA, USA, May 1993,
pp. 1-12.

[11] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. Van den
Bussche, “DFL: A dataflow language based on Petri nets and nested
relational calculus,” Inf. Syst., vol. 33, no. 3, pp. 261-284, May 2008.

[12] A. Anjum, “Data intensive & network aware (DIANA) grid scheduling,”
Ph.D. dissertation, Univ. of the West of England, Bristol, U.K., 2007.

[13] S. Venugopal, “Scheduling distributed data-intensive applications on
global grids,” Ph.D. dissertation, Univ. of Melbourne, Melbourne,
Australia, Jul. 2006.

[14] C. Yuan, Petri Net Theory and Application.
House of Electronics Industry, 2005.

[15] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for grid
computing,” SIGMOD Rec., vol. 34, no. 3, pp. 44—49, Sep. 2005.

[16] T. Kosar and M. Balman, “A new paradigm: Data-aware scheduling in
grid computing,” FGCS, vol. 25, no. 4, pp. 406413, Apr. 2009.

[17] A. Barker, J. B. Weissman, and J. van Hemert, “Orchestrating data-
centric workflows,” in Proc. 8th IEEE Int. Symposium CCGRID, 2008,
pp. 210-217.

[18] L. He, C. Huang, K. Duan, K. Li, H. Chen, J. Sun, and S. Jarvis, “Mod-
eling and analyzing the impact of authorization on workflow executions,”
FGCS, vol. 28, no. 8, pp. 1177-1193, Oct. 2012.

[19] Y. Luo and B. Plale, “Hierarchical mapReduce programming model and
scheduling algorithms,” in Proc. CCGRID, 2012, pp. 769-774.

[20] P. Chen, B. Plale, Y.-W. Cheah, D. Ghoshal, S. Jensen, and
Y. Luo, “Visualization of network data provenance,” in Proc. HiPC, 2012,
pp. 1-9.

[21] B. Plale, E. C. Withana, C. Herath, K. Chandrasekar, and Y. Luo, “Effec-
tiveness of hybrid workflow systems for computational science,” ICCS,
vol. 9, pp. 508-517, 2012.

[22] X. Shi, H. Jiang, L. He, H. Jin, C. Wang, B. Yu, and X. Chen, “Developing
an optimized application hosting framework in Clouds,” J. Comput. Syst.
Sci., vol. 79, no. 8, pp. 1214-1229, Dec. 2013.

[23] L. Liu, L. He, and S. A. Jarvis, “Performance analysis for workflow
management systems under role-based authorization control,” in Proc.
GPC, 2012, pp. 323-337.

[24] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Gen. Comput. Syst., vol. 25, no. 5, pp. 528-540, May 2009.

[25] K. Ranganathan and I. Foster, “Decoupling computation and data schedul-
ing in distributed data-intensive applications,” in Proc. 11th IEEE Int.
Symposium HPDC, IEEE Comput. Soc., Washington, DC, USA, 2002,
pp. 352-358.

[26] K. Ranganathan and I. Foster, “Computation scheduling and data replica-
tion algorithms for data grids,” in Grid Resource Management: State of
the Art and Future Trends. Norwell, MA, USA: Kluwer, 2004, ch. 22,
pp. 359-373.

Beijing, China: Publishing

Weijing Song received the Bachelor’s degree from
Henan University, Kaifeng, China, in 2010. She
is currently working toward the Ph.D. degree with
the Institute of Remote Sensing and Digital Earth
(RADI), Chinese Academy of Sciences, Beijing,
China.

Her research interests include remote sensing im-
age processing infrastructures and earth observation
applications.

Lizhe Wang received the B.E. and M.E. degrees
from Tsinghua University, Beijing, China, and the
Doctor of Eng. degree from University Karlsruhe,
Karlsruhe, Germany.

He is a Professor with the Institute of Re-
mote Sensing and Digital Earth (RADI), Chinese
Academy of Sciences (CAS), Beijing, and a
“ChuTian” Chair Professor with the School of Com-
puter Science, Chinese University of Geosciences
(CUG), Wuhan, China. He leads a group at CAS (on
HPC and data-intensive computing) and the Scien-
tific Computing Laboratory at CUG (on scientific cloud computing and GPGPU
computing).

Dr. Wang is a Fellow of the IET and the British Computer Society.

Rajiv Ranjan received the Bachelor’s degree in
computer engineering from North Gujarat Univer-
sity, Patan, India, in 2002 and the Ph.D. degree
in computer science and software engineering from
the University of Melbourne, Melbourne, Australia,
.
4 in 2009.
He is a Senior Research Scientist, a Julius Fellow,

and a Project Leader with the CSIRO Computational

Informatics, Canberra, Australia, where he is work-
-> ing on projects related to cloud and service comput-

ing. Previously, he was a Senior Research Associate
(Lecturer level B) with the School of Computer Science and Engineering,
University of New South Wales (UNSW), Sydney, Australia. He is broadly
interested in the emerging areas of cloud, grid, and service computing. The
main goal of his current research is to advance the fundamental understanding
and state of the art of provisioning and delivery of application services in large,
heterogeneous, uncertain, and evolving distributed systems (cloud, grids, data
center, and web services).

Joanna Kolodziej received the MSD degree in theo-
retical mathematics and the Ph.D. degree in theoret-
ical computer science from Jagiellonian University,
Cracow, Poland.

Since September 1, 2012, she has been an As-
sociate Professor with the Institute of Computer
Science, Cracow University of Technology, Cracow.
Previously, she was with the Department of Mathe-
matics and Computer Science, University of Bielsko-
Biala, Bielsko-Biata, Poland. The current topics of
her research include grid and cloud computing, en-
ergy effectiveness and secure awareness in large-scale distributed systems, data-
intensive computing, and text mining.

Dan Chen received the B.Sc. degree in physics from
‘Wuhan University, Wuhan, China; the M.Eng. degree
with the Institute of Pattern Recognition and Arti-
ficial Intelligence, Huazhong University of Science
and Technology, Wuhan; and the M.Eng. and Ph.D.
degrees with the School of Computer Engineering,
Nanyang Technological University, Singapore.
- | He is a Professor, the Head of the Department of
\\\/ y Network Engineering, and the Director of the Scien-
ba tific Computing Laboratory with Chinese University
of Geosciences, Beijing, China. His research inter-
ests include computer modeling and simulation, high-performance computing,
and neuroinformatics.

http://onlinelibrary.wiley.com

