
Public Auditing for Big Data Storage in Cloud
Computing -- A Survey

Chang Liu*, Rajiv Ranjan+, Xuyun Zhang*, Chi Yang*, Dimitrios Georgakopoulos+, Jinjun Chen*
*Faculty of Engineering and IT, University of Technology Sydney, Australia

+Computational Informatics, CSIRO, Australia
{changliu.it, rranjans, xyzhanggz, chiyangit, jinjun.chen}@gmail.com, dimitrios.georgakopoulos@csiro.au

Abstract—Data integrity is an important factor to ensure in
almost any data and computation related context. It serves not
only as one of the qualities of service, but also an important part
of data security and privacy. With the proliferation of cloud
computing and the increasing needs in big data analytics,
verification of data integrity becomes increasingly important,
especially on outsourced data. Therefore, research topics related
to data integrity verification have attracted tremendous research
interest. Among all the metrics, efficiency and security are two of
the most concerned measurements. In this paper, we provide an
analysis on authenticator-based efficient data integrity
verification. we will analyze and provide a survey on the main
aspects of this research problem, summarize the research
motivations, methodologies as well as main achievements of
several of the representative approaches, then try to bring forth
a blueprint for possible future developments.

Keywords—cloud computing; big data; data security; integrity
verification; public auditing

I. INTRODUCTION

Big data is attracting more and more interests from
numerous industries. A few examples are oil and gas mining,
scientific research (biology, chemistry, physics), online social
networks (Twitter, Facebook), multimedia data, and business
transactions. With mountains of data collected from
increasingly efficient data collecting devices as well as stored
on fast-growing storage hardware, people are keen to find
solutions to store and process the data more efficiently, and to
discover more values from the mass at the same time. When
referring to big data research problems, people often brings
the 4 v's -- volume, velocity, variety, and value. These pose
various brand-new challenges to computer scientists
nowadays.

The recently emerged cloud computing, known to be the
latest development in data center technology, parallel
distributed systems and service computing, is widely
considered as the most promising technological backbone for
solving big data problems [2]. The pay-as-you-go payment
model of cloud can cut into the investments by enabling zero
expense in setting up and maintaining of expensive
computational and storage hardware, as well as provide
on-the-fly problem solving. The services cloud can provide,
ranging from SaaS (Software-as-a-Service), PaaS

(Platform-as-a-Service), and IaaS
(Infrastructure-as-a-Service), can offer solutions for big data
problems from any level. Cloud also offers elasticity and
scalability which can result in further saving of costs in many
practical applications involving fast-updating dynamic data.
To date, large amounts of business data of numerous big
companies have been moved into and managed by clouds
such as Amazon AWS, IBM SmartCloud and Microsoft
Azure.

Despite those stand-out advantages of cloud, there are still
strong concerns regarding service qualities, especially data
security. In fact, data security has been frequently raised as
one of the top concerns in using cloud. In this new model,
user datasets are entirely outsourced to the cloud service
provider (CSP), which means they are no longer stored and
managed locally. As CSPs cannot be deemed completely
trusted, this fact brings several new issues. To name a few,
first, when applied in cloud environments, many traditional
security approaches will stop being either effective or
efficient especially when handling big data tasks. Second, not
only CSPs need to deploy their own security mechanisms
(mostly conventional), but the clients also need their own
verification mechanisms, no matter how secure the server-side
security mechanisms claimed to be; the verifications may not
bring additional security risks and must be efficient in
computation, communication and storage in order to work in
correlation with cloud and big data. Third, as the storage
server is only semi-trusted, the client may be deceived by
deliberately manipulated responses. All these new
requirements have made the problem very challenging and
therefore started to attract computer science researchers'
interest in recent years.

