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Abstract—Data integrity is an important factor to ensure in
almost any data and computation related context. It serves not 
only as one of the qualities of service, but also an important part 
of data security and privacy. With the proliferation of cloud 
computing and the increasing needs in big data analytics, 
verification of data integrity becomes increasingly important,
especially on outsourced data. Therefore, research topics related 
to data integrity verification have attracted tremendous research 
interest. Among all the metrics, efficiency and security are two of 
the most concerned measurements. In this paper, we provide an 
analysis on authenticator-based efficient data integrity 
verification. we will analyze and provide a survey on the main 
aspects of this research problem, summarize the research 
motivations, methodologies as well as main achievements of
several of the representative approaches, then try to bring forth 
a blueprint for possible future developments.  

Keywords—cloud computing; big data; data security; integrity 
verification; public auditing 

I. INTRODUCTION

Big data is attracting more and more interests from 
numerous industries. A few examples are oil and gas mining, 
scientific research (biology, chemistry, physics), online social 
networks (Twitter, Facebook), multimedia data, and business 
transactions. With mountains of data collected from 
increasingly efficient data collecting devices as well as stored 
on fast-growing storage hardware, people are keen to find 
solutions to store and process the data more efficiently, and to
discover more values from the mass at the same time. When 
referring to big data research problems, people often brings 
the 4 v's -- volume, velocity, variety, and value. These pose 
various brand-new challenges to computer scientists 
nowadays.

The recently emerged cloud computing, known to be the 
latest development in data center technology, parallel 
distributed systems and service computing, is widely 
considered as the most promising technological backbone for 
solving big data problems [2]. The pay-as-you-go payment 
model of cloud can cut into the investments by enabling zero 
expense in setting up and maintaining of expensive 
computational and storage hardware, as well as provide 
on-the-fly problem solving. The services cloud can provide, 
ranging from SaaS (Software-as-a-Service), PaaS 

(Platform-as-a-Service), and IaaS 
(Infrastructure-as-a-Service), can offer solutions for big data 
problems from any level. Cloud also offers elasticity and 
scalability which can result in further saving of costs in many 
practical applications involving fast-updating dynamic data. 
To date, large amounts of business data of numerous big 
companies have been moved into and managed by clouds 
such as Amazon AWS, IBM SmartCloud and Microsoft 
Azure. 

Despite those stand-out advantages of cloud, there are still 
strong concerns regarding service qualities, especially data 
security. In fact, data security has been frequently raised as 
one of the top concerns in using cloud. In this new model, 
user datasets are entirely outsourced to the cloud service 
provider (CSP), which means they are no longer stored and 
managed locally. As CSPs cannot be deemed completely 
trusted, this fact brings several new issues. To name a few, 
first, when applied in cloud environments, many traditional 
security approaches will stop being either effective or 
efficient especially when handling big data tasks. Second, not 
only CSPs need to deploy their own security mechanisms 
(mostly conventional), but the clients also need their own 
verification mechanisms, no matter how secure the server-side 
security mechanisms claimed to be; the verifications may not 
bring additional security risks and must be efficient in 
computation, communication and storage in order to work in 
correlation with cloud and big data. Third, as the storage 
server is only semi-trusted, the client may be deceived by 
deliberately manipulated responses. All these new 
requirements have made the problem very challenging and 
therefore started to attract computer science researchers' 
interest in recent years.  

Main dimensions in data security include confidentiality, 
integrity and availability. In this paper, we will focus on data 
integrity. Integrity verification and protection is an active 
research area; numerous research problems belong to this area 
have been studied intensively in the past. As a result, the 
integrity of data storage can now be effectively verified in 
traditional systems through the deployments of 
Reed-Solomon code, checksums, trapdoor hash functions, 
message authentication code (MAC), digital signatures, and 
so on. However, as stated above, the data owner (cloud user) 
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still needs a method to verify their data stored remotely on a 
semi-trusted cloud server, no matter how secure the cloud 
claim to be. A straightforward approach is to retrieve and 
download from the server all the data the client wanted to 
verify. Unfortunately, when data size is large, it is very 
inefficient in the sense of both time consumption and 
communication overheads. To address this problem, scientists 
are developing schemes mainly based on traditional digital 
signatures to help users verify the integrity of their data 
without having to retrieve them, which they term as provable 
data possession (PDP) or proofs of retrievability (POR). In 
this survey paper, we will provide an analysis to some latest 
research on this problem, as well as providing a look into the 
future, to eventually provide a survey for this research topic. 

