
Task-Tree Based Large-Scale Mosaicking for
Massive Remote Sensed Imageries with

Dynamic DAG Scheduling
Yan Ma, Member, IEEE, Lizhe Wang, Senior Member, IEEE, Albert Y. Zomaya, Fellow, IEEE,

Dan Chen, and Rajiv Ranjan, Member, IEEE

Abstract—Remote sensed imagery mosaicking at large scale has been receiving increasing attentions in regional to global research.
However, when scaling to large areas, image mosaicking becomes extremely challenging for the dependency relationships among
a large collection of tasks which give rise to ordering constraint, the demand of significant processing capabilities and also the
difficulties inherent in organizing these enormous tasks and RS image data. We propose a task-tree based mosaicking for remote
sensed imageries at large scale with dynamic DAG scheduling. It expresses large scale mosaicking as a data-driven task tree
with minimal height. And also a critical path based dynamical DAG scheduling solution with status queue named CPDS-SQ is
provided to offer an optimized schedule on multi-core cluster with minimal completion time. All the individual dependent tasks are run
by a core parallel mosaicking program implemented with MPI to perform mosaicking on different pairs of images. Eventually, an
effective but easier approach is offered to improve the large-scale processing capability by decoupling the dependence relationships
among tasks from the complex parallel processing procedure. Through experiments on large-scale mosaicking, we confirmed
that our approach were efficient and scalable.

Index Terms—Remote sensing image processing, parallel computing, DAG scheduling, data-intensive computing, big data computing

Ç

1 INTRODUCTION

IN recent years the demands for accurate and up-to-date
[1] environmental information at regional to global scale

are increasing dramatically. The spaceborne sensors which
conduct global observations [2] of the earth surface
continuously have provided a unique and quantitative
way for global monitoring. The efforts to improve the large
scale capabilities of mosaicking [3] have received particular
attention so to solve the problems of land use or climate
changes [4], [5]. The Global Rain Forest Mapping (GRFM
[5]) project has produced several semi-continental mosaics
using some 13000 scenes of JERS-1 L-band SAR images. The
United States Geological Survey (USGS) team has created
Antarctica [6] mosaic from over 1,000 ETM+ scenes.

Mosaicking [7] of remote sensed (RS) imageries usually
stitches a large collection of scenes with overlapping
regions into a geometric alignment, radiometric balanced
seamless one. Subsequently, a continuous view of the
entire big area could be formed. The sheer volume of

national-scale mosaic will be hundreds of gigabytes, and
the continental mosaic could even exceed one terabyte [6].
Extremely large amounts of data need to be processed.
Generally, mosaicking for remote sensed imageries mainly
consists of re-projection, registration, radiometric balanc-
ing, seam line extraction and blending. This processing
chain with multi-stage [7] is rather compute-intensive and
also quite time-consuming. Generating a regional mosaic
with a dozen of scenes would take couple of hours. When
scale to large region, image mosaicking becomes extremely
challenging due to the vast volume of image data, multiple
processing steps with higher complexity, and also the
intricate adjacent relationships among large collection of
scenes with overlapping regions. Particularly, some time-
critical applications like disaster assessment even require
near real-time processing capabilities.

The enormous computation introduced by large-scale
image mosaicking requires significant processing capabil-
ities, which have far, outpace a single computer. Appling
multi-core cluster based high-performance computing
(HPC) in large-scale mosaicking is an effective solution to
address these computational challenges. The parallelism is
normally achieved by recursively breaking down large-
scale processing issue into smaller tasks responsible for
regional mosaics. In this way, certain tasks dealing with
larger regions wait for the regional mosaics generated by
much smaller tasks as input to be available. However, in
the mosaicking scenario showed here, procedure consists
of several complex processing stages, vast adjacent scenes
with overlapping regions, and the tasks performing on
these scenes subject to ordering constraints. The complex-
ities inherent in organizing large numbers of ‘‘messy’’

. Y. Ma and L. Wang are with the Institute of Remote Sensing and Digital
Earth Chinese Academy of Science, Beijing 100094, China. E-mail:
Lizhe.Wang@gmail.com.

. A.Y. Zomaya is with the School of Information Technologies, the
University of Sydney, Australia.

. D. Chen is with the School of Computer, China University of Geosciences.
E-mail: Danjj43@gmail.com.

. R. Ranjan is with ICT/CSIRO, Australia.

Manuscript received 12 July 2013; revised 30 Sept. 2013; accepted 10 Oct.
2013. Date of publication 22 Oct. 2013; date of current version 16 July 2014.
Recommended for acceptance by J. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.272

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142126

datasets and interdependent tasks will inevitably compli-
cate the data slicing, task partition, also leads to trivial and
frequent synchronization among tasks. Under this situa-
tion, the efficient parallel version of large-scale mosaicking
algorithm would be rather difficult and error-prone,
especially when implemented on low-level APIs message
passing interface (MPI) enabled parallel system. Further-
more, the extra synchronization and communication over-
head introduced by the interdependent tasks affect
negatively on performance and scalability, when tasks are
dispatched to different nodes in parallel system.

Direct Acyclic Graph (DAG) with vertexes for tasks and
edges for constraints may be used to model applications
consisting of interdependent tasks. DAG scheduling gen-
erates schedule with minimized overall parallel execution
time or schedule length while without breaking the partial
order of tasks that certain tasks must execute earlier than
others. To properly address these aforementioned issues,
we propose TTLMosaic, a novel Task-Tree based Large-
scale Mosaicking for remote sensed imageries with
dynamic DAG scheduling on multi-core cluster system.
The main contribution of this work is that it introduces task
tree together with dynamic DAG scheduling to decoupling
the interdependent relationships among tasks from the
complex parallel processing procedure. Through divide-
and-conquer approach, the large-scale mosaicking problem
as a root node recursively spawns out a collection of
interdependent tasks. These tasks perform the same MPI
implemented parallel mosaicking program on different
datasets and generating corresponding regional mosaics.
Then, the dependencies among these tasks form an abstract
balanced task tree with nearly minimal height. Meanwhile,
we adopt the improved dynamic DAG scheduling algo-
rithm [8], [9], [10], [11], [12], [13] with job status queues so
as to offer an optimized schedule that mapping the abstract
task tree to multi-core cluster with minimal schedule
length. Thereafter, a two-level parallelism is provided,
the first level is the parallelism among tasks achieved by
DAG scheduling, and the second level inside the tasks
is parallel implemented by MPI on symmetric multi-
processors (SMP) nodes. Accordingly, this would offer
higher parallel efficiency and more excellent scalability. In
addition, the developing of efficient large-scale mosaicking
program would also be much easier, since the MPI-
implemented parallel program for individual tasks could
no longer concern for the ordering constraint among
interdependent tasks.

