This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

Variation-Aware Layer Assignment With Hierarchical
Stochastic Optimization on a Multicore Platform

Xiaodao Chen, Dan Chen, Member, IEEE, Lizhe Wang, Senior Member, IEEE, Ze Deng, Rajiv Ranjan,
Albert Zomaya Fellow, IEEE, Shiyan Hu, Senior Member, IEEE

Abstract—As the VLSI technology enters the nanoscale regime, VLSI design is increasingly sensitive to variations on process,
voltage and temperature. Layer assignment technology plays a crucial role in industrial VLSI design flow. However, existing layer
assignment approaches have largely ignored these variations, which can lead to significant timing violations. To address this
issue, a variation-aware layer assignment approach for cost minimization is proposed in this work. The proposed layer assignment
approach is a single-stage stochastic program that directly controls the timing yield via a single parameter; and it is solved
using Monte Carlo simulations and the Latin Hypercube sampling technique. A hierarchical design is also adopted to enable
the optimization process on a multi-core platform. Experiments have been performed on 5000 industrial nets, and the results
demonstrate that the proposed approach (1) can significantly improve the timing yield by 64.0% in comparison with the nominal
design and (2) can reduce the wire cost by 15.7% in comparison with the worst-case design.

Index Terms—Layer Assignment, Variation-aware Design, Stochastic Programming

1 Introduction

S technology enters the nanoscale regime, VLSI

design is increasingly sensitive to process, voltage
and temperature (PVT) variations, and circuit timing is
significantly impacted by variations. In practice, design
without considering variations can lead to significant
impact. For instance, variation of the interconnect re-
sistances along a global timing critical net can make the
net violate its timing constraint, which could even result
in the malfunction of the whole circuit. Therefore, the
variation-aware design is highly desirable for the VLSI
design.

A large multitude of research works have been fo-
cused on statistical variation-aware design. Existing s-
tatistical optimization techniques generally choose gate
sizing as the target problem such as [1], [2]. In these
methods, each circuit parameter is characterized by
a probability density function (PDF) to account for
the variational effects in contrast to a single deter-

e X. Chen, D. Chen, L. Wang and Z. Deng are with the
School of Computer Science, China University of Geo-
sciences, Wuhan, 430074, P. R. China. (Corresponding au-
thor: Dan Chen, e-mail: dan.chen@ieee.org and Lizhe Wang,
Lizhe. Wang@gmail.com).

e D. Chen is also with the Collaborative & Innovative Center for
Educational Technology, P. R. China.

o L. Wang is also with the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences. Beijing, P. R.
China.

e R. Ranjan is with the CSIRO Computational Informatics Di-
vision, Australia.

o A. Zomaya is with the School of Information Technologies, The
University of Sydney, Australia.

e S. Hu is with the Department of Electrical and Computer
Engineering, Michigan Technological University, Houghton,
MI, 49931, USA.

ministic value as in deterministic design. They often
need the assumption on variation distribution such
as Gaussian distribution which limits the applicability
of the techniques. There are some existing variation-
aware optimization techniques without probability dis-
tribution assumptions such as an interval arithmetic
based technique proposed in [3]. The problem with this
technique is that it is not always accurate to use interval
arithmetic to approximate any probability distribution.

In VISI design, layer assignment, which is to assign
wires to different layers, is a powerful technique to
effectively reduce the interconnect delay. It has been
heavily used in the industrial physical synthesis flow
[5]. Since wires on the thick metal layers have much
smaller resistances compared to those on thin metal
layers, assigning wires there can effectively reduce the
delay. Layer assignment for efficient timing closure has
been considered in [6] where the problem is formulated
as using minimum amount of wire resources to meet
a timing target for a given buffered routing tree. This
formulation is particularly interesting when design pro-
ceeds to the late stage of a physical synthesis flow [7].
At such stage, layout tuning which leads to significant
Engineering Change Orders (ECOs), needs to be avoid-
ed. Meanwhile, layer assignment is desired because it
only needs to change wire layer but not gate locations
[6]. With the above formulations, Zhuo et al. proposed
an approach to perform concurrent buffer insertion
and layer assignment and Shiyan et al. proposed a
polynomial time approximation scheme for minimum
cost layer assignment [5], [6]. However, they do not
consider variations which are quite important and may
significantly impact the design. There are some previous
works on variation related layer assignment techniques,
such as the redundant via insertion enhanced maze

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

routing [9] and the lithography aware detailed routing
[11]. However, they are focused on specific type of
variations . The other issue with the polynomial time
approximation scheme for minimum cost layer assign-
ment [6] is their assumption that every wire between
adjacent set of buffers is assigned to the same layer, i.e.,
no cross-layer assignment is allowed. This is appropriate
for the designs in the early stage but not in the late
stage. It is well-known that in the late stage, cross-layer
assignment is very useful for the router to further tune
the wire shapes/layer assignment to reduce coupling
[8], optimize vias [9], and improve timing [10]. To
address issues mentioned before, this work considers a
variation-aware layer assignment approach which can
deal with general variation models and allow cross-layer
assignment. We propose a layer assignment approach
based on a stochastic programming method to achieve
above goals.

The proposed approach aims to minimize the wire
cost with timing constraints using stochastic program-
ming. The approach is focused on the general variation
models with a systematic Monte Carlo simulation. In
this way, the proposed approach can handle variations
without any assumptions on variation models. More
importantly, this work considers the variations in dur-
ing the layer assignment the late design stage in which
there is no significant ECOs occur. This work also
modifies/improves the classic stochastic programming
framework to a new single-stage stochastic program-
ming. In general, stochastic programming is a powerful
technique in handling the design with variations. The
previous work [4] uses the stochastic programming for
the continuous gate sizing problem but not for the
discrete layer assignment problem. It follows the classic
two-stage stochastic programming framework; and it
only minimizes the expected delay and cannot directly
control the timing yield. As a result, they usually
achieve the yield 100% in their simulations (see [4])
indicating the waste of the resources. Observing the
above critical limitation, the classic stochastic program-
ming framework has been largely modified/improved in
this work. Our stochastic programming is a single-stage
stochastic programming technique, which is able to
directly control the timing yield via a single parameter.
It is able to handle the variation-aware optimization on
layer assignment from a global point of view and does
not need assumptions on the variation distributions.
In addition, the hierarchical optimization allows the
stochastic program to be parallelized in a multi-core
computing environment. Furthermore, the proposed ap-
proach uses the Latin Hypercube sampling techniques
for efficient Monte Carlo simulations. The main contri-
butions of the paper is summarized as follows.

o A stochastic programming method is proposed for
variation-aware layer assignment with timing con-
straints and cost consideration. It allows the usage
of a parameter to control the yield of the obtained

layer assignment solution.

e The stochastic programming formulation is able to
handle the variation-aware optimization on layer
assignment from a global point of view; and it
does not need the assumptions on the variation
distributions.

e The new algorithm can significantly improve the
timing yield compared to the nominal design and
significantly reduce the wire cost compared to
worst-case design.

The rest of the paper is organized as follows: Section 2
introduces integer non-linear programming based layer
assignment without considering variations, which is
also the foundation for the proposed variation-aware
design. Section 3 studies variations in layer assignment
and proposes a parallel stochastic programming based
variation-aware layer assignment. Section 4.2 presents
the experimental results with analysis. A summary of
work is given in Section 5.

2 Integer Non-linear Programming Based
Layer Assignment Approach

For the ease of presentation, this work first studies
the layer assignment method without considering the
variations which is based on the integer programming.
This method is also the foundation for our proposed
variation-aware design which will be introduced in the
next section. The following subsections describe the
problem formulation and integer programming formu-
lation for layer assignment without considering varia-
tions.