The rest of this paper is organized as follows. Section 2 
gives some motivating examples regarding security and 
privacy in big data application and cloud computing. Section 
3 analyzes the research problem and propose a lifecycle of 
integrity verification over big data in cloud computing. 
Section 4 shows some representative approaches and their 
analyses. Section 5 provides a brief overview of other 
schemes in the field. Section 6 provides conclusions and 

points out future work. 

For the convenience of readers, we list some 
frequently-used acronyms in table 1. 

II. MOTIVATING EXAMPLES

Big data and cloud computing is receiving more and more 
interest from both industry and academia nowadays. They 
have been recently listed as important strategies by Australian 
Government [9, 10]. To address big data problems, cloud 
computing is believed to be the most potent platform. In 
Australia, big companies such as Vodafone Mobile and News 
Corporation are already moving their business data and its 
processing tasks to Amazon cloud - Amazon Web Services 
(AWS) [1]. Email systems of many Australian universities are 
using cloud as the backbone. To tackle the large amount of 
data in scientific applications, CERN, for example, is already 
putting the processing of petabytes of data into cloud 
computing [12]. There has also been a lot of research 
regarding scientific cloud computing, such as in [21, 26, 27].
For big data applications within cloud computing, data 
security is a problem that should always be properly 
addressed. In fact, data security is one of the biggest reasons 
why people are reluctant in using cloud [19, 29, 32].
Therefore, more effective and efficient security mechanisms 
are direly in need to help people establish their confidence in 
all-around cloud usage. 

Data integrity is always an important part in data security, 
and there is no exception for cloud data [18]. As stated in 
Section 1, client-side verification is as important as 
server-side protection. As data in most big data applications 
are dynamic in nature, we will focus on verification of 
dynamic data. A large proportion of the updates are very 

AAI Auxiliary Authentication Information
BLS Boneh-Lynn-Shacham signature scheme
CSS Cloud Storage Server
HLA Homomorphic Linear Authenticator
HVT Homomorphic Verifiable Tag
MAC Message Authentication Code
MHT Merkle Hash Tree
PDP Provable Data Possession
POR Proof of Retreivability
TPA Third-Party Auditor

Table 1:  Acronyms / abbreviations
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Fig 1: Relations between the participating parties
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small but very frequent. For example, in 2010 Twitter is 
producing every day up to 12 terabytes of data, composed of 
tweets with a size of 140 characters maximum [17]. Business 
transactions and loggings are also good examples. The dataset 
in these big data applications are very large in size and 
requires heavy-scale processing capabilities. Therefore, the 
requirements are not only in security, but also in good 
efficiency.  

III. PROBLEM ANALYSIS -- FRAMEWORK AND LIFECYCLE

There are 3 participating parties in an integrity verification 
scheme: client, CSS and TPA. The client stores her data on 
CSS, while TPA's objective is to verify the integrity of client's 
data stored on CSS. Although the three forms a robust and 
efficient triangle, each of the two parties are only semi-trusted 
by each other as shown in Fig.1. New security exploits may 
appear while verifying data integrity, which is why we need a 
good framework to address this problem systematically. The 
main lifecycle of a remote integrity verification scheme with 
support for dynamic data updates can be analyzed in the 
following steps:

Setup and data upload -> Authorization for TPA ->
Challenge for integrity proof -> Proof verification -> Updated 
data upload -> Updated metadata upload -> Verification of 
updated data 

The relationship and order of these steps are illustrated in 
Fig. 2. We now analyze in detail how these steps work and 
why they are essential to integrity verification of cloud data 
storage. 