Main dimensions in data security include confidentiality,
integrity and availability. In this paper, we will focus on data
integrity. Integrity verification and protection is an active
research area; numerous research problems belong to this area
have been studied intensively in the past. As a result, the
integrity of data storage can now be effectively verified in
traditional systems through the deployments of
Reed-Solomon code, checksums, trapdoor hash functions,
message authentication code (MAC), digital signatures, and
so on. However, as stated above, the data owner (cloud user)

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.164

1128

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.164

1128

still needs a method to verify their data stored remotely on a
semi-trusted cloud server, no matter how secure the cloud
claim to be. A straightforward approach is to retrieve and
download from the server all the data the client wanted to
verify. Unfortunately, when data size is large, it is very
inefficient in the sense of both time consumption and
communication overheads. To address this problem, scientists
are developing schemes mainly based on traditional digital
signatures to help users verify the integrity of their data
without having to retrieve them, which they term as provable
data possession (PDP) or proofs of retrievability (POR). In
this survey paper, we will provide an analysis to some latest
research on this problem, as well as providing a look into the
future, to eventually provide a survey for this research topic.

The rest of this paper is organized as follows. Section 2
gives some motivating examples regarding security and
privacy in big data application and cloud computing. Section
3 analyzes the research problem and propose a lifecycle of
integrity verification over big data in cloud computing.
Section 4 shows some representative approaches and their
analyses. Section 5 provides a brief overview of other
schemes in the field. Section 6 provides conclusions and

points out future work.

For the convenience of readers, we list some
frequently-used acronyms in table 1.

II. MOTIVATING EXAMPLES

Big data and cloud computing is receiving more and more
interest from both industry and academia nowadays. They
have been recently listed as important strategies by Australian
Government [9, 10]. To address big data problems, cloud
computing is believed to be the most potent platform. In
Australia, big companies such as Vodafone Mobile and News
Corporation are already moving their business data and its
processing tasks to Amazon cloud - Amazon Web Services
(AWS) [1]. Email systems of many Australian universities are
using cloud as the backbone. To tackle the large amount of
data in scientific applications, CERN, for example, is already
putting the processing of petabytes of data into cloud
computing [12]. There has also been a lot of research
regarding scientific cloud computing, such as in [21, 26, 27].
For big data applications within cloud computing, data
security is a problem that should always be properly
addressed. In fact, data security is one of the biggest reasons
why people are reluctant in using cloud [19, 29, 32].
Therefore, more effective and efficient security mechanisms
are direly in need to help people establish their confidence in
all-around cloud usage.

Data integrity is always an important part in data security,
and there is no exception for cloud data [18]. As stated in
Section 1, client-side verification is as important as
server-side protection. As data in most big data applications
are dynamic in nature, we will focus on verification of
dynamic data. A large proportion of the updates are very

AAI Auxiliary Authentication Information
BLS Boneh-Lynn-Shacham signature scheme
CSS Cloud Storage Server
HLA Homomorphic Linear Authenticator
HVT Homomorphic Verifiable Tag
MAC Message Authentication Code
MHT Merkle Hash Tree
PDP Provable Data Possession
POR Proof of Retreivability
TPA Third-Party Auditor

Table 1: Acronyms / abbreviations

Third Party Auditor
(TPA)

Cloud Users/The
Client

Cloud Storage Server (CSS)

Delega
tio

n of

Auditin
g T

ask
s

Challenge for

Integrity Verification

Outsourcing and Retrieving
of cloud Data Storage

(Semi-Trusted)

(Se
mi-T

ruste
d)

(Semi-Trusted)

Fig 1: Relations between the participating parties

11291129

small but very frequent. For example, in 2010 Twitter is
producing every day up to 12 terabytes of data, composed of
tweets with a size of 140 characters maximum [17]. Business
transactions and loggings are also good examples. The dataset
in these big data applications are very large in size and
requires heavy-scale processing capabilities. Therefore, the
requirements are not only in security, but also in good
efficiency.

III. PROBLEM ANALYSIS -- FRAMEWORK AND LIFECYCLE

There are 3 participating parties in an integrity verification
scheme: client, CSS and TPA. The client stores her data on
CSS, while TPA's objective is to verify the integrity of client's
data stored on CSS. Although the three forms a robust and
efficient triangle, each of the two parties are only semi-trusted
by each other as shown in Fig.1. New security exploits may
appear while verifying data integrity, which is why we need a
good framework to address this problem systematically. The
main lifecycle of a remote integrity verification scheme with
support for dynamic data updates can be analyzed in the
following steps:

Setup and data upload -> Authorization for TPA ->
Challenge for integrity proof -> Proof verification -> Updated
data upload -> Updated metadata upload -> Verification of
updated data

The relationship and order of these steps are illustrated in
Fig. 2. We now analyze in detail how these steps work and
why they are essential to integrity verification of cloud data
storage.