2.1 Problem Formulation

Without considering the variations, our minimum cost
layer assignment formulation with timing constraints
follows the one in [6]. For completeness, they are in-
cluded as follows. A buffered routing tree 7 = (V, E)
is given as the input where V' consists of driver, sinks,
Steiner nodes and buffer locations. £ C V x V and
let n = |V|. Denote by v,, Vi(T), Vp(T) the driver, the
set of sinks and the set of buffers, respectively. The
buffers in the buffered tree can be computed by various
buffering techniques such as [14], [15]. Given a buffer
b, denote by Cy, Ry, K the input capacitance, driving
resistance and intrinsic delay, respectively.

A set of m routing layers, denoted by L =
{l1i,1a,...,l;m}, are also given. Given an edge e = (u,v)
on a layer [, let D.; denote its delay. In this work, for
the simplicity in illustrating out approach, the Elmore
delay model is adopted which is widely used in physical
synthesis [5]. Namely, D.; = Re; - (Cei/2 + C(v))
where R, ;,Ce;, C(v) refer to the edge resistance, edge
capacitance and load capacitance viewing at the end-
point of the edge, respectively. Note that the accuracy
of the Elmore delay model can be further improved
by the technique in [16]. In fact, since our problem is
formulated as a general non-linear integer mathematical

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

cost,,= 40 delay,,=20

m
s : i

. I

l i cost,= 15 delay,=28 |}
l3 1 cost,= 10 delgy7:30 !
1 cost; = elay, = I
21 8 delay,=36 |
L 1 i
> n

driver sink

Fig. 1. An example on layer assignment.

program, more complicated and accurate delay model
can be used.

Each sink in v € Vi(T) is associated with a sink
capacitance denoted by C, and a required arrival time
denoted by RAT(v). RAT (v) specifies the latest time
a signal needs to arrive at the sink v. The driver v, is
associated with an arrival time, denoted by AT (driver).
A net is said to satisfy the timing constraint if the
arrival time at each sink is no greater than its required
arrival time. Equivalently, this means that the required
arrival time at the driver is no earlier than its arrival
time AT (driver). Given an edge e on a layer [, denote
by we,; the cost of the edge. For example, wire cost
could be defined using wire area or wire congestion
estimation. In this paper, to illustrate the effectiveness
of the approach, wire area is used as in [6]. Let tree
cost denote the cost of a layer assignment for the whole
tree. It is defined as the sum of the costs of all the edges
in a layer assignment solution. Our problem is to meet
a timing target by layer assignment with minimal tree
cost. It can be formulated as follows [6].

Timing Constrained Minimum Cost Layer Assign-

ment:
Given a buffered binary routing tree 7 = (V,E), a
set of routing layers L, and cost of each wire on each
layer, to compute a layer assignment solution such that
the required arrival time at driver is no earlier than its
arrival time and the tree cost is minimized.

Take Figure 1 as an example, there are m layers
for the simple driver sink tree, where each layer costs
differently. The larger cost layer has less timing delay.
It is desirable to find the layer which satisfies the
timing constraint with minimum cost. Suppose the time
constraint for Figure 1 is 32, layer [, will be assigned.

2.2 Integer Programming Formulation For Layer
Assignment Without Considering Variations

We first formulate timing driven layer assignment prob-
lem as an integer programming problem. This is in
the same spirit as the dynamic programming formu-
lation in [14], [6]. Note that the timing driven layer
assignment problem without considering variations is

Fig. 2. A modified routing tree where more nodes are
added without changing the topology of the tree.

already an NP-complete problem as shown in [6]. For
the convenience of illustration, the routing tree will be
modified by adding some nodes to form some zero-
length wires. Precisely, it is modified such that there
is one node immediately before and one node imme-
diately after any buffer location. In addition, a node
will be introduced to each branch at a branching node.
Refer to Figure 2 for an example. The wire between
any adjacent nodes are classified into three categories,
namely, standard wire, branch wire and buffer wire.
A branch wire refers to a zero-length wire formed
by adding extra nodes at the end of each branch. A
buffer wire refer to a zero-length wire formed by adding
extra nodes before and after a buffer. All other wires
are standard wires. In Figure 2, wires (8,4), (8,7) are
branch wires, wires (10,9), (3,2) are buffer wires, and
wires (2, 1), (4,3), (6,5),(7,6), (9,8) are standard wires.
The constraints associated with each type of wires are
formulated as follows.

Standard wire: Given a standard wire e, introduce
binary variables x. ; for the layer assignment on e. That
is, let x.; = 1 denote assigning e to layer [. For any
edge e, it can only be assigned to one layer. Thus,
Tel, + Tely + ooy T2y, = 1. Given a node v, let
Q(v) denote the required arrival time at v and C(v) the
downstream capacitance when viewing at v. Recall that
R, C., denote the wire resistance and capacitance of
e when assigning e to layer [, respectively. Consider a
standard wire e = (u,v). Q(u) can be computed as
Q) = Q) — S [R(e,) - [Cle. 1) /2 + C0)]]es,.
Note that in the above, only one z.;, will be 1 due to
the constraint ., + e, + ..., +2ey,, = 1. C(u) can
be computed as C(u) = C(v) + D", Cet;Te ;-

Buffer wire: When a buffer is reached, C' will be set
to the buffer capacitance since layer assignment will not
change buffer. Otherwise, ECO placement needs to be
invoked which is not desired in the late design stage.
Q@ will be updated considering the buffer delay. For the
buffer wire (v1,v2) = (3,2) in Figure 2, we have

Qv1) = Q(v2) — Dy(v2), C(v1) = Cy, (1)

where CY is the buffer capacitance for buffer b and Dy (v)
is the buffer delay computed as Dy(v) = Ry - C(v) +
K, where R, and K, the buffer resistance and intrinsic
delay, respectively. Note that the driver can be treated
in the same way as a buffer (e.g., the buffer wire for
the driver is (10,9) in Figure 2). The timing constraint
says that Q(driver) > AT (driver) at the input of the
driver.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

4
T D e ((2,1),(4,9),(6,9,(7.6),(0,8) 2im Werti T 1)
Branch wire: Suppose that two branches B; and s-t
By meet at a branching node v and the newly intro- Q) = 31, R 1, Can /24 Be ., CDleea 1 = Q).
duced nodes are vy and wvs. For example, (v,vy) = Q@) = 7" [Rus).1,Clam i, /2 + Rz, C@)ees., = Q4),
(8,4), (v,v2) = (8,7) in Figure 2. Q(v),C(v) can com- Q(5) = Y ™ [Res,5)1,C6,5),1; /2 + Rs,5),1; C(5)]z(6,5),1; = Q6),
puted as follows. Q(6) — ZZI[R(%G)MC(ZG)M/2 + Re7,69,1, C(0))2(7,6).1; = Q(T),
Q(8) — ZZI[R(Q,S),Z,; Clo,8),1;,/2+ R(o,8),1,C(8)]z(9,8),1;, = Q(9),
C+3" Cenyren., =CQ),
Q(v) = min{Q(v1), Q(v2)}, C(v) = C(v1) + C(v2). (2) C® + 327, Casyzaa.y = CA),
a(5) + Zzl C(6,5).1;%(6,5),1; = C(6),
C(6) + Zzl C(7,6),1;%(7,6),1; = C(7),
CE) + 3 Clomi T om0, = CO), @

Note that min is taken since worst-case performance
needs to be guaranteed. This is to follow the dynamic
programming procedure in [14], [6].