Setup and data upload: In cloud, user data is stored 
remotely on CSS. In order to verify the data without 
retrieving them, the client will need to prepare verification 
metadata, namely homomorphic linear authenticator (HLA) or 
homomorphic verifiable tag (HVT), based on homomorphic 
signatures [13]. Then, these metadata will be uploaded and 
stored alongside with the original datasets. These tags are 
computed from the original data; they must be small in size in 
comparison to the original dataset for practical use.  

Authorization for TPA: This step is not required in a 
two-party scenario where clients verify their data for 
themselves, but it is important when users require a 
semi-trusted TPA to verify the data on their behalf. If a third 
party can infinitely ask for integrity proofs over a certain 
piece of data, there will always be security risks in existence 
such as plaintext extraction. 

Challenge and verification of data storage: This step is 
where the main requirement -- integrity verification -- to be 
fulfilled. The client will send a challenge message to the 
server, and server will compute a response over the pre-stored 
data (HLA) and the challenge message. The client can then 
verify the response to find out whether the data is intact. The 

Server-side verifications (conventional methods: erasure code, MAC, signatures, etc)

Fig 2: A brief overview of integrity verification over big data in cloud computing -- lifecycle and research topics
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scheme has public verifiability if this verification can be done 
without the client's secret key. If the data storage is static, the 
whole process would have been ended here. However, as 
discussed earlier, data are always dynamic in many big data 
contexts (often denoted as velocity, one of the four v's). In 
these scenarios, we will need the rest of the steps to complete 
the lifecycle. 

Data update: Occurs in dynamic data contexts. The client 
needs to perform updates to some of the cloud data storage. 
The updates could be roughly categorized in insert, delete and 
modification; if the data is stored in blocks with varied size 
for efficiency reasons, there will be more types of updates to 
address.  

Metadata update: In order to keep the data storage stay 
verifiable without retrieving all the data stored and/or 
re-running the entire setup phase, the client will need to 
update the verification metadata (HLA or HVT's), according 
with the existing keys.  

Verification of updated data: This is also an essential step 
in dynamic data context. As the CSS is not completely trusted, 
the client needs to verify the data update process to see if the 
updating of both user data and verification metadata have
been performed successfully in order to ensure the updated 
data can still be verified correctly in the future.  

We will show in the next section how each steps in this 
lifecycle was developed and evolved by analyzing some 
representative approaches in this research area.

IV. REPRESENTATIVE APPROACHES AND ANALYSIS

We first introduce the basic idea behind the designs as 
well as some common notations. The file m is stored in the 
form of a number of blocks, denoted as mi . Each of the block 
is accompanied with a tag called HLA/HVT denoted as Ti ,
computed with the client's secret key. Therefore CSS cannot 
compute Ti  (or more frequently denoted as σi  )from mi .
The client will choose a random set of mi , send over the 
coordinates, and ask for proofs. CSS will compute a proof 
based on the tags Ti  according to mi . Due to homomorphism 
of the tags, the client will still be able to verify the proof with 
the same private key used for tag computation.  

A. Preliminaries 
We now introduce some preliminaries laid as foundation 

stones for our research area. HLA or HVT is evolved from 
digital signatures; current methods in verifiable updates 
utilized authenticated data structures. Therefore, we will 

introduce here two standard signature schemes (RSA and BLS) 
and one authenticated data structure (MHT) involved in 
representative approaches.

1) RSA Signature:
The RSA signature is classic and one of the earliest 

signature schemes under the scope of public-key 
cryptography. While the textbook version is not semantically 
secure and not resilient to existential forgery attacks, there is a 
large body of research work on its improvements later on, and 

eventually makes it a robust signature scheme. For example, a 
basic improvement is to use h(m) instead of m where h is 
a one-way hash function.  

The setup is based on an integer N = pq where p and q
are two large primes, and two integers d  and e  where 
ed = 1 mod N; d is kept as the secret key and e is the 
public key. The signature σ of a message m is computed as 
σ = md  mod N. Along with m, the signature can be verified 
through verifying whether the equation m = σe mod N
holds.