Setup and data upload: In cloud, user data is stored
remotely on CSS. In order to verify the data without
retrieving them, the client will need to prepare verification
metadata, namely homomorphic linear authenticator (HLA) or
homomorphic verifiable tag (HVT), based on homomorphic
signatures [13]. Then, these metadata will be uploaded and
stored alongside with the original datasets. These tags are
computed from the original data; they must be small in size in
comparison to the original dataset for practical use.

Authorization for TPA: This step is not required in a
two-party scenario where clients verify their data for
themselves, but it is important when users require a
semi-trusted TPA to verify the data on their behalf. If a third
party can infinitely ask for integrity proofs over a certain
piece of data, there will always be security risks in existence
such as plaintext extraction.

Challenge and verification of data storage: This step is
where the main requirement -- integrity verification -- to be
fulfilled. The client will send a challenge message to the
server, and server will compute a response over the pre-stored
data (HLA) and the challenge message. The client can then
verify the response to find out whether the data is intact. The

Server-side verifications (conventional methods: erasure code, MAC, signatures, etc)

Fig 2: A brief overview of integrity verification over big data in cloud computing -- lifecycle and research topics

Client-side verifications

Setup and data upload

Authorization for TPA

Challenge for integrity proof

Proof verification Updated data upload

Updated metadata upload

Verification of updated data

Simple data Data with multiple replicas Distributed data Unstructured data

......
Cloud data storage
for verification

Verification
framework

Categorized data Shared data

11301130

scheme has public verifiability if this verification can be done
without the client's secret key. If the data storage is static, the
whole process would have been ended here. However, as
discussed earlier, data are always dynamic in many big data
contexts (often denoted as velocity, one of the four v's). In
these scenarios, we will need the rest of the steps to complete
the lifecycle.

Data update: Occurs in dynamic data contexts. The client
needs to perform updates to some of the cloud data storage.
The updates could be roughly categorized in insert, delete and
modification; if the data is stored in blocks with varied size
for efficiency reasons, there will be more types of updates to
address.

Metadata update: In order to keep the data storage stay
verifiable without retrieving all the data stored and/or
re-running the entire setup phase, the client will need to
update the verification metadata (HLA or HVT's), according
with the existing keys.

Verification of updated data: This is also an essential step
in dynamic data context. As the CSS is not completely trusted,
the client needs to verify the data update process to see if the
updating of both user data and verification metadata have
been performed successfully in order to ensure the updated
data can still be verified correctly in the future.

We will show in the next section how each steps in this
lifecycle was developed and evolved by analyzing some
representative approaches in this research area.

IV. REPRESENTATIVE APPROACHES AND ANALYSIS

We first introduce the basic idea behind the designs as
well as some common notations. The file m is stored in the
form of a number of blocks, denoted as mi . Each of the block
is accompanied with a tag called HLA/HVT denoted as Ti ,
computed with the client's secret key. Therefore CSS cannot
compute Ti (or more frequently denoted as σi)from mi .
The client will choose a random set of mi , send over the
coordinates, and ask for proofs. CSS will compute a proof
based on the tags Ti according to mi . Due to homomorphism
of the tags, the client will still be able to verify the proof with
the same private key used for tag computation.

A. Preliminaries
We now introduce some preliminaries laid as foundation

stones for our research area. HLA or HVT is evolved from
digital signatures; current methods in verifiable updates
utilized authenticated data structures. Therefore, we will

introduce here two standard signature schemes (RSA and BLS)
and one authenticated data structure (MHT) involved in
representative approaches.

1) RSA Signature:
The RSA signature is classic and one of the earliest

signature schemes under the scope of public-key
cryptography. While the textbook version is not semantically
secure and not resilient to existential forgery attacks, there is a
large body of research work on its improvements later on, and

eventually makes it a robust signature scheme. For example, a
basic improvement is to use h(m) instead of m where h is
a one-way hash function.

The setup is based on an integer N = pq where p and q
are two large primes, and two integers d and e where
ed = 1 mod N; d is kept as the secret key and e is the
public key. The signature σ of a message m is computed as
σ = md mod N. Along with m, the signature can be verified
through verifying whether the equation m = σe mod N
holds.