Q(8) < Q4),
Q(8) < Q(7),
C(8)=C4)+C(T),
Recall that C, denotes the sink capacitance when @(3) = Q(2) — [Re3- C(2) + Kb 3],
v is a sink and AT(driver) and RAT(v) denote the @(10) =Q(9) = [Fs10- C(9) + Ko 1o],
arrival time and required arrival time at driver and at ¢(3) = Cv.s.
v, respectively. w,; denotes the wire cost of a wire e ©(10) = Ce.10,
at layer {. The timing constrained minimum cost layer @(¢river) = Q(10) = AT (driver) = AT(10),

assignment can be formulated in Eqn. (3). ZE;; = 2258’

cy =,
C(5) = Cs,

min Te,1; = {0,1}, Ve, i.

Zv standard wire e Zi:l we,1;%(e, 1)

st Quy) = " [Ret;Cet, /24 Re 1, C(v))]we, =
Q(v;),V standard wire e = (v;,v;)

Clvj) + Y 1" Cetyaen; = Clvi),

V standard wire e = (v;, v;)

Q(vi) < Q(v;),V branch wire e = (v;,v;)

Clvi) = Zv branch wire e=(v;,v;) C(vy)
Qvi) = Q(vj) — [Rp,v; - C(vj) + Kp,v; 1,

V buffer wire e = (v;,v;) and buffer b is located

C(vi) = Cpv;,
V buffer wire e = (v;,v;) and buffer b is located

Q(driver) > AT (driver), at the input of the driver
Q(v) = RAT(v),Vv is a sink

C(vi) = Cy,,v; is asink

Ze,i; = {0,1}, Ve, i.

Note that in Eqn. (3), C'(v), Q(v),z.,; are variables

and Eqn. (3) is not a linear program due to C'(v)z.,.

More importantly, when variations are considered, the

constants in Eqn. (3) (which are coefficients and con-

stant terms) such as wire capacitance Ce,z are random

(3) variables as mentioned in Section 3.1. For example, each
Ce, can be modeled as

ocC
a(a,,b)AW(a,b)JFaiT E B(a,p) AT (a,p) +0g+¢,

(a,b)

oC

=% + ==

e,l+811r
(a,b)

Ce,1

(5)
where AW and AT are random variables. In addition,
buffer resistances (or capacitance and intrinsic delay)
are shown as Ry ,, to incorporate the fact that buffer

To concentrate on illustrating our main idea, this resistance at different locations v; may have different

work does not consider via delay. However, it can be
easily handled by modifying the constraints since vias
can be modeled as resistors and capacitors as well.
For example, for two connecting wires (vi,v2) and
(vg,v3), without handling via, the capacitance at vq is
is C(UQ) = C(vz,vz),llx(vz,vs),h + C(vz,vg,),lz'r(vz,va),lz +
C(v3). To handle via, C(va) = Clyy 05,1 T(va,ve)l, +
C(Uz,vs)sz(U%'Us)lz + C(vs) + L(v1,va),l1 "~ L(vg,vs)la
Clia,ly s T T (0y,09),0s " T(va,03) 11 * Cwialy 1o Where Cuiq 1, 1,
is the capacitance of the via connecting [; and l. It
will just make the integer non-linear program more
complicated but not impact our algorithmic framework.

It is helpful to illustrate Eqn. (3) using a simple
example in Figure 2. Assuming that both buffers are
of type b in Figure 2, the corresponding integer pro-
gramming formulation is in Eqn. (4).

variations. The key problem is to solve an integer
program considering the uncertainty on the coefficients
and constant terms.

3 Variation-Aware Stochastic Layer As-
signment

The focus of this paper is variation-aware design. To
handle variations in layer assignment, a parallel s-
tochastic optimization method based on the integer
programming layer assignment method is proposed.
The variation model and traditional stochastic pro-
gramming are first studied. After that, a stochastic par-
allel yield-driven Stochastic Optimization Framework is
proposed.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

3.1 Variation Models

In this work, the variations on gates and wires are
considered. To model the circuit variations, the widely
accepted modeling techniques proposed in [17] is used.
The model is a first order approximation of a general
non-linear variation model and is able to capture the
major components of most variations [17]. This model
has been extensively used in statistical timing analy-
sis and optimization works such as [18], [4]. In this
paper, to illustrate the effectiveness of the proposed
approach, for interconnects, variations on metal width
W and metal thickness T are considered. However, our
approach is not limited to these variations and other
variations can be handled. For a wire e in layer [, the
wire capacitance can be modeled as

oC ocC

Coy=C% + —AW + —AT + 6, , (6
N/ el T 57 +8T +0ei+e (6)
where C?, refers to the nominal value, % and % refer

to the sensitives of wire capacitance to metal width and
metal thickness, respectively. AW and AT are random
variables which refer to variations in meta width and
metal thickness, respectively. J.; and e are random
variables which refer to the local and global variation-
s. We similarly model the wire resistance. Since the
layer assignment is applied for a buffered routing tree,
variations on driver, buffers and sinks also need to be
considered. In this work, to illustrate the effectiveness
of the proposed approach, variations on gate length
L and threshold voltage V't are considered and other
variations can be handled as well. They can be similarly
modeled as above. For example, gate capacitance can be
modeled as

Cy :Cg0+g—§AL+g—€AV+6g+e. (7)

As in [18], to handle spatial correlation which is

especially important for a global net, a mesh is layered

on the circuit. Each segment of wire in a grid will be

indexed by (a,b). Following [18], incorporating spatial
correlation into consideration, we have

. oC
Ce,L = Ce‘l“rm

(a,b)

o‘(a,b)AW(a,b)'i'% Z B(a,b)AT(a,b) e 1te,
(a,b)

(®)
where a, 3 are the parameters, and AW,) and AT,)
are independent components which can be obtained
through performing principal component analysis to the
correlated random variations. The models on gate ca-
pacitance and resistance considering spatial correlations
can be similarly derived. Refer to [18] for more details.

3.2 Two-Stage Stochastic Programming

Stochastic programming is a popular technique to solve
the mathematical program with uncertainty. It has been
applied to various fields such as scheduling, telecom-
munications, computational finance, and production
control [19]. One of the most well-known stochastic

programming techniques is the two-stage stochastic pro-
gramming [19].

In the first stage, one makes an optimization decision
(i.e., compute a layer assignment solution) without con-
sidering the wire variations. In the second stage, when
the variations are considered, the first-stage solution
will be adjusted such that certain objective is optimized
(delay of the circuit is minimized). The simple separate
optimization as above would lead to the inferior solution
since it solely relies on the second-stage adjustment
to improve the solution quality. Thus, the stochastic
programming with recourse is often used to link the
two stages. It computes the solution minimizing the
expected delay considering the variations which involves
the second stage and it is also an iterative procedure.

Following the conventions in the stochastic program-
ming literature [20], the above can be formulated as
follows. For the convenience of illustration, only the
stochastic linear program is shown.

min 'z + E[Q(z,9(w))]
s.t.
Ax >b ©)

z >0,

where ¢’z denotes the optimization objective without
variations (e.g., nominal design), E-] denotes the ex-
pected value, and Q(x, ¥(w)) denotes the optimal objec-
tive value for the second-stage problem. E[Q(z,}(w))]
serves as a penalty function (e.g., additional delay due
to variations). The second stage problem is defined as

follows.

min = p(w)’y
s.t.
T(w)z + W(w)y = hw) (10)

y >0,

where w are random variables, p(w), T'(w), W(w) are
random coefficients and h(w) are random constants.
Note that in the first-stage problem, z is the variable
while in the second stage problem, y is the variable and
x is treated as a constant. The above ¥(w) refers to
the tuples consisting of p(w), T(w), h(w). E[] is taken
with the probability distribution of w. To solve the two-
stage stochastic linear program, a commonly-used tech-
nique is the sample average approximation technique
[12][13][20]. In this method, roughly speaking, each time
some random samples are generated according to the
probability density function of w and the expected value
E[Q(z,¥(w))] can be approximated by averaging the @
values among samples. This procedure is iterated until
some stopping criterion is met.