The rest of this paper is organized as follows. The
following section discusses the related work, and the
problem definition is addressed in Section 3. In Section 4,
we go into details in the design and implementations of
task-tree based large-scale mosaicking for RS imageries
with dynamic DAG scheduling. Section 5 discusses the
experimental analysis of program performance, and finally
the last section summarizes this paper.

2 RELATED WORK

The SMP clusters characterized by increasing scale as well as
Graphics Processing Units (GPUs) are boosted employed in
supercomputing domain. Several widely accepted parallel

paradigms developed for hierarchical architecture of SMP
cluster are used in image mosaicking algorithms, namely,
OpenMP, MPI, and also MPI+OpenMP [16] hybrid paradigm
which exploits multiple levels of parallelism. Work in [14]
comparatively experimented the mosaicking algorithms with
these three different parallel paradigms and all led to
noticeable performance improvement. Work in [29] proposed
an optimized image mosaic algorithm with parallel I/O and
dynamic grouped parallel strategy on MPI-enabled cluster.
In this method, the computing nodes are grouped for sub
mosaics (tasks), while the master node carefully controls the
whole mosaicking procedure of dependent tasks. The
drawback of these works is that for an efficient implemen-
tation, a properly dealing with the frequent synchronization
and communication among nodes with low-level APIs is
required. But, this will lead to discouraging scalability. In
addition, GPUs with CUDA programming have become a
competitive accelerator [5]. Samargo et al. [28] presented
CUDA accelerated mosaicking for unmanned aircraft sys-
tem. The problem is that the complicated control logical of
dependent tasks complicates the CUDA implementing.
Moreover, to achieve excellent efficiency, a proper allocate
of different memory types is required.

Nevertheless, the image mosaicking is challenged with
collections of data-driven dependent tasks with ordering
constraint. Thus, to develop parallel program for it solely
with low-level but efficient programming models like MPI
or CUDA would still be rather difficult and error-prone. In
spite of the outstanding performance improvement, these
kinds of approaches are only suitable for generating small
regional mosaics, but not yet specialized in large-scale
mosaicking with large collections of remote sensing
images.

The DAG scheduling algorithms are employed for
scheduling the dependent tasks of a parallel program
onto cluster nodes to achieve minimal completion time.
There are many choices of DAG scheduling solutions with
trade-offs between time complexity and quality such as
list-based scheduling heuristics including HLFET [17],
MCP [18], ETF [19], and DLS [20], and the clustering
scheduling approaches, e.g., EZ [8] and DCP [11].

The DAG scheduler is responsible for mapping task
graphs to concrete processors, job execution and monitor-
ing [21], [22], [23], [24]. Google’s Pregel [25] a distributed
computing framework with supersteps and message pass-
ing is suitable for large-scale graph processing. Recently,
great efforts have laid on the study of algorithms [2], [7],
[26], [27] to tackle variations in geometric and discontinu-
ous in radiometric incurred telemetry characteristics when
in large scale mosaicking scenario. On the contrary, the
processing efficiency together with parallelization strategy of
mosaicing for RS imageries at large scale is rarely pay
attention to. Some limited related works go Merzky et al. [30]
effectively retooling Montage [31] an existing astronom-
ical image mosaicking software on distributed cyber-
infrastructure through adopting DAGMan as a DAG
scheduler and mDAG for describing Montage tasks as an
abstract DAG.

The TTLMosaic for remote sensed imageries proposed
in this paper aims at addressing the above challenges in
large-scale capability and its performance efficiency. This

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2127

solution relies on the DAG scheduling technique as
Montage does to provide efficient schedule of data-driven
tree structured task graph (DAG) of mosaicking at large
scale on parallel cluster systems. TTLMosaic consists of two
modules: 1) DTTSchedular in charge of task tree construc-
tion and scheduling onto SMP processors; and 2) PMosaic a
MPI-implemented parallel version of mosaic algorithm for
automatically mosaicking two images or regional mosaics
into a seamless single one.

3 PROBLEM DEFINITION

This section discusses the key issues related to the parallel
mosaicking for remote sensed imageries at large scale on
MPI-enabled multi-core cluster system. There are three
aspects of this problem: large numbers of RS senses with
overlapping regions and dependent tasks perform on
them, difficulties of parallel implementation, along with
data processing speed and scalability. The first issue is
related to the complexities inherent in organizing tons of
‘‘messy’’ scenes with overlapping regions for task partition
as well as the processing order determination (Section 3.1).
The second issue is related to the difficulties lie in the
parallel implementation with great concerning for trivial
synchronization and communication among tasks incurred
by their intricate dependency relations (Section 3.2). The
third issue refers to the performance and scalability,
namely how to sufficiently exploit parallelism and take
advantage of hierarchical parallel architecture and espe-
cially data I/O (Section 3.3).

3.1 Large Numbers of RS Imageries and Tasks
When scale to large area, the image mosaicking will be
overwhelmed with tons of RS datasets. The regional-scale
mosaic covering Central Africa region (6� S-8� N and 5� E-
26� E) [1] consists of more than 700 SAR scenes. Also, the
Antarctica [6] mosaic merging over thousands of scenes
taken by ETM+ sensor adds up to about more than one
terabyte of data. However, these large numbers of RS
images make the traditional mosaic on basis of scene-by-
scene no longer inapplicable on parallel system. The reason
for that is the intolerable time consumption and inevitable
poor scalability with increasing processors.

The data acquired for large scale mosaicking are a mess
of georeferenced RS images that most of the adjacent images
have overlapping regions. Nevertheless, the intricate
adjacent relationships among these images give rise to the
complexities inherent in task partition and their processing
order determination. Firstly, for a more fine-grained
partition, the task partition does need be conducted
recursively according to the intricate adjacent relations
among images. In this way, the tasks produce larger
mosaics depends on the smaller mosaics generated by
other tasks as input images. As a result, the task partition is
also a problem of properly representing large scale
mosaicking in the form of data-driven task graph (DAG)
which consists of a large collection of interdependent tasks.
Withal, for performance efficiency, to express program as a
nearly balanced task tree with almost minimal height is also
paramount but also rather cumbersome. Secondly, to
arrange these large numbers of interdependent tasks into

an efficient processing order so as to gain low completion
time could also be critical important.

3.2 Difficulties of Parallel Implementation
With the increasing demand for large-scale mosaic in re-
gional to global-scale research, the mosaicking for RS
imageries is complicated by discontinuous in radiometric
and variations in geometric. The remote sensed image
mosaicking would normally be a complex multi-stage
processing procedure consists of re-projection, registration,
radiometric balancing, seam line extraction and blending in
overlapping regions. Of course, this complex processing
procedure will make the parallel implementation difficult. To
complicate the situation is that the parallel implementing
have to tremendously concern for the dependency relation-
ships among large numbers of tasks. The tasks should be
executed with respect to the ordering constraint that some
certain tasks have to wait for the smaller mosaics produced
by other tasks to be available. This would subsequently lead
to frequent and trivial process synchronization and data
communication with MPI for processing sequence control-
ling. The efficient implementation of parallel mosaicking
algorithm would be extremely difficult and error-prone.