2) Bilinear Pairing and BLS Signature:
BLS signature is proposed by Boneh, Lynn and Shacham

[7] in 2004. In addition to the basic soundness of digital
signature, this scheme has a greatly reduced signature length,
but also increased overheads due to the computationally
expensive paring operations.

Assume a group G is a gap Diffie-Hellman (GDH) group
with prime order p. A bilinear map is a map constructed as
e: G × G → GT , where GT is a multiplicative cyclic group
with prime order1. A usable e should have the following
properties: bilinearity – ∀ m, n ϵ G ⇒ e�ma, nb � = e(m, n)ab ;
non-degeneracy – ∀m ∈ G, m ≠ 0 ⇒ e(m, m) ≠ 1 ; and
computability – e should be efficiently computable. For
simplicity, we will use this symmetric bilinear map in our
scheme description. Alternatively, the more efficient
asymmetric bilinear map in the form of e: G1 × G2 → GT
may also be applied, as was pointed out in [7].

Based on a bilinear map e: G × G → GT , a basic BLS
signature scheme works as follows. Keys are computed as
y = gx where g ∈ G, x is secret key and {g, y} is public
key. Signature σ for a message m is computed as
σ = (h(m))x . People can then verify this signature through
verifying whether e(σ, g) = e(h(m), y).

3) Merkle Hash Tree:
The Merkle Hash Tree (MHT) [16] is an authenticated

data structure which has been intensively studied in the past
and later utilized to support verification of dynamic data
updates. Similar to a binary tree, each node N will have a
maximum of 2 child nodes. Information contained in one
node N in a MHT T is ℋ -- a hash value. T is
constructed as follows. For a leaf node LN based on a
message mi , we have ℋ = h(mi), rLN = si; A parent node
of N1 = {ℋ1, rN1} and N2 = {ℋ2, rN2} is constructed as
NP = {h(ℋ1||ℋ2)} where ℋ1 and ℋ2 are information
contained in N1 and N2 respectively. A leaf node mi’s AAI
Ωi is defined as a set of hash values chosen from every of its
upper level so that the root value R can be computed through
{mi, Ωi}. For example, for the MHT demonstrated in Fig.3,
m1’s AAI Ω1 = {h(m2), h(e), h(b)}.

1 For simplicity, we only discuss symmetric pairing here, although specific
asymmetric parings could also be applied for better efficiency.

11311131

B. Representative Schemes
Now we start to introduce and analyze some

representative schemes. Note that all computations are within
the cyclic group ℤp or ℤN .

1) PDP
Proposed by Ateniese, et, al. in 2007, PDP (provable data

possession) can provide authors with efficient verification
over their outsourced data storage [3, 4]. It is the first scheme
to provide blockless verification and public verifiability at the
same time.

The tag construction is based on RSA signature, therefore
all computations are modulo N by default. Let N, e, d be
defined as the same as in RSA signature, g is a generator of
QRN , and v is a random secret value; {N, g} is the public
key and {d, v} is the secret key. The tag is computed as
σi = (h(v||i) ∙ gmi)d . To challenge CSS, the client sends the
indices (or, coordinates) of the blocks they want to verify, and
correspondingly chooses a set of coefficients ai, as well as a
gs = gs mod N where s is a random number, and send them
to CSS along with the indices. To prove data integrity, CSS
will compute σ = ∏ σi

ai
i , along with a value

ρ = H(∏ gs
ai mi

i) , and send back {σ, ρ} as the proof. To
verify this proof, the client (or TPA) will compute τ =

σe

∏ h(v||i)i
a i , then verify if ρ = H(τs mod N).

The authors have also proposed a light version called
E-PDP, in contrast to the formal S-PDP scheme, for better
efficiency. The basic idea is to throw away the coefficients ai.
However, the light version was later proved not secure under
the compact POR model. However, as a milestone in this
research area, a lot of settings continued to be used by the
following work. Mixing in random coefficients is one of the
example. Another example is that the paper proposed a
probability analysis and found that only a constant small
number of blocks are to be verified, if the client needs to have
95% or even 99% confidence in that the integrity of the entire
file is good. This analysis also became a default setting in the
following schemes.