The main weakness of the above framework is that it
tries to minimize the expected delay that is only weakly
related to the timing yield, which is our main target.

3.3 Single-Stage Stochastic Optimization Frame-
work

In variation-aware optimization, our target is actually
to compute the best solution satisfying a yield target. In

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

the layer assignment context, this means that we want
to compute the minimum cost layer assignment such
that 99% (this is the target value in [13], it can be set to
other values) of circuits satisfy a timing constraint 7.
The above classic stochastic programming framework
does not capture this. The previous stochastic program-
ming based gate sizing technique in [4] follows the above
framework and thus they cannot directly control the
yield as well.

Our idea is to formulate the stochastic layer assign-
ment problem into into a single integer program instead
of a two-stage integer program (with two separate
integer programs). This allows us to introduce a param-
eter called robust parameter, denoted by =, to directly
control the yield. Further, such a new framework allows
us to easily parallelize the algorithm.

3.3.1

The traditional two-stage stochastic program iteratively
processes the yield factor tuning and yield factor evalu-
ation until it satisfies the stop criteria. In contrast, the
proposed single-stage stochastic program for this layer
assignment case, has been designed to explicitly control
the yield value by a one step integer program. For
this layer assignment problem, without loss of solution
quality, the proposed single-stage method has better
performance efficiency than the traditional two-stage
one. For this layer assignment problem, without loss
of solution quality, the proposed single-stage method
has better runtime than the traditional two-stage one.
We will transform the integer program with random
coefficients in Eqn. (3) to an integer program without
random variables. This is accomplished by instantiating
random coefficients to deterministic constants through
Monte Carlo samples. Let us denote the constraints in
Eqn. (3) by C(Q2), where Q is an instance of the set
of all coefficients/constants in Eqn. (3). That is, a
corresponds to a Monte Carlo sample. Since in a Monte
Carlo sample, the wire width and wire thickness for
all wires in all layers are known, the wire capacitances
and wire resistances for all wires in all layers can be
obtained. More importantly, they are constants in each
Monte Carlo sample. Note that they are the coeffi-
cients/constants in Eqn. (3). The above also applies to
the gate capacitances and resistances. Suppose that we
have randomly generated &k Monte Carlo samples for
the variation-aware layer assignment problem. Let ;
denote the i-th Monte Carlo sample in the totally k
Monte Carlo samples. The new integer programming
formulation is as follows.

The Single-Stage Stochastic Program

min Ev standard wire e E:il we,1,7(e, ;)
s.t. C Ql

C(§22)
C()
Te,;, = {0,1}, Ve, i.

(11)

For example, Eqn. (4) can be instantiated as follows.
For simplicity, suppose that there are only two layers,
namely, m = 2. Further suppose that there are two
Monte Carlo samples. In the first Monte Carlo sample,
Cey, = 2 and C,y, = 4 for all wire e, and R.;, = 20
and R.;, = 10 for all wire e. The capacitance of
each buffer/sink/driver is 5 and resistance is 5. The
buffer/driver intrinsic delay is 1. In the second Monte
Carlo sample, C,;, = 4 and C,;, = 8 for all wire e, and
Re, =40 and R.;, = 20 for all wire e. The capacitance
of each buffer/sink/driver is 10 and resistance is 10. The
buffer/driver intrinsic delay is 2.

Let Q;, C; denote the variables corresponding to the
sample €2;. The Monte Carlo simulation based inte-
ger program corresponding to Figure 2 is shown in
Eqn. (16). Note that this is a deterministic integer
program with no random variables. In the above for-
mulation, the target variables are z.; and they are
shared in all C(21),C(Qs),...,C(2). However, each
C(£2;) has different set of variables of capacitance C;(v)
and RAT Q;(v). In particular, we are interested in
Q;(driver) which is the RAT at driver (e.g., Q;(10) in
Eqn. (16)) in a C(€2;). Since we have k samples, we have
Q1 (driver), Qa(driver), ..., Qx(driver).

Note that by default, we have set all of the
Q;(driver) > AT (driver) as in Eqn. (16). This means
that we are to compute the worst-case design since all
of the k samples need to satisfy the timing constraint.
We are to investigate setting %Zle Q;(driver) >
AT(driver) as a constraint. Roughly speaking, this
means that we compute a design satisfying the timing
constraint in an average-case sense.

Let C(9;)\Q;(driver) denote the set of constraints
except the constraint of “Q(v) > AT (driver)” in E-
qu. (3). Roughly speaking, the average-case design can
be obtained from

min Zv standard wire e Z:il we 1, 7(e, ;)

s.t. C(29)\Q1 (driver)
C(Q22)\Q2(driver)
. (12)
C()\Qx (driver)

z Zle Q;(driver) > AT (driver)
Ze1; = {0,1}, Ve, i.

Consider a yield target Y, e.g., Y = 99%. We
actually want to compute a design such that 99% of
Q;(driver) satisfy the timing constraint, i.e., greater
than AT (driver). Thus, if we would be able to sort all k
Q;(driver) and set the 0.01k smallest one to be greater
than AT (driver), we would compute a design exactly
matching the yield requirement with no overdesign.
However, one cannot sort the constraints in a math-
ematical programming formulation. Thus, we propose
to use the following approximate method.

Two additional variables are introduced. The first
variable @,, computes the worst-case RAT among all k
layer assignment solutions, and the second variable T,
to compute the average-case RAT value among all k lay-

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

er assignment solutions. Precisely, as mentioned above,
Qw = max{Q;(driver),Qz(driver),..., Qr(driver)}
and Q, = %Zle Q;(driver). These can be certainly
formulated in mathematical program.

Subsequently, a parameter, called robust parameter
denoted by -+, is introduced to control the tradeoff
between the worst-case delay @Q,, and the average delay
Q.. Precisely, the constraint is set as (1—7)Qq+7Qw >
AT (driver). Clearly, setting v = 0 leads to the average
case design while setting v = 1 leads to the worst
case design. 7y is directly related to the timing yield
and varying -, different tradeoff can be obtained. Our
formulation is as follows.

min Zv standard wire e 221 We,1,7(e, ;)
s.t. C(21)\Q1 (driver)
C(Q22)\Q2(driver)
C(Qk)\Qk (driver) (13)

Quw < Q;(driver), Vi

Qa = % Zle Qz (dT’iU@T)
(1 =7)Qa +¥Quw > AT (driver)
Te,;, = {0,1}, Ve, i.

In the example of Eqn. (16), this means that we replace

Q1(10) > AT (driver) = AT(10)

Q5(10) > AT (driver) = AT(10) (14)
with
Quw < Q1(10)
Qu < Q2(10) (15)

Qa = [Q1(10) + Q2(10)] /2
(1 —=9)Q4 +vQw > AT (driver) = AT(10).

Note again that the above formulation is a determin-
istic integer program without any random coefficients
and <y is a constant. The benefit of the whole technique
is that the variation is handled in a global way since
each time the mathematical program is solved in a glob-
al fashion by the mathematical program solver. There
are two issues with the above formulation, namely, how
large the value of k can be and how to set ~.