Assume that if the dependency among tasks along with
processing order controlling could be decoupled from the
MPI implementation details, then the parallel implemen-
tation of mosaic would be much easier and efficient.

3.3 Performance and Scalability
When scale to large area, the image mosaicking turn out to
be quite time-consuming and requires huge processing
capability. Furthermore, some time-critical applications
like disaster monitoring pose a challenge on performance.
So, we should draw attention to exploiting the parallelism
among tasks while abide by the ordering constraints, and
also sufficiently benefiting from the hierarchical parallel
architecture of cluster. Withal, the loading and exporting
large amount of datasets introduce intensive data I/O
operations and also undesirable I/O overhead. For perfor-
mance and scalability consideration it is urgent to take I/O
performance into account.

4 DESIGN AND IMPLEMENTATION

We demonstrate TTLMosaic a dynamic task-tree based
mosaicking for remote sensed imageries with DAG sched-
uling. Here term ‘‘Dynamic’’ refers to the DAG scheduling
method TTLMosaic adopts that the precedence constraint
among the dependent tasks could be dynamically assigned
during execution. TTLMosaic provides an efficient and
easy scalable solution to greatly improve the large-scale
processing capacity and performance of mosaicking on
MPI-enabled multi-core clusters. This approach relies on
the improved dynamic DAG scheduling algorithm with job
status queues to decouple the ordering constraint among
dependent tasks from the complex parallel processing
procedure. TTLMosaic composes of DTTSchedular for task
tree creation and efficient scheduling with minimal com-
pletion time (Section 4.2) and MPI-implemented PMosaic
run by the individual tasks to perform mosacking on
different images or mosaics (Section 4.1).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142128

The system architecture diagram of TTLMosaic is showed
in Fig. 1. We introduce a two-level parallel pattern in
TTLMosaic. DTTSchedular exploits the parallelism among
dependent tasks with parallel scheduling of task tree, while
PMosaic achieves fine-grained parallelism inside the tasks
with MPI.

To address the issues discussed in Section 3.1, we
arrange the ‘‘messy’’ images into partial ordered sequence,
and then express the large-scale mosaicking problem as a
nearly balanced task tree based on this image sequence.
Once the large collections of ‘‘messy’’ RS images are
acquired for mosaicking, they will firstly be arranged into a
partial row-path-major order sequence with the path and
row number in geographic metadata of scenes. Then
DTTSchedular build a nearly balanced binary task tree
from the arranged image sequence by recursively cut the
sequences into two subsequences with almost equal
amount of images.

To solve the issues raised in Sections 3.2 and 3.3,
DTTSchedular offers an effective and dynamical schedule
for task tree and then submit the tasks to the LRMs (Local
Resource Managers) of cluster like PBS for job execution.
When a task tree is build, a simple DAG scheduling
runtime is offered to produce a precedence-constrained
and computation resource assigned concrete DAG with a
Critical Path based Dynamical Scheduling solution with job
Status Queue (CPDS-SQ). Then, the ‘‘free’’ tasks (no
unscheduled children or preceding nodes) with high
precedence will be put into ready queue and submit to
PBS for mapping tasks to real processer resource in multi-
core cluster. The scheduling runtime also checks PBS for
job status. Once then a task is finished, the precedence of
unscheduled task nodes would be dynamically reassigned,
and the succeeding tasks waiting for input images to be
available would be put into ready queue if ‘‘free’’.
Thereafter, the DTTSchedular could execute these mosaic
tasks in parallel while do not break the dependency among
tasks. Accordingly, the parallel implementation of PMosaic
with MPI could be much easier without concerning for the
ordering constraints among tasks. In addition, a job
resubmission mechanism is also provided in the simple
scheduling runtime in case of failure. To improve the I/O
performance discussed in Section 3.3, a SAN storage

system equipped with high performance parallel file
system Lustre is adopted for fast image data staging in
and out among tasks. This SAN storage is fully connected
with all computation resource. Also, the mechanism of
overlapping I/O with computation is implemented in
PMosaic.

4.1 Image Mosaicking Algorithm Implemented
with MPI

When scaling to large area, the image mosaicking is
complicated by the radiometric variations and radiometric
discontinuities caused by telemetry characteristics [2].
Moreover, some of the processing steps are not fully
automated in most common used commercial software for
remote sensing image processing, like seam line extraction.
Therefore, we adopt an image mosaicking approach
consists of multiple stages, including re-projection, regis-
tration, radiometric balancing, seam line extraction and
blending. The image registration is provided for automatic
control point abstraction and geometric transformation
between a pair of images with overlapping region. Then the
geometric variation between images could be corrected.
Meanwhile, the histogram match is used for radiometric
balancing. Also, the seam line selection together with
blending is employed for eliminating the artificial edges in
the overlapping region introduced by the radiometric
discontinuous between images. In addition, each individ-
ual processing step will follow an automatic way without
manual intervention.

The flow chart of the PMosaic program implemented with
MPI is showed in Fig. 2. The master computing node is
responsible for data slicing and data partition. While the
slave nodes follows a multi-stage processing procedure.
Firstly, we re-project all the input images into a global
projection coordinate system by choosing a proper projection
method. Secondly, we adopt a maximum mutual information
[32] based registration to abstract control points and establish
geometric transformation automatically. Since the remote

Fig. 1. System architecture diagram of DTTLMosaic.

Fig. 2. Flow chart of the PMosaic program.

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2129

sensing images acquired for mosaicking are always geomet-
ric rectified, so it is ok to use a stable registration algorithm
with lower quality. Thirdly, the radiometric balancing is
achieved by histogram match between slave images and the
selected referencing image. Then, the slave images are
resampled with the geometric transformation function
established in registration. Finally, we perform seam line
selection and blending in overlapping region. For a fine
quality of mosaic, we choose the laplacian pyramid based
image blending algorithm [15]. For two images A and B, the
lapalacian pyramid of overlapping regions in image A would
be LA, and the he lapalacian pyramid of overlapping regions
in image B is LB. Also GR the lapalacian pyramid of the
overlapping region mask with optimized seam line is
constructed as weight value for blending. Then through a
weighted pyramid blending of LA and LB with weight GR in
each pyramid layer and add up all the fusion layers to form a
seamless mosaic.

For the I/O performance consideration, we adopt data
pre-fetch approach that the data staging thread is offered
for data staging in an out with data pre-fetching and
writing with asynchronous parallel I/O. Accordingly, the
I/O overhead could sufficiently overlap with the compu-
tation overhead. More detailed description could be found
in our previous paper [29].