2) Compact POR
Compact POR is proposed by Shacham, et, al. in 2008

[20]. Compared to original POR, the authors provided an
improved rigorous security proof.

They proposed first a construction for private verification.
In this case, data can only be verified with the secret key,
therefore no other party can verify it except for the client. The
metadata HVT is computed as σi = fk(i) + αmi , where fk()
is a pseudo-random function (PRF). α and the PRF key k is
kept as secret key. When the server is challenged with a set of
block coordinates and a set of corresponding public
coefficients vi (same definition as ai in PDP above), it will
compute σ = ∑ viσii and μ = ∑ vimii to return {σ, μ} as
the proof. Upon receiving the proof, the client can simply
verify if σ = αμ + ∑ (vii fk(i)) . The scheme is efficient
because it admits short response length and fast computation.

The other construction with public verification is even
more impressive compared to schemes at that time. It is the
first BLS-based scheme that supports public verification. Due
to the shortened length of BLS signature, the proof size is also
greatly reduced compared to RSA-based schemes. Similar to
BLS signature, the tag construction is based on a bilinear map
e: G × G → GT where G is a group of prime order p. Two
generators g and u of ℤp are chosen to be the public key,
as another value v = gα where α is the secret key for the
client. The tag is computed as σi = (H(i)umi)α , Same as the
one with private verification, a set of coefficients vi is also
chosen with the designated block coordinates. When
challenged, the proof {σ, μ} is computed as σ = ∏ σi

vi
i and

μ = ∑ vimii . The client can then verify the data integrity
through verifying if e(σ, g) = e(∏ (H(i)vi) ∙ uμ , vi).

Another great contribution of this work is the rigorous
security framework it provided. In their model, a verification
scheme is secure only when it is secure against an arbitrary
adversary with a polynomial extraction algorithm to reveal the
message from the integrity proof. To prove the security, they
also defined a series of interactive games under the random
oracle model. Compared to the previous security frameworks
in first PDP and first POR schemes, the adversary defined in
this framework is stronger and stateless, and the definition of
extraction algorithm (therefore the overall soundness) is
stronger. Also, their framework suits perfectly with the public
verification, and even multi-replica storage and multi-prover
scenarios. To date, this model is considered the strongest and
is very frequently used to prove the security of
newly-proposed verification algorithms.

3) DPDP
DPDP (Dynamic PDP), proposed in 2009, is the first

integrity verification scheme to support full data dynamics
[11]. It is from here that the processes in integrity verification
schemes started to form a lifecycle. They utilized another
authenticated data structure -- rank-based skip list -- for
verification of updates. A rank-based skip list is similar to
MHT in the sense that they will both incur a logarithm
amount of operations when an update occurs. All types of
updates -- insert, delete and modification -- are supported for
the first time. This design is essentially carried on by all the
following schemes with dynamic data support. However,
public verifiability was not supported by the scheme, and

Fig 3: Merkle Hash Tree

11321132

there was no follow-up work to fill in the blank. Therefore,
we will only give a brief introduction here. The readers can
refer to the next subsection to see how data dynamics is
supported with an authenticated data structure such as MHT.

4) Public Auditing of Dynamic Data
As the DPDP scheme did not provide support for public

verifiability, Wang, et, al. proposed a new scheme that can
support both dynamic data and public verifiability at the same
time [28]. They term the latter as 'public auditability', as the
verification is often done by a sole-duty third-party auditor
(TPA).

A MHT is utilized to verify the updates where the root R
is critical authentication information. The tree structure is
constructed on blocks, and the structure is stored along with
the verification metadata. Compared to compact POR, they
compute the tags using H(mi) instead of H(i) in order to
support dynamic data, otherwise all tags of the following
blocks must be changed upon each one insert or delete update,
which will be very inefficient. Aside from this, the tag
construction and verification are similar: σi = (H(mi)umi)α .
The proof is also computed as σ = ∏ σi

vi
i μ = ∑ vimii .

While the verification is to verify whether e(σ, g) =
e(∏ (H(mi)vi) ∙ uμ , vi), TPA will first verify H(R)'s signature
to ensure the MHT is correct at server side.