2) Bilinear Pairing and BLS Signature:
BLS signature is proposed by Boneh, Lynn and Shacham 

[7] in 2004. In addition to the basic soundness of digital 
signature, this scheme has a greatly reduced signature length,
but also increased overheads due to the computationally
expensive paring operations.

Assume a group G is a gap Diffie-Hellman (GDH) group 
with prime order p. A bilinear map is a map constructed as 
e: G × G → GT , where GT  is a multiplicative cyclic group 
with prime order1. A usable e should have the following 
properties: bilinearity – ∀ m, n ϵ G ⇒ e�ma, nb � = e(m, n)ab ;
non-degeneracy – ∀m ∈ G, m ≠ 0 ⇒ e(m, m) ≠ 1 ; and 
computability – e  should be efficiently computable. For 
simplicity, we will use this symmetric bilinear map in our 
scheme description. Alternatively, the more efficient 
asymmetric bilinear map in the form of e: G1 × G2 → GT
may also be applied, as was pointed out in [7]. 

Based on a bilinear map e: G × G → GT , a basic BLS 
signature scheme works as follows. Keys are computed as 
y = gx  where g ∈ G, x is secret key and {g, y} is public 
key. Signature σ  for a message m is computed as 
σ = (h(m))x . People can then verify this signature through 
verifying whether e(σ, g) = e(h(m), y). 

3) Merkle Hash Tree:
The Merkle Hash Tree (MHT) [16] is an authenticated 

data structure which has been intensively studied in the past 
and later utilized to support verification of dynamic data 
updates. Similar to a binary tree, each node N will have a 
maximum of 2 child nodes. Information contained in one 
node N  in a MHT T  is ℋ -- a hash value. T  is 
constructed as follows. For a leaf node LN  based on a 
message mi , we have ℋ = h(mi), rLN = si; A parent node 
of N1 = {ℋ1, rN1}  and N2 = {ℋ2, rN2}  is constructed as 
NP = {h(ℋ1||ℋ2)}  where ℋ1  and ℋ2  are information 
contained in N1 and N2 respectively. A leaf node mi’s AAI 
Ωi  is defined as a set of hash values chosen from every of its 
upper level so that the root value R can be computed through 
{mi, Ωi}.  For example, for the MHT demonstrated in Fig.3,
m1’s AAI Ω1 = {h(m2), h(e), h(b)}.

                                                
1 For simplicity, we only discuss symmetric pairing here, although specific 
asymmetric parings could also be applied for better efficiency.
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B. Representative Schemes 
Now we start to introduce and analyze some 

representative schemes. Note that all computations are within 
the cyclic group ℤp  or ℤN .

1) PDP 
Proposed by Ateniese, et, al. in 2007, PDP (provable data 

possession) can provide authors with efficient verification 
over their outsourced data storage [3, 4]. It is the first scheme 
to provide blockless verification and public verifiability at the 
same time.

The tag construction is based on RSA signature, therefore 
all computations are modulo N by default. Let N, e, d be 
defined as the same as in RSA signature, g is a generator of 
QRN , and v is a random secret value; {N, g} is the public 
key and {d, v} is the secret key. The tag is computed as 
σi = (h(v||i) ∙ gmi )d . To challenge CSS, the client sends the 
indices (or, coordinates) of the blocks they want to verify, and 
correspondingly chooses a set of coefficients ai, as well as a 
gs = gs mod N where s is a random number, and send them 
to CSS along with the indices. To prove data integrity, CSS 
will compute σ = ∏ σi

ai
i , along with a value 

ρ = H(∏ gs
ai mi

i ) , and send back {σ, ρ}  as the proof. To 
verify this proof, the client (or TPA) will compute τ =

σe

∏ h(v||i)i
a i  , then verify if ρ = H(τs mod N).