4.2 Dynamic Task Tree Scheduling for
Large-Scale Mosaicking

DTTSchedular provides a dynamic task tree scheduling for
large-scale mosaicking so as to improve its large scale
capability. It represent large-scale mosaicking program in
the form of task tree which is also a tree structured direct
acyclic graph consisting of large numbers of tasks.
DTTSchedular then relies on a dynamic MCP DAG
scheduling algorithm to efficiently schedule the task tree
onto multi-core cluster in parallel for a fast generating of
the final mosaic with large scale.

4.2.1 Task Tree Construction Method
The large numbers of RS images for mosaicking at regional-
scale to even global-scale are normally input in random.

Therefore, the building of task tree would also be a
procedure of image sorting and task partition. The main
problem lays on that what kind of tree we should build and
also how to build. To offer a fine-grained task partition
along with a most simplified parallel processing procedure
for a single task, each individual task could only generate a
mosaic with two images. Namely, the task tree should be a
binary tree that each non-leaf nodes have two children.
Another important thing is the shape of this binary tree.
The unbalanced tree which is also higher would lead to a
long completion time, since fewer tasks could run in
parallel at once. That is to say, it’s good that each non-leaf
node has two children. So a more flat shaped balanced task
tree would be desirable.

In this paper, we adopt a simple task tree creating
method which is also illustrated in Fig. 3. Firstly, a mess of
images are arranged into a partial order sequence accord-
ing to their path and row numbers which also indicate the
approximate geographical location. In the geographical
coordination system, the image scenes located at the top
left corner would have a smaller row and larger path
number. These scenes will be arranged in front of the
sequence. This image sequence is arranged through a two-
step sorting approach with a first row-major order sorting
and a second path-major order sorting. Thus the images
would be arranged in both ascending row order and
descending path order.

Afterwards, we will build a task tree from this sequence
through reclusive task partition while with respect to the
adjacent relation among images. In this paper, we use
adjacent table to represent the adjacent relation among
images. If image k and image j have overlapping region then
we mark this image pair as adjacent related in table. The
adjacent table is generated by checking for each image pair
whether an overlapping region is existed by comparing the
range of image in projection coordinate system. Through a
top-down task partition approach, we recursively divide
this image sequence into a collection of sub sequences
which corresponding to the nodes of task tree. In each step
of the recursive partition, the sequence (corresponding to
ni) will be equally split into two sub sequences with almost

Fig. 3. Task tree creating method.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142130

same number of images. One of the sub sequence called A
consists of the images arrange in front of the middle image
and the other sub sequence B includes the rest of the images.
Then, the sub sequence A and B will be packaged as task
nodes whose father is node ni.

However, the above partition approach may introduce
‘‘fake’’ isolated images in sub sequence. Here ‘‘fake’’
isolated images refer the non-isolated images with adjacent
images but do not have any adjacent relation with images
in current sub image sequence. In case that a ‘‘fake’’
isolated image k is produced in sub sequence A, then we
would select an image from B which do not adjacent to
image k and also have the most adjacent relation with the
images in A. Then, image k will swap with this selected
image, the example of this is the red-colored sub sequence
(9, 7, 1, 8) showed in Fig. 3. Following this way, we will
make sure that each tasks dealing with two images or
mosaics with overlapping region.

4.2.2 Task Tree Scheduling with CPDS-SQ
The task tree for large-scale mosaicking can also be treated
as a tree structured direct acyclic graph. There are many
choices for existing DAG scheduling algorithm with trade-
offs between quality and time-complexity. In this paper,
the data staging in and staging out is improved by a
parallel file system Lustre enabled SAN storage fully
connected with all computation resources. Whether the
succeeding and previous nodes are run on same processor
or not, the succeeding tasks waiting for the output data of
preceding task to be available could staging in the input
data from Lustre without explicit data communication. So,
the data communication consumption among tasks is not
considered in this paper. Moreover, PMosaic run the
individual tasks is implemented with MPI among multiple
processors. While the high quality clustering or task-
duplication based algorithms with high time-complexity
always aim at minimizing communication time and
suppose that tasks are run on single processor. Therefore,
instead of putting forward a new DAG scheduling
algorithm, we adopt an improved critical path based
dynamic scheduling solution with job status queue, short
for CPDS-SQ, which is also base on dynamic list scheduling
technique.

In this paper, we offer a simple DAG scheduling
runtime to implement the above CPDS-SQ scheduling
approach. It also dynamically submits the ready tasks to
the LRMs of multi-core cluster PBS with computation

resource assignment, along with the specification of data
and task arguments.

4.2.3 Task Tree Representation with DAG Model
Following a Divide-and-Conquer way, the task tree is
executed from bottom to top, since the father task nodes
demand for the output smaller mosaic of their child nodes.
So this task tree could be represented as a join DAG. The
node ni which is the child of task node nk is also the
preceding node of nk. The DAG model G ¼ ðV;E;W;
Ht;HbÞ is employed for task tree representation. Take the
task tree built above in Fig. 3 for example, the vertex set
V ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14g, the edge set
E ¼fð1; 2Þ; ð1; 3Þ; ð2; 4Þ; ð2; 5Þ; ð3; 6Þ; ð3; 7Þ; ð4; 8Þ; ð5; 10Þ; ð5; 9Þ;
ð6; 11Þ; ð6; 12Þ; ð7; 13Þ; ð7; 14Þg. Where Ht of vertex Vi is the
length of the longest path from an entry vertex to Vi, while
Hb is the longest path from Vi to an exit vertex. The length of
path is the sum of all node weights W along the path. Ht
highly related to earliest start time of vertex, while HbðViÞ
corresponding to how many time left for processing the all the
succeeding of vertex ðViÞ. The definition of Ht and Hb is
showed in following equations. In addition, the preðViÞ
stands for the preceding vertex set of Vi, while sucðViÞ
stands for the succeeding vertex set of Vi

HtðViÞ

¼ WðVjÞ þmaxVj2preðViÞ HtðVjÞ
� �

; if preðViÞ 6¼ ;
0; otherwise

�

(1)

HbðViÞ

¼ maxVj2sucðViÞ HbðVjÞ
� �

þWðViÞ; if sucðViÞ 6¼ ;
WðViÞ; otherwise.

�

(2)

Run time Estimation offers WðViÞ the estimated execution
time of tasks Vi with the data amount dðViÞ and the unit
completing time of PMosaic program t when processing
unit amount of data on single processor. As the tasks
perform mosaicking at larger regions with larger amount of
data would be more exhausted, so more computation
resources will be accommodated. Assume that the number
of processors assigned to task Vi is nðViÞ, and the
responding performance speedup is speedupðnðViÞÞ. The
unit completing time and performance speed up could be
empirical value. Then the run time of task Vi could be
estimated as follows:

WðViÞ ¼ t � dðViÞ=speedupðnðdðViÞÞÞ:

DAG Representation of task tree built in Fig. 3 is depicted
in Fig. 4. Where the execution time estimation value is
given by W ¼ f9; 7; 8; 5; 6; 6; 6; 3; 4; 3; 4; 4; 4; 3g. The direc-
tions of edges indicate the execution partial order.