3.3.2 Hierarchical Optimization

Suppose that & = 5000 Monte Carlo samples are
used. This means that the obtained integer program
has the size 5000x of the original layer assignment
integer program in Eqn. (3). Solving this large system
is computationally prohibitive. We will first reduce the
number of Monte Carlo samples used in the stochastic
programming formulation. For this, the Latin Hyper-
cube sampling based Monte Carlo simulation will be
used. This will enable us to reduce the sample sizes
from commonly used large number samples to a small
size sample set. In [12], it reduces 5000 samples to
just k£ = 200 Latin Hypercube samples. Refer to Sec-
tion 3.3.4 for details.

The problem is that even for k = 200 Latin Hyper-
cube samples, the integer program in Eqn. (13) would

still be too large to be efficiently solved for large signal
nets. We use the following hierarchical optimization
technique to tackle this difficulty. First pick r samples
out of k samples and remove them from k samples. We
formulate the integer program as in Eqn. (13) except
that there are only r samples in contrast to k samples. r
is chosen such that the resulting integer program can be
efficiently solved using the mathematical programming
solver.

After computing the solution, we find the Q;(driver)
closest to AT(driver). This @ and the correspond-
ing sample roughly determines the yield on these r
samples since one just needs to calculate the number
of Q(driver) smaller than the picked Q;(driver) and
it gives the number of samples satisfying the timing
constraint. Due to this, the sample corresponding to the
picked Q;(driver) is called a critical sample for those r
samples since it determines the yield on them. We then
proceed to the other r samples out of k —r samples and
perform the same as above to find the second critical
sample. This process is iterated until all £ samples have
been considered.

In a total, we will have [k/r] integer programs each of
which contain r samples (perhaps except the last integer
program). [k/r] critical samples will be computed.
They will be used to formulate a new integer program
which contains [k/r] samples. If [k/r] samples are still
too large to be efficiently solved, we can recursively
apply the same decomposition procedure as above on
them. As indicated in our experiments, a two-level
decomposition is sufficient. Precisely, we set k& = 200
and r = 15. Each of the 14 first-level integer programs
contains r = 15 samples (except the last one). After
solving all 14 such integer programs, we have 14 critical
samples which will be formulated into the second-level
integer program. When solving this second-level integer
program, we need to guarantee that the worst-case
design still satisfies the timing constraint since they are
the representative critical samples in each set. When
all of them satisfy the timing constraint, there should
be enough samples (which are the ones less critical than
them) satisfying the timing constraint and therefore the
yield target is satisfied. It is also clear that r = 15 is
chosen to balance the first-level integer program size
and second-level integer program size.

Note that + and the yield target are correlated in
weak sense. The first-level solution to Eqn. (13) (con-
sisting of r = 15 samples) depends on ~. If the yield
target is set to 99%, it does not mean that we need
the @ of all of » = 15 samples to be > AT (driver).
The number of such samples depends on ~. In fact,
typically 7 is much smaller than 1 for 99% yield target
according to our experiments. On the other hand, due
to the change in sample space between two levels, the
criticality estimation might not be accurate. Therefore,
the above decomposition technique is not guaranteed to
compute the optimal solution. However, it works well as
indicated by our experiments.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

8
Note that each integer program is actually hard to
solve due to integer constraints. Thus, we relax each .
integer constraints to real constraint, solve it using a """ (2,1, (4,3,(6,5),(7,0), 0,8 2it Vet T(E: 1)
mathematical programming solver (IPOPT) and then Q1(1) [20 + 20C1 (1))@ (2,1y,1, — [20 + 10C1 (D)2 (2,1),1, = Q1(2),
applies the well-known sequential rounding technique Q1(3) [20 +20C1(3)]2 (,3),17 = [20 +10C1(3)]x (4,3),1, = Q1 (4),
1 1 [, @1(5) = [20 42001 (5)]a(6,5),1, — [20 + 1001 (5)](6,5),15 = Q1(6),
to round real-valued solution to integer solution. Such ¢) — [20 + 20C1 (6)](7 6 1, — [20 + 10C1 (6)](r 0y 1 = Q1 (7).
a technique has been widely used in VLSI CAD (see., %((8)) [20 4 20C1 (7)]z(9,8), I C[2EJ ;r 10C1(8)]z(9,8),15, = Q1(9),
+ 2z + 4z = 2
e.g., [21]). For completeness, we briefly describe it as 1(3) +2IZ ;; ii +4m5i ;; ii - C1(4)
follows. First, the integer constraints are relaxed as 01(5) +22(5,5y,1, +4%(6,5),1, = C1(6),
< < C1(6) + 2x(7.6),1, +4x(7,6),1; = C1(7),
0 <z, <1,Ve,i. The new mathematical program 1s Cr(8) + 2000 li Tz 11 —ons)
then solved where the solution may contain fractional @, (4) > Ql(3,
numbers. All variables in the solution that are equal to Q1(7) > Q1(8),
C1(8) = C1(4) + C1(7),
0 or 1 will be fixed accordingly. This is accomplished by @, (3) = @1(2) — [5- C1(2) + 1],
adding new constraints such as z.;, = 1 to Eqn. (13) Ql((l)o) Q1(9) =[5~ C1(9) + 1,
if .y, is equal to 1 in the solution of the relaxed 01(10)_5
mathematical program. In addition, In the solution, ngég —gﬁgggv
those variables close to 1 or 0 will be rounded and fixed. cl1 (1) = 5, 7
C1(5) = 5,
Precisely, the variables < ¢ will be rounded to 0 and the Ql (driver) = @1(10) > AT(driver) = AT(10), (16)
variables > 1 — 4 will be rounded to 1. If there is 1o Q,(1) — [80 + 40C2(1)]z (21,1, — [80 + 20C2 ()]a (2,11, = Q2(2),
such variable, the one with the smallest rounding error Q2E§§ {28138228%@(4,3%!1 - {28 i ;822E3H1(4,3),l2 = 825‘61;’
2 Z(6,5), 2 Z(6,5),lg — &2 s
will be rounded. The above can be accomplished by g,) — [80+4002(6)]x$’6;ﬁ [80+2002(6)]xE3,6;,i2 — Qa(7),
adding new constraints such as z.;, = 1 or z.;, = 0 Q2(8) [80 + 40C2(7)]z(9,8), n- [80 +20C2(8)]z(9,8),1, = Q2(9),

C2(1) + 4z (2,1),1; +8x(2,1),1; = C2(2),
to Eqn. (13) for some x.;,. The new mathematical ;)+ dagrny s+ 8r(ar = Ca(d),

C2(3
program will be solved again (w1th some fixed variables) C2(5) + 426 5,1, + 8%(6,5),1, = C2(6),
to obtain the new solution. This process is iterated until CQ(G) +tdze) + 8260, = Ca(T),

C2(8) + 4w (9,8),1; + 8(9,8),1; = C2(8),
all variables are integers. Q2(4) > Q2(8),

Q2(7) > Q2(8),
3.3.3 Parallel Optimizing Procedures gz((z% : gi(é))t[cfo(.nc’vz(g) +2],

The hierarchical optimization on layer assignment can Q2((1)0_ 1392(9) —[10- C2(9) + 2],

make the large system efficiently solvable. More impor- ¢,(10) = 10,

tantly, it can be easily parallelized in the multi-core Q2Eé§ = gﬁ?gg

programming environment. This is due to the fact that ¢,(1) = 10, '

the integer programs formed by each set of (first-level) QQ((d)r;elr(; Q2(10) > AT(driver) = AT(10),

r samples can be solved totally independently. The z.,. = {0,1},Ve,i.

synchronization is only needed when we come to solve

the second-level integer program (consisting of [k/r]

critical samples). This process is illustrated in Figure 3.
It remains to show how to determine ~. In fact, this

can be accomplished by searching for various v with

certain step size. For example, if the step size is 0.1,

one could search for v from 0.1 to 0.2 then to 0.3 by

noting that v = 0 refers to the average-case design and

~ = 1 refers to the worst-case design. For each solution,

we will evaluate its yield and return the minimum cost

Integer program|
with first r
samples Synchronization is

only needed here

Integer program

with second r
samples \

solution satisfying the yield target. It is clear that one ™ Integer
can parallelize this procedure since the mathematical prlf/grr:;:i‘c“:rh

program corresponding to different will not interact
with each other. This can also be easily implemented in
multi-core programming environment.