To verify data updates, the client will first generate the tag
for new block: σi

′ = �H(mi
′)umi

′
�

α
, then upload it to CSS

along with the update request. CSS will update the metadata
as requested, and send back R′ along with the old block
H(mi), the AAI Ωi (note Ωi will stay unchanged if mi is
the only block that has changed) and the client-signed old
MHT root H(R). The client can then verify the signed H(R)
to ensure CSS has not manipulated it, then it can verify R′
with mi

′ and Ωi to see if the update of data and metadata
was correct.

There was also a follow-up work to improve this scheme
for privacy preserving public auditing [24]. When computing
integrity proof, they added a random masking technique to
prevent the part of original file being extracted from several
integrity proofs over this specific part of data.

5) Authorized Auditing with Fine-grained Data Updates
Although the above schemes have already supported

dynamic data and public verification/ auditability, they only
support insert/delete/modification with blocks with a fixed
size, which are later termed as 'coarse-grained updates'. Lack
of support of fine-grained updates, i.e., arbitrary-length
updates, especially small updates, will cause functionality and
efficiency problems. Liu et, al. [15] proposed a public
auditing scheme with support of fine-grained updates over
variable-sized file blocks. In addition, an authentication
process between the client and TPA is also proposed to
prevent TPA from endless challenges, thereby cut the
possibility of attacks over multiple challenges (like the one in
[25]) from source.

Similar to previous work, this scheme is also based on
BLS signature. Unlike previous schemes which are based on
evenly distributed file blocks, here the file blocks are of
variable size, with an upper bound of smax sectors per block.
The tag construction is σi = �H(mi) ∏ uj

mijsi
j=1 �

α
 where

uj ∈ U, U = �uk ∈ ℤp�, k ∈ [1, smax] is chosen according to
smax . To challenge CSS, TPA must first obtain authorization
from client to be eligible for auditing. The client will compute
sigAUTH = Sigssk (AUTH||t||VID), which is a signature with
client's secret key where VID is the verifier ID and AUTH is
a message shared secretly earlier between client and CSS. In
this case, only the client can generate this signature and only
the CSS (other than the client herself) will be able to verify
sigAUTH . After CSS has finished verifying sigAUTH , it will
compute the proof P = �σ, {μk }k∈[1,w], {H(mi), Ωi}i∈I , sig�
where σ = ∏ σi

vi
i and μk = ∑ vimiki∈I , then send P back to

TPA. TPA will then verify the proof through verifying
whether e(sig, g) = e(H(R), v) and e(σ, g) = e(ω, υ) ,
where ω = ∏ H(mi)vi ∙ ∏ uk

μk
k∈[1,w]i∈I .

For support in fine-grained updates, 5 types of necessary
updating operations including �ℳ, ℳ, �, ℐ and �� are
analyzed; a theorem was provided to illustrate that all updates
can be divided into this 5 basic operations. For more efficient
verification of fine-grained updates, a modified verification
scheme for �ℳ operations (which was the majority of the
operations in many occasions found through analysis) is also
provided, where only the modified part of the new block,
instead of a whole block, is needed to retrieved and
transferred back to the client for tag re-computation.
Experimental results have also demonstrated some significant
efficiency improvements.

V. OTHER RELATED WORK

Other than the ones stated in the previous section, a great
amount of work has also been proposed in recent years to
address the research problem of integrity verification and
public auditing of cloud data and other outsourced data
storage. The concept of POR is proposed in 2007 by Juels et,
al. [14], but the security framework was not complete and it
only suits for static data storage like library and archives.
After PDP, Ateniese et, al. also proposed an improvement
they call Scalable PDP [6] to support dynamic data
verification. Alas, only partial data dynamics is supported, i.e.,
only limited types of data updates is supported. Therefore,
this scheme is not suitable for practical use. Curtmola et, al.
proposed a verification for multi-replica cloud storage, which
is named MR-PDP [8]. This is also a practical solution,
because cloud will constantly keep a number of replicas of
user data in the aim of availability. Ateniese et, al. also
proposed a framework to transfer homomorphic identification
protocols into integrity verification schemes [5].