4.2.4 CPDS-SQ DAG Scheduling
CPDS-SQ scheduling solution uses an earliest start time of
a task as a priority. The earliest start time of a task is namely
the Ht of the corresponding vertex or node. Initially, all the
nodes in the DAG are assigned with an initial priority
according to theirHt values. In case when some nodes have

Fig. 4. DAG representation of task tree.

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2131

a same earliest start time, then ties are broken by
considering the HtþHb of the nodes. Since the higher
HtþHb of node is, the more possible that the node would
be on the critical path. So, by taking critical path into
concern, the nodes with higher HtþHb would be assigned
with a higher priority.

After initialization of task priority, the CPDS-SQ solu-
tions begin to scheduling the free tasks nodes recursively.
Here free nodes refer to the tasks with no predecessors.
This means that these tasks could be executed immediately
without waiting for the dependent tasks to be ready. The
scheduling starts with the entry nodes in the precedence-
constraint DAG which also corresponding to the leaf nodes
of task tree. Initially, all the entry nodes Vj are packaged
into task packages modeling with Tj ¼ hVj;Dj;Argj;Nji by
assigning the amount of computation resources Nj, spec-
ifying the input image data Djand processing arguments
Argj. These task packages Tj are then constructed as a list in
descending order of priority by the sorting algorithms and
insert into a ready queue.

For each task packages in the ready queue, it will be
submitted to a local resource manager of SMP cluster system
name PBS for concrete computation resource accommoda-
tion and job execution. Once the task Tj is submitted to PBS,
Tj becomes a scheduled task. Then CPDS-SQ scheduler
moves scheduled task package Tj from ready queue to
running queue for execution status reporting.

In case when the task scheduled task package Tj is
finished, then CPDS-SQ will remove this finished task
package Tj out from running queue and update the Ht
value of the corresponding nodes with the real runtime of
the task. Then a bottom to up priority recalculating
procedure starts from task node Vj in task DAG would be
invoked. Firstly, the priority of the unscheduled succeed-
ing task nodes of Vj named VkðVk ¼ sucðVjÞÞ would be
recalculated with the updated Ht value HtðVkÞ. Then, the
priority of the unscheduled succeeding task nodes of Vk

will be recalculated recursively until that node Vk has no
succeeding tasks namely exit task node. Subsequently,
CPDS-SQ will free task Vk the succeeding nodes of this
finished node Vj by remove the dependent relationship
edge ðVj;VkÞ between task Vj and Vk from task DAG. If the
succeeding node is a free node with no preceding tasks and
ready for scheduling that it will also be packaged as task
package and insert into ready queue.

While, when a failure of the task package is encoun-
tered, the task package will be moved from running queue
to Failure Queue and mark the number of failures. The
failure task packages will be rescheduled to ready queue
with at most twice. This status updating and priority
recalculation procedure will be looped until all the tasks
are scheduled for execution.

The CPDS-SQ DAG scheduling solution could be ex-
pressed as follows. Where the Tj is the corresponding task
package of node Vj, it also consists of data specification file
Dj, argument file for execution Argj and the demand of
computation resources Nj.

A simple scheduling runtime of DTTScheduler is
offered to implement the CPDS-SQ DAG scheduling
solution. The scheduling runtime diagram is presented
in Fig. 5.

The CPDS-SQ DAG scheduling solution

1: //Priority Initialization

2 for each node Vj in direct acyclic graph G do

3 PðVjÞ HtðVjÞ priority assignment

4 for each node Vi G Vj do

5 if PðVjÞ ¼ PðViÞ then

6 if HtðVjÞ þHbðVjÞ 9 HtðViÞ þHbðViÞ then

7 PðVjÞ higher priority

8 Else

9 PðVjÞ lower priority

10 end for

11 end for

12

13 //Schedule free nodes

14 List ¼ ;
15 for each node Vj in direct acyclic graph G do

16 if node Vj is a free node then

17 Tj ¼ hVj;Dj;Argj;Nji
18 List [Tj //add task to list

19 end for

20 Sorting(P(List)) in descending order

21 ReadyQueue [List //insert List to ready queue

22 for each task Tj in ReadyQueue do

23 SubmitJobðTjÞ
24 remove Tj from ReadyQueue

25 RunningQueue [Tj

26 end for

27

28 // Status Updating and Priority Recalculating

29 for each task Tj in RunningQueue do

30 if Status ðTjÞ ¼ finished then

31 HtðVjÞ realruntimeðTjÞ
32 // Priority Recalculating

33 Vk ¼ sucðVjÞ
34 while Vk 6¼ ; then //update from bottom to up

35 if Vk is un-scheduled then

36 HtðVkÞ recalculated value

37 PðVkÞ recalculated value

38 Vk sucðVjÞ
39 end while

40 remove Tj from RunningQueue

41 free sucðVjÞ //free the succeeding nodes

42 for each node Vk in sucðVjÞ
43 if Vk is ready then

44 ReadyQueue [Vk //insert into readyqueue

45 end for

46 else if Status ðTjÞ ¼ failure then

47 remove Tj from RunningQueue

48 FailureQueue [Tj

49 if Tj have resubmit more than twice then

50 ReadyQueue [Tj //resubmit failure jobs

51 end for

52 If exists unscheduled node in G and

53 RunningQueue 6¼ ;
54 and ReadingQueue 6¼ ; then

55 goto line 14 for looping

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142132

The example schedule produced by CPDS-SQ schedul-
ing solution on cluster with five processors is showed in
Fig. 6. Assume that the task T1 to T3 which generate mosaic
at larger region are assigned with two processors, and
others are assigned with only one processor.

At the beginning, the ðVj;WðVjÞ; HtðVjÞ; HbðVjsÞÞparam-
eter of all the vertexes in DAG model would be (1, 9, 18, 0),
(2, 7, 10, 9), (3, 8, 10, 9), (4, 5, 3, 16), (5, 6, 4, 16), (6, 6, 4, 17),
(7, 6, 4, 17), (8, 3, 0, 21), (9, 4, 0, 22), (10, 3, 0, 22), (11, 4, 0, 23),
(12, 4, 0, 23), (13, 4, 0, 23), (14, 3, 0, 23).

Firstly, the free nodes V8 to V14 are arranged with the
descending order of priority is fV11;V12;V13;V14;V9;
V10;V8g. So the node V11, V12, V13, V14, and V9 are packaged
into tasks fT11;T12;T13;T14;T9g and put into ready queue
for scheduling. At the time of ‘‘3’’, task T14 finished, and the
Task V10 will be submitted to PBS for execution. Then at the
time of ‘‘4’’, task T9, T11, and T12 finished, the Task T8 will
be submitted to PBS for execution. At the time of ‘‘6’’, the
task T5 is becoming a free task node with no preceding tasks
are inserted to ready queue for scheduling. Consequently,
at the time of ‘‘9’’, the T3 is free and scheduled to two
processors by PBS. At the time of ‘‘12’’, the task T2 is ready
and executed on two processors. Finally, the root task T1 is
scheduled. Thus a total scheduling length of 27 is achieved.