/' samples

Integer program|
with last r
samples

et

3.3.4 Latin Hypercube Sampling Based Monte Carlo

Simulation Fig. 3. lllustration of the hierarchical optimization. Each

In our formulation, & = 200 Latin Hypercube samples integer program can be assigned to different cores (subject

are used. These are sufficient to obtain a close ap- to availability) and synchronization is needed only when
proximation to the full-fledged Monte Carlo simulation solving the final (second-level) [k /r] critical samples.

technique. The latter uses simple sampling, often needs
over 5000 samples and optimization with these sam-
ples would be very time consuming. Latin Hypercube

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution
requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

Xt X

X

Fig. 4. (a) 8 samples generated by standard sampling (b)
8 samples generated by Latin Hypercube sampling.

sampling allows us to sample the variation space more
evenly, which avoids generating many samples in a
small local region [22]. Consequently, one can cover
most simulation space with small number of samples.
Such a technique has been used in statistical timing
analysis and optimization in VLSI CAD literatures [23],
[24]. They have demonstrated excellent yield estimation
accuracy compared to the full-fledged 5000 samples
based Monte Carlo samples. For example, the work
[22] shows that compared to 5000 samples based Monte
Carlo simulation, 200 Latin Hypercube samples based
Monte Carlo simulation can have error of < 1%. Note
that our approach is not restricted to Latin Hypercube
sampling technique. Other sample reduction technique
such as Quasi-Monte carlo techniques can be certainly
used.

For completeness, the details of generating Latin
Hypercube samples are included as follows. Let us use a
simple two-dimensional simulation example to illustrate
the Latin Hypercube sampling technique. Given two
random variables x,y, we are to generate 8 simulation
samples. Suppose that they are as shown in Figure 4(a)
by the standard sample generation technique. These
samples do not evenly distributed in the simulation
space and more importantly, they do not cover the
simulation space well. The simulations with these sam-
ples would not lead to good yield estimation accuracy.
To generate samples well distributed in the simulation
space, one needs to memorize the locations of the pre-
viously generated samples. Latin Hypercube sampling
technique accomplishes this by dividing simulation s-
pace into rows and columns and requiring that only one
sample can be generated in each row and column. For
example, in Figure 4(b), we first divide the simulation
space into 8 X8 equal-probability bins. When a sample is
generated from a bin, its corresponding row and column
will be removed to avoid generating more samples in
the row and column. It can be seen that the generated
samples could be well distributed in the simulation
space. Therefore, one can use a much smaller number
of samples (200 samples as in [22], [23], [25]) to well
approximate the full-fledged 5000 samples based Monte
Carlo simulation. Refer to [22] for further details. Latin
Hypercube sampling has been successfully used in VLSI
CAD (see, e.g., [23], [24], [25]).

4 Experiments and Results

Extensive experiments were performed to validate the
proposed layer assignment approach, which targets to
reduce the wire cost with timing yield consideration.
The following subsections describe the experimental
setups and analysis the experimental results.

4.1 Experimental Setups

The proposed stochastic layer assignment approach is
implemented in C++. Sequential rounding is used to
compute the integer solutions and in each step the
nonlinear optimization tool IPOPT [26] is used to solve
the relaxed mathematical programming problem. The
approach is tested on a Pentium IV machine with
2.5GHz Quad-Core CPU and 8G memory. The experi-
ments are performed to a set of 5000 industrial buffered
nets and there are eight layers. Most buffered nets have
< 20 wires. The wire cost is measured by scaled wire
area in this paper. However, other metric can be easily
incorporated in our stochastic programming approach.
In the experiments, variations are assumed to follow
Gaussian distribution. Due to the usage of Monte Carlo
simulation, our technique is not limited to Gaussian
distribution and can handle other distribution as well.
In the experiments, metal width, metal thickness, gate
length and gate threshold voltage are assumed to follow
normal distributions and the 3¢ value for each vari-
ation source is set to 15% of the mean value. In our
experiments, yield target is set to 99%. As mentioned
above, Latin Hypercube sampling based Monte Carlo
simulations with 200 Latin Hypercube samples are used
for yield estimation. Note that after optimization, full-
fledged Monte Carlo simulations with 5000 samples are
used to accurately evaluate the timing yield for the layer
assignment solution.

4.2 Experimental Results

Refer to Table 1 for the results. It shows the average
result on these 5000 nets as well as the results on 10
selected nets at various scales. Note that the large nets
among these 10 nets do not represent the typical nets
in 5000 nets since most buffered signal nets are often
small, i.e., have < 20 wires in our industrial signal
nets. Nominal design is obtained by solving Eqn. (3)
using the nominal value of each circuit parameter and
thus no variations are considered. Worst-case design is
obtained using the worst-case corner, i.e., setting each
capacitance and resistance to the worst case u + 30
corner (y is the mean and o is the standard deviation).
Stochastic design is obtained from the proposed our
stochastic layer assignment approach. Note that all of
the above are integer programs and thus sequential
rounding is involved. Note that some nets are global
nets and some are local nets. Although they have the
similar number of wires, they can have quite different
total length and thus the cost could be very different.
We make the following observations.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

10

TABLE 1
Comparison of the layer assignment solutions by nominal design (without considering variations), worst-case design
(worst-corner) and the proposed stochastic programming based design. The results on 10 selected global or local nets
and the average result on 5000 nets are shown. Note that most nets in 5000 nets have size < 20.