There is also some work proposed in the most recent years.
Based on previous work and the recent developments of big
data and cloud, they can be the more practical solution for
specific cloud environments and applications. As mentioned

11331133

before, [15] is a good example. For big enterprises, data
migration is a big problem in the adoption process of cloud,
because the different security/control levels in data and the
heavy cost in migration itself. Therefore, hybrid cloud has
been a more practical solution; enterprises will keep relatively
static and security-sensitive data on private cloud, and put all
services into the cloud. Zhu et, al. proposed a PDP scheme for
Hybrid Cloud [31] for verification of data stored in separated
domains. As cloud data sharing becomes a hot topic, Wang et,
al. worked on secure data verification of shared data storage
[22] and also with efficient user management [23]. Zhang et,
al. proposed a scheme with a new data structure called update
tree [30]. Without conventional authenticated data structures
such as MHT, the proposed scheme has a constant proof size
and support fully data dynamics. However, the scheme does
not support public verification/auditing at the moment.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

As we can see from the above, the topic of integrity
verification of big data in cloud computing is a flourishing
area that is attracting more and more research interest and
there is still lots of research currently ongoing in this area..
Cloud and big data is a fast-developing topic. Therefore, even
though existing research has already achieved some amazing
goals, we are confident that integrity verification mechanisms
will also continue evolving along with the development of
cloud and big data applications to meet emerging new
requirements and address new security challenges. For future
developments, we are particularly interested in looking at the
following aspects.

Efficiency: Due to high efficiency demands in big data
processing overall, efficiency is one of the most important
factors in designing of new techniques related to big data and
cloud. In integrity verification / data auditing, the main costs
can come from every aspects, including storage, computation,
and communication, and they can all affect the total
cost-efficiency due to the pay-as-you-go model in cloud
computing.

Security: Security is always a problem between spear and
shield; that is, attack and defend. Although the current
formalizations and security model seemed very rigorous and
potent, new exploits can always exist, especially with
dynamic data streams and varying user groups. Finding the
security holes and fixing them can be a long-lasting game.

Scalability/elasticity: As the cloud is a parallel distributed
computing system in nature, scalability is one of the key
factors as well. Programming models for parallel and
distributed systems, such as MapReduce, are attracting
attentions from a great number of cloud computing
researchers. Some of the latest work in integrity verification is
already considering how to work well with MapReduce for
better parallel processing [31]. On the other hand, elasticity is
one of a biggest reason why big companies are moving their
business, especially service-related business, to the cloud [1].
User demands vary all the time, and it would be a waste of
money to purchase hardware that can handle the demands at

peak times. The advent of cloud solved this problem -- cloud
allows their clients to deploy their applications on a highly
elastic platform whose capabilities can be scaled up and down
on-the-fly, and the cost is based solely on usage. Therefore,
an integrity verification mechanism that has the same level of
scalability and elasticity will be highly resourceful for big
data applications in a cloud environment.

REFERENCES
[1] Customer Presentations on Amazon Summit Australia, Sydney, 2012

Available: http://aws.amazon.com/apac/awssummit-au/, accessed on 25
August, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A View of
Cloud Computing," Communications of the ACM, vol. 53, pp. 50-58,
2010.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z.
Peterson, and D. Song, "Remote Data Checking Using Provable Data
Possession," ACM Transactions on Information and System Security,
vol. 14, p. Article 12, 2011.

[4] G. Ateniese, R. B. Johns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, "Provable Data Possession at Untrusted
Stores," in Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS '07), 2007, pp. 598-609

[5] G. Ateniese, S. Kamara, and J. Katz, "Proofs of Storage from
Homomorphic Identification Protocols," in Proceedings of the 15th
International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT '09), Tokyo, Japan, 2009, pp.
319 - 333.

[6] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, "Scalable and
Efficient Provable Data Possession," in Proceedings of the 4th
International Conference on Security and Privacy in Communication
Netowrks (SecureComm '08), İstanbul, Turkey, 2008, pp. 1-10.

[7] D. Boneh, H. Shacham, and B. Lynn, "Short Signatures from the Weil
Pairing," Journal of Cryptology, vol. 17, pp. 297-319, 2004.

[8] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese:, "MR-PDP:
Multiple-Replica Provable Data Possession. ," in Proceedings of the
28th IEEE International Conference on Distributed Computing
Systems (ICDCS '08), Beijing, China, 2008, pp. 411-420.