5 EXPERIMENTS

The task tree based large scale mosaicking algorithm
TTLMosaic presented above offers an effective solution
for fast mosaicking at large scale. It has successfully applied
in the cluster-based PIPS (Parallel Image Processing System
for remote sensing) for generating the regional-scale or even

national mosaic using scenes taken by TM and ETM+
sensors.

The comparative experiment on regional mosaicking
covering Bohai Bay (34� N-42� N and 115� E-120� E) was
taken respectively with TTLMosaic and the commercial
remote sensing image processing software ENVI. The final
30-meter regional mosaics consist of 15 scenes of datasets
with single band taken by 30-meter TM sensor of Landsat 5
are demonstrated in Fig. 7, and the data amount of them are
up to 2 gigabytes. Where the mosaic showed on the left
side was generated by TTLMosaic on cluster using two
SMP node (each node equipped with 8 cores) task about
18 minutes, and the other was generated by ENVI on
workstation take about 50 minutes. From the experimental
result we can see that the mosaic produced by TTLMosaic is
radiometric balanced seamless one. While the mosaic
produced by ENVI remains unhandled radiometric disconti-
nuities along with explicit seam boundaries among images.
Therefore, TTLMosaic algorithm not only greatly improves
the visual quality of the final mosaic with a continuous view
of the whole region, but also the time consumption is also
reduced by using more processors.

The following experiments were carried out on a
multi-core cluster with 10 multi-core nodes connected by a
20 gigabyte Infiniband using RDMA protocol. Each node is
a blade server with dual Intel(R) Quad core CPU (3.0 GHz)
and 8 GB memory. The operating system was Cent OS5.0, the
C++ compiler was the Intel C/C++ Compiler with optimiz-
ing level O3, and the MPI implementation was Intel MPI.

Fig. 5. Runtime diagram of CPDS-SQ DAG scheduling solution.

Fig. 6. Example schedule result of CPDS-SQ DAG scheduling.

Fig. 7. Bohai bay mosaics produced by TTLMosaic (a) & ENVI (b).

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2133

The nation-wide mosaicking experiment covering most
area of china (20� N-47� N and 84� E-180� E) was implemen-
ted on 10 nodes (80 cores) and took about 5 hours. While to
complete the similar work, the common commercial software
would take days or even weeks for extra manual intervention.
The final nation-wide mosaic showed in Fig. 8 consists of s2
15-meter panchromatic ETM+ scenes of Landsat 7. The data
amount of this mosaic adds up to be more than 120 gigabytes.
In addition, we choose lambert conformal conic projection for
this china-wide mosaic with two standard parallels of 25� N
and 47� N, central meridian of 105� E.

The performance experiment is conduct on task tree
based mosaicking program TTLMosaic (TTM) and tradi-
tional MPI-implemented parallel mosaicking program
(PM) [28] both with increasing computation resources
and with increasing amount image data respectively. The
performance experiment with increasing processors chose
the case of mosaicking 200 15-meter panchromatic ETM+
[6] scenes.

The traditional parallel mosaicking algorithm named
PM is implemented on a basis of scene-by-scene that the
parallelism is achieved by partition of the images into
blocks. The master node arranges the mosaicking sequence
of these scenes by generating a Minimum Spanning Tree.
Following this way, only one scene of remote sensing
image could be processed in parallel by computing nodes
at one time and eventually stitched to form a seamless
larger mosaic. The most common situation is that the
computing nodes have to wait for each other with MPI
synchronization primitives to abide by the order con-
straints of these scenes. Eventually, frequent synchroniza-
tion and waiting overhead among nodes will result in poor
efficiency and scalability, and also make the parallel
program rather complicated.

Compared with TTM with two-level parallelism, the
parallelism of PM may be relatively poor. When comes to
large scale mosaicking with enough computing resources,
lots of scenes could be mosaicked in parallel by TTM.
While, PM could only dealing with one scene once, this will
lead to some idle computing nodes. From proc and on, the
advantage of PM algorithm is that each scene only have to
be resampled once which retains the original information
of pixels at a large extend.

The results of the performance experiment with increasing
processors which scaling form 1 node (8 cores) to 10 nodes
(80cores) are listed in Table 1. While the performance metrics
run time and speedup with increasing nodes are also
respectively plotted in Figs. 9a and 9b.

From the experimental results plotted in Fig. 9 can see
that DTTLMosaic (TTM) proposed in this paper presents
more outstanding performance and scalability than the
traditional parallel mosaicking program (PM) does with
increasing amount of processors. The TTM parallelization
of nation-wide remote sensing image mosaicking with
DAG scheduling and MPI reduces the one processor time
of 1500 minutes down to 49 minutes on 64 cores, for a
speedup of 30. Compared with PM which purely imple-
mentation with MPI, TTM have decreases the PM runtime
of 95 minutes to 53 minutes on 80 cores, while improves the
PM speedup of 11.8 to 28. This means that the TTM reduces
nearly a half of the runtime of PM with increasing
processors or cores, while the speedup doubles. The main
performance improvement would probably result from the
efficient CPDS-SQ DAG scheduling solution. CPDS-SQ
decouples the complex dependence relationships among
tasks with ordering constraints from the complex parallel
processing procedure and finally schedules the dependant
tasks at a relatively minimal scheduling length.

However, when fewer processors are accommodated
(less than 8 cores in Fig. 9a), TTM performs worse than PM.
While, once enough computation resources are provided,
TTM then outpaces PM immediately with fewer run time
overhead. Note that TTM provides a two-level of parallel-
ism, on is the parallelism among tasks through DAG
scheduling and the other level is the parallelism among
processors implemented by MPI. Naturally, the task tree
construction, task tree scheduling and also the job submis-
sion and scheduling with PBS would inevitably introduce
some extra time overhead which effect negatively on
performance. When increasing processors are employed,
the extra time overhead would not be a problem anymore,
since the parallel processing time of TTM undergoes an
obviously decrease.

The speedup of TTM is nearly linear with increasing
nodes. Nevertheless, when more than 7 nodes (56 cores) are
accommodated, the speedup of TTM declines. The reason
for it is that when more than enough processors are offered,
the processors required by free tasks ready for scheduling
are less than the total resources, so there would be some

Fig. 8. Nation-wide mosaic produced by TTLMosaic.