Net Nominal Design Worst-Case Design Stochastic Design
Wires | Cost | Yield | CPU(s) | Cost | Yield | CPU(s) | Cost | Yield | CPU(s) | CPU w/ multi-core | Cost Red. | Speedup
Net 1 5 170.5]30.6% 0.3 227.41100.0% 0.3 192.5(99.2% 5.6 2.3 18.1% 2.4x
Net 2 10 229.0 | 27.5% 0.5 289.7 1100.0% 0.5 263.2(199.4% | 12.9 5.1 10.1% 2.5%
Net 3 15 215.3132.1% 1.0 280.8 | 100.0% 1.0 247.1199.0% | 35.7 14.5 13.6% 2.5%
Net 4 20 282.5 | 42.9% 1.4 382.5(100.0% 1.4 335.4199.1%| 584 25.7 14.0% 2.3%
Net 5 30 147.2|35.7% 2.9 189.6 | 100.0% 3.0 165.1|99.5% | 102.2 37.6 14.8% 2.7x%
Net 6 38 232.1(29.0% 4.6 294.5 | 100.0% 4.7 255.2199.0% | 162.0 67.3 15.4% 2.4%
Net 7 51 318.9(34.1% 5.5 419.2100.0% 5.5 360.4 [99.2% | 322.8 109.4 16.3% 3.0x
Net 8 63 237.4139.4% 5.9 302.3 [100.0% 6.0 262.8|99.3% | 354.2 135.2 15.0% 2.6
Net 9 T 213.2 | 46.8% 6.2 281.3 (100.0% 6.4 243.1199.1% | 415.3 164.7 15.7% 2.5%
Net 10 85 256.4 | 30.2% 7.9 337.9|100.0% 8.0 287.699.2% | 572.4 206.3 17.5% 2.8%
Avg. on 18.2 [228.5|35.2%| 1.70 |297.6[100.0%| 1.70 |257.2]99.2%| 69.1 27.2 15.7% 2.54x
5000 nets
e The nominal design does not consider variations 170
and thus its yield is always too small (35.2% on ' ' ' '
average). 168 1 1
o The worst-case design is too conservative about the 166 | 1
variations and its yield is always 100% which leads 164 | / i
significantly waste of the resources. This is clear 6 .
by comparing cost results between our proposed I o i
stochastic programming approach to the worst case ?, 160 | 7
design. 158 | i
e Our stochastic programming approach computes 156 | |
a good tradeoff between the nominal design and
. 154 | 1
worst-case design. We are always able to close-
ly match the yield target. Compared to nominal 152 0+ 1
design, our stochastic design largely improves its 150 ‘ \ s ‘ s ‘ . ‘ .
yield. Compared to worst-case design, our stochas- 05 055 06 065 07 Yi(:';s 08 085 09 095 1

tic design achieves 15.7% reduction in cost.

e The stochastic optimization is slower than com-
puting the nominal design and worse-case design.
However, one can tackle this through paralleliz-
ing our stochastic programming approach since
the proposed stochastic technique is parallelization
friendly as indicated in Section 3.3.3. The paral-
lelized version of our stochastic programming tech-
nique is implemented in a quad-core computing
environment. It can be seen that on average we
reduce the runtime by 2.54x. It would be expected
that with more cores, the speedup would be more
significant.

o The average running time of the proposed algorith-
m in parallel is 27.2 seconds, but for some cases, the
running time can be greater than 200 seconds. The
reasons are: (1) the integer program taking longer
time with complex nets, and (2) a large amount of
v searching iterations.

Varying the robust parameter 7, we are able to
obtain different yield-cost tradeoff. A sample yield-cost
tradeoff curve is shown in Figure 5 for Net5. The curve
shows a tradeoff between the area and the yield. To
satisfy the large yield value, more area cost are required.
For this net, to achieve 98% yield, the area cost has to
be greater than 165.

Fig. 5. Yield-Cost tradeoff curve for Netb.

5 Conclusion

This study was targeted on handling variations on pro-
cess, voltage and temperature to avoid potential risks
(e.g., timing violations) brought by these variations
in VLSI design. A variation-aware layer assignment
approach has been successfully developed with focuses
on the general variation models. The proposed approach
explored a systematic stochastic programming method
for timing yield driven layer assignment, such that,
the timing yield can be well maintained and wire
cost can also be minimized. The single-stage stochastic
program has been designed to explicitly control the
yield, which exhibits advantages in timing yield control
over its traditional two-stage counterpart. In addition,
the hierarchical optimization framework allows parallel
execution of the optimization process on a multi-core
platform to gain significant improvement in runtime
performance.

The results obtained from experiments on 5000 indus-
trial nets demonstrate that the the proposed approach
(1) can significantly improve the timing yield by 64.0%
in comparison with the nominal design and (2) can

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

reduce the wire cost by 15.7% in comparison with the
worst-case design. We also observed that a quad-core
implementation of our stochastic optimization approach
can reduce the runtime by 2.54x in comparison with its
sequential

Acknowledgement

This study was supported in part by the National
Natural Science Foundation of China (Nos. 61272314,
61361120098), the Program for New Century Excel-
lent Talents in University (NCET-11-0722), the Ex-
cellent Youth Foundation of Hubei Scientific Com-
mittee (No. 2012FFA025), the Specialized Research
Fund for the Doctoral Program of Higher Edu-
cation (20110145110010), the Fundamental Research
Funds for Central Universities (China University of
Geosciences,Wuhan, Nos. CUGI120114, CUG130617,
CUG140612), and Beijing Microelectronics Technology
Institute under the University Research Programme
(No. BM-KJ-FK-WX-20130731-0013).

References

[1] D. Sinha, N. Shenoy, and H. Zhou, “Statistical gate sizing
for timing yield optimization,” In Proceedings of the 2005
IEEE/ACM International conference on Computer-aided de-
sign (ICCAD ’05), pp. 1037-1041, 2005.

[2] A. Davoodi and A. Srivastava, “Variability driven gate sizing
for binning yield optimization,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 16, no. 6, pp. 683 — 692, 2008.

[3] A. Singhee, C. Fang, J. Ma, and R. Rutenbar, “Probabilistic
interval-valued computation: toward a practical surrogate for
statistics inside cad tools,” In Proceedings of the 43rd annual
Design Automation Conference (DAC ’06), pp. 167172, 2006.

[4] V. Khandelwal and A. Srivastava, “Monte-carlo driven s-
tochastic optimization framework for handling fabrication
variability,” In Proceedings of the 2007 IEEE/ACM interna-
tional conference on Computer-aided design (ICCAD ’07), pp.
105-110, 2007.

[5] Z. Li, C. Alpert, S. Hu, T. Muhmud, S. Quay, and P. Villar-
rubia, “Fast interconnect synthesis with layer assignment,” In
Proceedings of the 2008 international symposium on Physical
design (ISPD ’08), pp. 71 — 77, 2008.

[6] S. Hu, Z. Li, and C. Alpert, “A polynomial time approx-
imation scheme for timing constrained minimum cost layer
assignment,” In Proceedings of the 2008 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD ’08),
pp. 112-115, 2008.

[7] C. Alpert, S. Karandikar, Z. Li, G.-J. Nam, S. Quay, H. Ren,
C. Sze, P. Villarrubia, and M. Yildiz, “Techniques for fast
physical synthesis,” Proceedings of IEEE, vol. 95, no. 3, pp.
573-599, 2007.

[8] R. M. D. Wu, J. Hu and M. Zhao, “Layer assignment for
crosstalk risk minimization,” In Proceedings of the 2004 Asia
and South Pacific Design Automation Conference (ASP-DAC
’04), pp. 159-162, 2004.

[9] G. Xu, L.-D. Huang, D. Z. Pan, and M. D. F. Wong,
“Redundant-via enhanced maze routing for yield improve-
ment,” In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference (ASP-DAC ’05), pp. 1148—
1151, 2005.

[10] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “Boxrouter 2.0: Ar-
chitecture and implementation of a hybrid and robust global
router,” In Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design (ICCAD ’07), pp. 503~
508, 2007.

[11] M. Cho, K. Yuan, Y. Ban, and D. Z. Pan, “Eliad: Efficient
lithography aware detailed router with compact printability
prediction,” In Proceedings of the 45th annual Design Au-
tomation Conference (DAC ’08), pp. 504-509, 2008.

11

[12] X. Chen, T. Wei and S. Hu, “Uncertainty-Aware House-
hold Appliance Scheduling Considering Dynamic Electricity
Pricing In Smart Home,” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 932-940, 2013.

[13] T. Wei, X. Chen and S. Hu, “Reliability-Driven Energy Effi-
cient Task Scheduling for Multiprocessor Real-Time System-
s,” IEEE Transactions on Computer-Aided Design (TCAD),
vol. 30, no. 10, pp. 1569-1573, 2011.