The authors have also proposed a light version called 
E-PDP, in contrast to the formal S-PDP scheme, for better 
efficiency. The basic idea is to throw away the coefficients ai. 
However, the light version was later proved not secure under 
the compact POR model. However, as a milestone in this 
research area, a lot of settings continued to be used by the 
following work. Mixing in random coefficients is one of the 
example. Another example is that the paper proposed a 
probability analysis and found that only a constant small 
number of blocks are to be verified, if the client needs to have 
95% or even 99% confidence in that the integrity of the entire 
file is good. This analysis also became a default setting in the 
following schemes. 

2) Compact POR 
Compact POR is proposed by Shacham, et, al. in 2008 

[20]. Compared to original POR, the authors provided an 
improved rigorous security proof. 

They proposed first a construction for private verification. 
In this case, data can only be verified with the secret key, 
therefore no other party can verify it except for the client. The 
metadata HVT is computed as σi = fk(i) + αmi , where fk()
is a pseudo-random function (PRF). α and the PRF key k is 
kept as secret key. When the server is challenged with a set of 
block coordinates and a set of corresponding public 
coefficients vi (same definition as ai in PDP above), it will 
compute σ = ∑ viσii  and μ = ∑ vimii to return {σ, μ}  as 
the proof. Upon receiving the proof, the client can simply 
verify if σ = αμ + ∑ (vii fk(i)) . The scheme is efficient 
because it admits short response length and fast computation.  

The other construction with public verification is even 
more impressive compared to schemes at that time. It is the 
first BLS-based scheme that supports public verification. Due 
to the shortened length of BLS signature, the proof size is also 
greatly reduced compared to RSA-based schemes. Similar to 
BLS signature, the tag construction is based on a bilinear map 
e: G × G → GT  where G is a group of prime order p. Two 
generators g and u of ℤp  are chosen to be the public key, 
as another value v = gα  where α is the secret key for the 
client. The tag is computed as σi = (H(i)umi )α , Same as the 
one with private verification, a set of coefficients vi is also 
chosen with the designated block coordinates. When 
challenged, the proof {σ, μ} is computed as σ = ∏ σi

vi
i  and 

μ = ∑ vimii . The client can then verify the data integrity 
through verifying if e(σ, g) = e(∏ (H(i)vi ) ∙ uμ , vi ). 

Another great contribution of this work is the rigorous 
security framework it provided. In their model, a verification 
scheme is secure only when it is secure against an arbitrary 
adversary with a polynomial extraction algorithm to reveal the 
message from the integrity proof. To prove the security, they 
also defined a series of interactive games under the random 
oracle model. Compared to the previous security frameworks 
in first PDP and first POR schemes, the adversary defined in 
this framework is stronger and stateless, and the definition of 
extraction algorithm (therefore the overall soundness) is 
stronger. Also, their framework suits perfectly with the public 
verification, and even multi-replica storage and multi-prover 
scenarios. To date, this model is considered the strongest and 
is very frequently used to prove the security of 
newly-proposed verification algorithms.  

3) DPDP 
DPDP (Dynamic PDP), proposed in 2009, is the first 

integrity verification scheme to support full data dynamics 
[11]. It is from here that the processes in integrity verification 
schemes started to form a lifecycle. They utilized another 
authenticated data structure -- rank-based skip list -- for 
verification of updates. A rank-based skip list is similar to 
MHT in the sense that they will both incur a logarithm 
amount of operations when an update occurs. All types of 
updates -- insert, delete and modification -- are supported for 
the first time. This design is essentially carried on by all the 
following schemes with dynamic data support. However, 
public verifiability was not supported by the scheme, and 

Fig 3: Merkle Hash Tree
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there was no follow-up work to fill in the blank. Therefore, 
we will only give a brief introduction here. The readers can 
refer to the next subsection to see how data dynamics is 
supported with an authenticated data structure such as MHT. 

4) Public Auditing of Dynamic Data 
As the DPDP scheme did not provide support for public 

verifiability, Wang, et, al. proposed a new scheme that can 
support both dynamic data and public verifiability at the same 
time [28]. They term the latter as 'public auditability', as the 
verification is often done by a sole-duty third-party auditor 
(TPA).  