TABLE 1
Performance with Increasing Node Scale

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142134

idle processors then. The main reason for the TMM and PM
all fail to scale linearly as the number of cores increase to
more than 56 would be the I/O. The frequent data
transferring among the dependent tasks and the data
staging from one processing step to another within the
multi-stage processing chain of mosaicking task will all
result in quite impressive I/O time overhead. With better
data cache or staging strategy and improved parallel I/O,
we would expect to obtain a better speedup.

With the amount of panchromatic ETM+ scenes used for
mosaicking increased from 2 to 800, the data amount
increased from 0.7 to 273 gigabytes. The corresponding
experimental results with the increasing region size of
mosaic are listed in Table 2. Also the performance metrics
run time and throughput with increasing amount of data
are also respectively plotted in Figs. 10a and 10b.

Fig. 10a gives the picture of the run time comparing of
the above two programs that DTTLMosaic perform explic-
itly more excellent scalability than PM with increasing
amount of data which also means more amount of tasks for
scheduling. From the curves we could know that the run
time of DTTLMosaic decreases much faster than PM does.
In case of generating large scale mosaic with 800 scenes
(270 gigabytes), the TTM solution reduces the PM
processing time of 1019 minutes down to 422 minutes,
for a processing speed of 11 megabytes per second verses
4.5 megabytes per second of PM. Namely, when dealing
with more image data or tasks, the run time overhead of
DTTLMosaic (TTM) could just be less than a half of the time
overhead of PM, while the processing speed triples. The
reason for this is that with the increasing of data or tasks,
more idle processors would be assigned to tasks, then the
run time overhead could be greatly decreased with more
tasks could be run in parallel. This is also the reason why
that the data throughput performance of TTM far outpaces
the performance of PM with increasing data amount.

Obviously, the data throughput performance of TTM
goes worse than PM with limited cores less than 8, since the
building and scheduling of task tree would task extra
overhead as mentions in above speedup experiment. But
when increasing cores are provided, the data throughput
rate soars up sharply. Meanwhile, the discourage linear
scalability with more than 700 scenes which adds up to a
total of more than 230 gigabytes of data, would also dues to

the rather considerable I/O overhead mentioned in
previous experiment.

6 CONCLUSION

Remote sensed imagery Mosaicking at large scale turns out
to be quite challenging for the large collection of interde-
pendent tasks together with the significant processing
capability requirements. As demonstrated above in this
paper, we put forward DTTLMosaic a task-tree based
mosaicking algorithm for remote sensed imageries which
achieves a two-level parallelism with DTTSchedular for
parallelism among tasks and PMosaci for inside tasks.
DTTSchedular expresses large-scale mosaicking as a data-
driven task tree with nearly minimal height and offers an
optimized schedule on multi-core cluster with a critical
path based dynamical DAG scheduling solution named
CPDS-SQ. PMosaic the parallel image mosaicking program
implemented with MPI is offered to perform mosaicking on
different images by the individual tasks. This task-tree
based approach offers an effective but easy way to improve
the large-scale processing capability by decoupling the
dependence relationships among tasks which waiting for
input to be available from the complex parallel processing
procedure. The experimental result shows that the final
mosaic not only is radiometric balanced and but also
greatly improved with no explicit seam boundaries among

TABLE 2
Performance with Increasing Data Amount

Fig. 9. Performance experimental result with increasing nodes.

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2135

images. The large-scale processing capability is also
improved to be efficient by a china-wide mosaicking.
Furthermore, DTTMosaic also perform a more outstanding
performance and high scalability than traditional way of
parallel mosaicking both with increasing computation
resources and amount of image data or tasks. To draw
the conclusion that the task-tree based mosaicking algo-
rithm for remote sensed imageries with DAG scheduling
offers an effective but easier approach to improve the large-
scale processing capacity with higher scalability.

ACKNOWLEDGMENT

Dr. L. Wang and D. Chen are the corresponding authors.
Dr. L. Wang’s work is supported by National Natural
Science Foundation of China (61361120098). Dr. Y. Ma’s
work is supported by Foundation for Young Scholars of
Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences.

REFERENCES

[1] P. Mayaux, G.F. De Grandi, Y. Rauste, M. Simard, and S. Saatchi,
‘‘Large-Scale Vegetation Maps Derived from the Combined L-Band
GRFM and C-Band CAMP Wide Area Radar Mosaics of Central
Africa P,’’ Int’l J. Remote Sens., vol. 23, no. 7, pp. 1261-1282,
Apr. 2002.

[2] M. Shimada and T. Ohtaki, ‘‘Generating Large-Scale High-
Quality SAR Mosaic Datasets: Application to PALSAR Data for
Global Monitoring,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 3, no. 4, pp. 637-656, Dec. 2010.

[3] G. De Grandi, P. Mayaux, Y. Rauste, A. Rosenqvist, M. Simard,
and S. Saatchi, ‘‘The Global Rain Forest Mapping Project JERS-1
Radar Mosaic of Tropical Africa: Development and Product Cha-
racterization Aspects,’’ IEEE Trans. Geosci. Remote Sens., vol. 38,
no. 5, pp. 2218-2233, Sept. 2000.

[4] Y. Guo, M. Shi, Y. Li, and D. Liu, ‘‘Research on Fast Image Mosaic
Based on CUDA,’’ in Proc. 4th ISCID, Oct. 2011, vol. 1, pp. 198-201.

[5] A. Rosenqvist, M. Shimada, B. Chapman, A. Freeman,
G.F. De Grandi, S. Saatchi, and Y. Rauste, ‘‘The Global Rain Forest
Mapping ProjectVA Review,’’ Int. J. Remote Sens., vol. 21, no. 6/7,
pp. 1375-1387, Apr. 2000.

[6] B. Robert, V. Patricia, and F. Andrew, ‘‘The Landsat Image
Mosaic of Antarctica,’’ Remote Sens. Environ., vol. 112, no. 12,
pp. 4214-4226, Dec. 2008.

[7] C. Bielski, J. Grazzini, and P. Soille, ‘‘Automated Morphological
Image Composition for Mosaicing Large Image Data Sets,’’ in
Proc. IEEE IGARSS, July 2007, pp. 4068-4071.

[8] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multi-
processors. Cambridge, MA, USA: MIT Press, 1989.

[9] S. Kim and J. Browne, ‘‘A General Approach to Mapping of
Parallel Computation upon Multiprocessor Architectures,’’ in
Proc. Int’l Conf. Parallel Process., 1988, vol. 3, pp. 1-8.

[10] T. Wajdi and A. Imitaz, ‘‘Optimal Algorithm for Tree Schedul-
ing with Unit Time Communication Delays,’’ Proc. Inst. Elect.
Eng.VComput. Digit. Tech., vol. 148, no. 2, pp. 79-88, Mar. 2001.

[11] Y.-K. Kwok and I. Ahmad, ‘‘Dynamic Critical Path Scheduling:
An Effective Technique for Allocating Task Graphs to Multi-
processors,’’ IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5,
pp. 506-521, May 1996.