[14] J. Lillis and C.-K. Cheng and T.-T.Y. Lin, “Optimal wire
sizing and buffer insertion for low power and a generalized
delay model,” IEEE Journal of Solid State Circuits, vol. 31,
no. 3, pp. 437-447, 1996.

[15] S. Hu, C. J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi, and
C. N. Sze, “Fast algorithms for slew constrained minimum cost
buffering,” IEEE Transactions on Computer-Aided Design
(TCAD), vol. 26, no. 11, pp. 2009-2022, 2007.

[16] A. Abou-Seido, B. Nowak, and C. Chu, “Fitted elmore
delay: a simple and accurate interconnect delay model,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 12, no. 7, pp. 691
— 696, 2004.

[17] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
and S. Narayan, “First-order incremental block-based statisti-
cal timing analysis,” In Proceedings of the 41st annual Design
Automation Conference (DAC ’04), pp. 331-336, 2004.

[18] H. Chang and S. Sapatnekar, “Statistical timing analysis
under spatial correlations,” IEEE Transactions on Computer-
Aided Design (TCAD), vol. 24, no. 9, pp. 1467-1482, 2005.

[19] J. Birge and F. Louveaux, “Introduction to stochastic pro-
gramming,” Springer, 1997.

[20] A.J. Kleywegt and A. Shapiro, “Stochastic Optimization,
Handbook of Industrial Engineering, 3rd Edition,” G. Sal-
vendy (editor), John Wiley and Sons, 2001.

[21] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw,
and V. Zolotov, “Discrete vt assignment adn gate sizing using
a self-snapping continuous formulation,” In Proceedings of
the 2005 IEEE/ACM international conference on Computer-
aided design (ICCAD ’05), 2005.

[22] K. Fang, and L. Runze, “Design and modelling for computer
experiments,” CRC' Press, 2005.

[23] S. Hu and J. Hu, “Unified adaptivity optimization of clock
and logic signals,” In Proceedings of the 2007 IEEE/ACM
international conference on Computer-aided design (ICCAD
’07), pp. 125-130, 2007.

[24] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical,
fast monte carlo statistical static timing analysis: why and
how,” In Proceedings of the 2008 IEEE/ACM international
conference on Computer-aided design (ICCAD ’08), 2008.

[25] S.K. Tiwary and P.K. Tiwary and R.A. Rutenbar, “Gener-
ation of yield-aware Pareto surfaces for hierarchical circuit
design space exploration,” In Proceedings of the 48rd annual
Design Automation Conference (DAC ’06), pp. 31-36, 2006.

[26] “https://projects.coin-or.org/ipopt.”

Xiaodao Chen received the B.Eng. degree
in telecommunication from the Wuhan U-
niversity of Technology, Wuhan, China, in
2006, the he M.Sc. degree in electrical en-
gineering from Michigan Technological Uni-
versity, Houghton, USA, in 2009, and the
Ph.D. in computer engineering from Michi-
gan Technological University, Houghton, US-
A, in 2012.

He is currently an Assistant Professor with
School of Computer Science, China Universi-
ty of Geosciences, Wuhan, China.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2014.2316503, | EEE Transactions on Emerging Topics in Computing

Dan Chen (M’ 2002) received the B.Sc. de-
gree in applied physics from Wuhan Universi-
ty, Wuhan, China, and the M.Eng. degree in
computer science from Huazhong University
of Science and Technology, Wuhan, China.
He received the M.Eng. and the Ph.D. in
computer engineering fromNanyang Techno-
logical University, Singapore.

He is currently a Professor, Head of the
Department of Network Engineering, and the
Director of the Scientific Computing lab with
School of Computer Science, China University of Geosciences,
Wouhan, China. He was a HEFCE Research Fellow with the University
of Birmingham, U.K. His research interests include modelling and
simulation of complex systems, neuroinformatics, and high perfor-
mance computing.

Lizhen Wang (SM' 2009) received the
B.Eng. degree (with honors) and the M.Eng.
degree both from Tsinghua University, Bei-
jing, China, and the Doctor of Engineering
in applied computer science (magna cum
laude) from University Karlsruhe (now Karl-
sruhe Institute of Technology), Karlsruhe,
Germany.

He is a "100-Talent Program” Professor at
Institute of Remote Sensing & Digital Earth,
Chinese Academy of Sciences (CAS), Beijing,
China and a "ChuTian” Chair Professor at School of Computer
Science, China University of Geosciences, Wuhan, China.

Prof. Wang is a Fellow of IET and Fellow of BCS.

Ze Deng received the B.Sc. degree from Chi-
T~ ; na University of Geosciences, the M.Eng. de-
) gree from Yunnan University, and the Ph.D.
degree from Huazhong University of Science
and Technology, China. He is currently an As-
sistant Professor with the School of Comput-
er Science, China University of Geosciences,
Wouhan, China. He is currently also a Post-
doctor with the Faculty of Resources , China
University of Geosciences, Wuhan, China.

Rajiv Ranjan Rajiv Ranjan is a Research Sci-
entist and a Julius Fellow in CSIRO Compu-
tational Informatics Division (formerly known
as CSIRO ICT Centre). His expertise is in
datacenter cloud computing, application pro-
visioning, and performance optimization. He
has a PhD (2009) in Engineering from the
University of Melbourne. He has published
62 scientific, peer-reviewed papers (7 books,
25 journals, 25 conferences, and 5 book
chapters). His hindex is 20, with a lifetime
citation count of 1660+ (Google Scholar). His papers have also
received 140+ ISl citations. 70% of his journal papers and 60% of
conference papers have been A*/A ranked ERA publication.

12

Albert Zomaya (F 2004)

Albert Y. Zomaya is currently the Chair
Professor of High Performance Computing &
Networking and Australian Research Council
Professorial Fellow in the School of Infor-
mation Technologies, The University of Syd-
ney. He is also the Director of the Centre
for Distributed and High Performance Com-
puting which was established in late 2009.
Professor Zomaya held the CISCO Systems
Chair Professor of Internetworking during the
period 2002-2007 and also was Head of school for 2006-2007 in
the same school. Prior to his current appointment he was a Full
Professor in the School of Electrical, Electronic and Computer
Engineering at the University of Western Australia, where he also led
the Parallel Computing Research Laboratory during the period 1990-
2002. He served as Associate-, Deputy-, and Acting-Head in the same
department, and held numerous visiting positions and has extensive
industry involvement. Professor Zomaya received his PhD from
the Department of Automatic Control and Systems Engineering,
Sheffield University in the United Kingdom.

Shiyan Hu (SM’ 2010) received the Ph.D.
degree in computer engineering from Texas
A&M University, College Station, in 2008.

He is currently an Assistant Professor with
the Department of Electrical and Computer
Engineering, Michigan Technological Univer-
sity, Houghton, where he serves as the Direc-
tor of the Michigan Tech VLSI CAD Research
Laboratory. He was a Visiting Professor with
the IBM Austin Research Laboratory, Austin,
TX, in 2010. He has over 50 journal and con-
ference publications. His current research interests include computer-
aided design for very large-scale integrated circuits on nanoscale
interconnect optimization, low power optimization, and design for
manufacturability.

Dr. Hu has served as a technical program committee member for a
few conferences such as ICCAD, ISPD, ISQED, ISVLSI, and ISCAS.
He received the Best Paper Award Nomination from ICCAD 2009.

2168-6750 (c) 2013 |IEEE. Translations and content mining are permitted for academic research only. Personal useis also permitted, but republication/redistribution

requires | EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