A MHT is utilized to verify the updates where the root R
is critical authentication information. The tree structure is 
constructed on blocks, and the structure is stored along with 
the verification metadata. Compared to compact POR, they 
compute the tags using H(mi) instead of H(i) in order to 
support dynamic data, otherwise all tags of the following 
blocks must be changed upon each one insert or delete update,
which will be very inefficient. Aside from this, the tag 
construction and verification are similar: σi = (H(mi)umi )α . 
The proof is also computed as σ = ∏ σi

vi
i μ = ∑ vimii . 

While the verification is to verify whether e(σ, g) =
e(∏ (H(mi)vi ) ∙ uμ , vi ), TPA will first verify H(R)'s signature 
to ensure the MHT is correct at server side.  

To verify data updates, the client will first generate the tag 
for new block: σi

′ = �H(mi
′ )umi

′
�

α
, then upload it to CSS 

along with the update request. CSS will update the metadata 
as requested, and send back R′ along with the old block 
H(mi), the AAI Ωi  (note Ωi  will stay unchanged if mi  is 
the only block that has changed) and the client-signed old 
MHT root H(R). The client can then verify the signed H(R)
to ensure CSS has not manipulated it, then it can verify R′
with mi

′  and Ωi  to see if the update of data and metadata 
was correct. 

There was also a follow-up work to improve this scheme 
for privacy preserving public auditing [24]. When computing 
integrity proof, they added a random masking technique to 
prevent the part of original file being extracted from several 
integrity proofs over this specific part of data. 

5) Authorized Auditing with Fine-grained Data Updates 
Although the above schemes have already supported

dynamic data and public verification/ auditability, they only 
support insert/delete/modification with blocks with a fixed 
size, which are later termed as 'coarse-grained updates'. Lack 
of support of fine-grained updates, i.e., arbitrary-length 
updates, especially small updates, will cause functionality and 
efficiency problems. Liu et, al. [15] proposed a public 
auditing scheme with support of fine-grained updates over 
variable-sized file blocks. In addition, an authentication 
process between the client and TPA is also proposed to 
prevent TPA from endless challenges, thereby cut the 
possibility of attacks over multiple challenges (like the one in 
[25]) from source.  

Similar to previous work, this scheme is also based on 
BLS signature. Unlike previous schemes which are based on 
evenly distributed file blocks, here the file blocks are of 
variable size, with an upper bound of smax  sectors per block. 
The tag construction is σi = �H(mi) ∏ uj

mijsi
j=1 �

α
 where 

uj ∈ U, U = �uk ∈ ℤp�, k ∈ [1, smax ] is chosen according to 
smax . To challenge CSS, TPA must first obtain authorization 
from client to be eligible for auditing. The client will compute 
sigAUTH = Sigssk (AUTH||t||VID), which is a signature with 
client's secret key where VID is the verifier ID and AUTH is 
a message shared secretly earlier between client and CSS. In 
this case, only the client can generate this signature and only 
the CSS (other than the client herself) will be able to verify 
sigAUTH . After CSS has finished verifying sigAUTH , it will 
compute the proof P = �σ, {μk }k∈[1,w], {H(mi), Ωi}i∈I , sig�
where σ = ∏ σi

vi
i  and μk = ∑ vimiki∈I , then send P back to 

TPA. TPA will then verify the proof through verifying 
whether e(sig, g) = e(H(R), v)  and e(σ, g) = e(ω, υ) ,
where ω = ∏ H(mi)vi ∙ ∏ uk

μk
k∈[1,w]i∈I . 

For support in fine-grained updates, 5 types of necessary 
updating operations including �ℳ, ℳ, �, ℐ  and ��  are 
analyzed; a theorem was provided to illustrate that all updates 
can be divided into this 5 basic operations. For more efficient 
verification of fine-grained updates, a modified verification 
scheme for �ℳ operations (which was the majority of the 
operations in many occasions found through analysis) is also 
provided, where only the modified part of the new block, 
instead of a whole block, is needed to retrieved and 
transferred back to the client for tag re-computation. 
Experimental results have also demonstrated some significant 
efficiency improvements.