[12] Y. Chung and S. Ranka, ‘‘Application and Performance Analysis
of a Compile-Time Optimization Approach for List Scheduling
Algorithms on Distributed-Memory Multiprocessors,’’ Proc.
Supercomput., pp. 512-521, Nov. 1992.

[13] M.-Y. Wu, W. Shu, and J. Gu, ‘‘Efficient Local Search for DAG
Scheduling,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6,
pp. 617-627, June 2001.

[14] H. Wang, ‘‘Parallel Algorithms for Image and Video Mosaic
Based Applications,’’ M.S. thesis, University of Georgia, Atlanta,
GA, USA, 2005.

[15] P. Burt and E. Adelson, ‘‘The Laplacian Pyramid as a Compact
Image Code,’’ IEEE Trans. Commun., vol. COM-31, no. 4, pp. 532-
540, Apr. 1983.

[16] R. Rabenseifner, G. Hager, and G. Jost, ‘‘Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-Core SMP Nodes,’’ in
Proc. PDP Netw.-Based, 2009, pp. 427-436.

[17] T.L. Adam, K.M. Chandy, and J. Dickson, ‘‘A Comparison of List
Scheduling for Parallel Processing Systems,’’ Commun. ACM,
vol. 17, no. 12, pp. 685-690, Dec. 1974.

[18] M.-Y. Wu and D.D. Gajski, ‘‘Hypertool: A Programming Aid for
Message-Passing Systems,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 1, no. 3, pp. 330-343, July 1990.

[19] J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee, ‘‘Scheduling
Precedence Graphs in Systems with Interprocessor Communi-
cation Times,’’ SIAM J. Comput., vol. 18, no. 2, pp. 244-257,
Apr. 1989.

[20] G.C. Sih and E.A. Lee, ‘‘A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor Ar-
chitectures,’’ IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2,
pp. 175-187, Feb. 1993.

[21] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,
V. Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, ‘‘Swift:
Fast, Reliable, Loosely Coupled Parallel Computation,’’ in Proc.
IEEE Congr. Services, 2007, pp. 199-206.

[22] Karajan Workflow System. [Online]. Available: http://wiki.cogkit.
org/wiki/Karajan.

[23] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
‘‘Falkon: A Fast and Light-Weight tasK executiON Framework,’’
in Proc. ACM/IEEE Conf. SC, Nov. 2007, pp. 1-12.

[24] DAGman Directed Acyclic Graph Manager, 2008. [Online].
Available: http://research.cs.wisc.edu/htcondor/dagman/
dagman.html.

[25] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, ‘‘Pregel: A System for Large-Scale
Graph Processing,’’ in Proc. Int’l Conf. Manage. Data, 2010,
pp. 135-146.

Fig. 10. Performance experimental result with increasing data amount.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142136

[26] J. Kropáček, G. De Grandi, and Y. Rauste, ‘‘Geo-Referencing of
Continental-Scale JERS-1 SAR Mosaics Based on Matching
Homologous Features with a Digital Elevation Model: Theory
and Practice,’’ Int’l J. Remote Sens., vol. 33, no. 8, pp. 2413-2433,
Apr. 2011.

[27] K. Kim, K.C. Jezek, and H. Liu, ‘‘Orthorectified Image Mosaic of
Antarctica from 1963 Argon Satellite Photography: Image
Processing and Glaciological Applications,’’ Int’l J. Remote
Sens., vol. 28, no. 23, pp. 5357-5373, Nov. 2007.

[28] A. Camargo, R.R. Schultz, Y. Wang, R.A. Fevig, and Q. He,
‘‘GPU-CPU Implementation for Super-Resolution Mosaicking of
Unmanned Aircraft System (UAS) Surveillance Video,’’ in Proc.
IEEE SSIAI, May 2010, pp. 25-28.

[29] Y. Wang, Y. Ma, P. Liu, D. Liu, and J. Xie, ‘‘An Optimized Image
Mosaic Algorithm with Parallel IO and Dynamic Grouped
Parallel Strategy Based on Minimal Spanning Tree,’’ in Proc.
9th Int’l Conf. GCC, Nov. 2010, pp. 501-506.

[30] A. Merzky, K. Stamou, S. Jha, and D.S. Katz, ‘‘A Fresh
Perspective on Developing and Executing DAG-Based Distrib-
uted Applications: A Case-Study of SAGA-Based Montage,’’ in
Proc. 5th IEEE Int’l Conf. e-Science, Dec. 2009, pp. 231-238.

[31] G.B. Berriman, J.C. Good, D. Curkendall, J. Jacob, D.S. Katz,
T.A. Prince, and R. Williams, ‘‘Montage: An On-Demand Image
Mosaic Service for the NVO,’’ in Proc. ADASS XII, 2002, p. 343.

[32] D. Mattes, D.R. Haynor, H. Vesselle, T.K. Lewellen, and W. Eubank,
‘‘PET-CT Image Registration in the Chest Using Free-Form
Deformations,’’ IEEE Trans. Med. Imaging, vol. 22, no. 1, pp. 120-
128, Jan. 2003.

Yan Ma received the DEng degree from Chinese
Academy of Sciences, in 2013. She is anAssistant
Professor at Institute of Remote Sensing & Digital
Earth, Chinese Academy of Sciences (CAS),
Beijing, China. Her research interests include
high performance geo-computing and parallel
remote sensing image processing. She is a
member of the IEEE.

Lizhe Wang is a Professor at Institute of Remote
Sensing & Digital Earth, Chinese Academy of
Sciences (CAS), Beijing, China and a ‘‘ChuTian’’
Chair Professor at School of Computer Science,
China University of Geosciences, Wuhan, China.
Prof. Wang is a Fellow of IET and Fellow of BCS.
He is a Senior Member of the IEEE.

Albert Y. Zomaya is currently the Chair Profes-
sor of High Performance Computing & Network-
ing and Aust ra l ian Research Counc i l
Professorial Fellow in the School of Information
Technologies, The University of Sydney. He is
also the Director of the Centre for Distributed and
High Performance Computing. He is an IEEE
Fellow.

Dan Chen is currently a Professor, Head of the
Department of Network Engineering, and the
Director of the Scientific Computing lab with School
of Computer Science, China University of Geos-
ciences, Wuhan, China. He was a HEFCE Re-
search Fellow with the University of Birmingham,
U.K. His research interests include computer-
based modelling and simulation, high performance
computing, and neuroinformatics.

Rajiv Ranjan received the PhD degree in
engineering from the University of Melbourne,
Australia, in 2009. He is a Research Scientist
and a Julius Fellow in CSIRO Computational
Informatics Division (formerly known as CSIRO
ICT Centre). His expertise is in datacenter cloud
computing, application provisioning, and perfor-
mance optimization. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MA ET AL.: TASK-TREE BASED LARGE-SCALE MOSAICKING FOR REMOTE SENSED IMAGERIES 2137

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