V. OTHER RELATED WORK

Other than the ones stated in the previous section, a great 
amount of work has also been proposed in recent years to 
address the research problem of integrity verification and 
public auditing of cloud data and other outsourced data 
storage. The concept of POR is proposed in 2007 by Juels et, 
al. [14], but the security framework was not complete and it 
only suits for static data storage like library and archives. 
After PDP, Ateniese et, al. also proposed an improvement 
they call Scalable PDP [6] to support dynamic data 
verification. Alas, only partial data dynamics is supported, i.e., 
only limited types of data updates is supported. Therefore, 
this scheme is not suitable for practical use. Curtmola et, al. 
proposed a verification for multi-replica cloud storage, which 
is named MR-PDP [8]. This is also a practical solution, 
because cloud will constantly keep a number of replicas of 
user data in the aim of availability. Ateniese et, al. also 
proposed a framework to transfer homomorphic identification 
protocols into integrity verification schemes [5].

There is also some work proposed in the most recent years. 
Based on previous work and the recent developments of big 
data and cloud, they can be the more practical solution for 
specific cloud environments and applications. As mentioned 
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before, [15] is a good example. For big enterprises, data 
migration is a big problem in the adoption process of cloud, 
because the different security/control levels in data and the 
heavy cost in migration itself. Therefore, hybrid cloud has 
been a more practical solution; enterprises will keep relatively 
static and security-sensitive data on private cloud, and put all 
services into the cloud. Zhu et, al. proposed a PDP scheme for 
Hybrid Cloud [31] for verification of data stored in separated 
domains. As cloud data sharing becomes a hot topic, Wang et, 
al. worked on secure data verification of shared data storage 
[22] and also with efficient user management [23]. Zhang et, 
al. proposed a scheme with a new data structure called update 
tree [30]. Without conventional authenticated data structures 
such as MHT, the proposed scheme has a constant proof size 
and support fully data dynamics. However, the scheme does 
not support public verification/auditing at the moment. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS

As we can see from the above, the topic of integrity 
verification of big data in cloud computing is a flourishing 
area that is attracting more and more research interest and 
there is still lots of research currently ongoing in this area..
Cloud and big data is a fast-developing topic. Therefore, even 
though existing research has already achieved some amazing 
goals, we are confident that integrity verification mechanisms 
will also continue evolving along with the development of 
cloud and big data applications to meet emerging new 
requirements and address new security challenges. For future 
developments, we are particularly interested in looking at the 
following aspects. 

Efficiency: Due to high efficiency demands in big data 
processing overall, efficiency is one of the most important 
factors in designing of new techniques related to big data and 
cloud. In integrity verification / data auditing, the main costs 
can come from every aspects, including storage, computation, 
and communication, and they can all affect the total 
cost-efficiency due to the pay-as-you-go model in cloud 
computing.   

Security: Security is always a problem between spear and 
shield; that is, attack and defend. Although the current 
formalizations and security model seemed very rigorous and 
potent, new exploits can always exist, especially with 
dynamic data streams and varying user groups. Finding the 
security holes and fixing them can be a long-lasting game. 

Scalability/elasticity: As the cloud is a parallel distributed 
computing system in nature, scalability is one of the key 
factors as well. Programming models for parallel and 
distributed systems, such as MapReduce, are attracting 
attentions from a great number of cloud computing 
researchers. Some of the latest work in integrity verification is 
already considering how to work well with MapReduce for 
better parallel processing [31]. On the other hand, elasticity is 
one of a biggest reason why big companies are moving their 
business, especially service-related business, to the cloud [1].
User demands vary all the time, and it would be a waste of 
money to purchase hardware that can handle the demands at 

peak times. The advent of cloud solved this problem -- cloud 
allows their clients to deploy their applications on a highly 
elastic platform whose capabilities can be scaled up and down 
on-the-fly, and the cost is based solely on usage. Therefore, 
an integrity verification mechanism that has the same level of 
scalability and elasticity will be highly resourceful for big 
data applications in a cloud environment.
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