[9] Australia Government Department of Finance and Deregulation. Big
Data Strategy – Issues Paper. 2013. Available:
http://agimo.gov.au/files/2013/03/Big-Data-Strategy-Issues-Paper1.pdf,
accessed on 25 August, 2013

[10] Australia Government Department of Finance and Deregulation. Cloud
Computing Strategic Direction Paper: Opportunities and Applicability
for Use by the Australian Government. 2011. Available:
http://agimo.gov.au/files/2012/04/final_cloud_computing_strategy_ver
sion_1.pdf, accessed on 25 August, 2013

[11] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, "Dynamic
Provable Data Possession," in Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS’09),
Chicago, USA, 2009, pp. 213-222.

[12] N. Heath. Cern: Cloud Computing Joins Hunt for Origins of the
Universe. Available:
http://www.techrepublic.com/blog/european-technology/cern-cloud-co
mputing-joins-hunt-for-origins-of-the-universe/262, accessed on 25
August, 2013.

[13] R. Johnson, D. Molnar, D. Song, and D. Wagner, "Homomorphic
Signature Schemes," Topics in Cryptology - CT-RSA 2002, Lecture
Notes in Computer Science, vol. 2271, pp. 244-262, 2002.

[14] A. Juels and J. B. S. Kaliski, "PORs: Proofs of Retrievability for Large
Files," in Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS '07), Alexandria, USA, 2007, pp.
584-597.

[15] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and K.
Ramamohanarao, "Authorized Public Auditing of Dynamic Big Data
Storage on Cloud with Efficient Verifiable Fine-grained Updates,"
IEEE Transactions on Parallel and Distributed Systems, 2013.

[16] R. C. Merkle, "A Digital Signature Based on a Conventional
Encryption Function," in Proceedings of A Conference on the Theory

11341134

and Applications of Cryptographic Techniques on Advances in
Cryptology (CRYPTO '87), 1987, pp. 369-378.

[17] E. Naone. What Twitter Learns from All Those Tweets. Available:
http://www.technologyreview.com/view/420968/what-twitter-learns-fr
om-all-those-tweets/, accessed on 25 August, 2013.

[18] S. Nepal, S. Chen, J. Yao, and D. Thilakanathan, "DIaaS: Data
Integrity as a Service in the Cloud," in Proceedings of the 4th
International Conference on Cloud Computing (IEEE CLOUD '11),
2011, pp. 308-315.

[19] S. E. Schmidt. Security and Privacy in the AWS Cloud. Available:
http://aws.amazon.com/apac/awssummit-au/, accessed on 25 August,
2013.

[20] H. Shacham and B. Waters, "Compact Proofs of Retrievability," in
Proceedings of the 14th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT '08),
2008, pp. 90 - 107

[21] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya,
"Deadline-driven Provisioning of Resources for Scientific Applications
in Hybrid Clouds with Aneka," Future Generation Computer Systems,
vol. 28, pp. 58-65, 2012.

[22] B. Wang, S. S. M. Chow, M. Li, and H. Li, "Storing Shared Data on the
Cloud via Security-Mediator," in 33rd IEEE International Conference
on Distributed Computing Systems (ICDCS '13), Philadelphia, USA,
2013.

[23] B. Wang, B. Li, and H. Li, "Public Auditing for Shared Data with
Efficient User Revocation in the Cloud," in Proceedings of the 32nd
Annual IEEE International Conference on Computer Communications
(INFOCOM'13), Turin, Italy, 2013, pp. 2904-2912.

[24] C. Wang, S. M. Chow, Q. Wang, K. Ren, and W. Lou,
"Privacy-Preserving Public Auditing for Secure Cloud Storage," IEEE
Transactions on Computers, 2011.

[25] C. Wang, S. M. Chow, Q. Wang, K. Ren, and W. Lou,
"Privacy-Preserving Public Auditing for Secure Cloud Storage," IEEE
Transactions on Computers, vol. 62, pp. 362-375, 2013.

[26] L. Wang, M. Kunze, J. Tao, and G. v. Laszewski, "Towards Building A
Cloud for Scientific Applications," Advances in Engineering Software,
vol. 42, pp. 714-722, 2011.

[27] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,
"Scientific Cloud Computing: Early Definition and Experience," in
Proceedings of the 10th IEEE International Conference on High
Performance Computing and Communications (HPCC '08) Dalian,
China, 2008, pp. 825 - 830.

[28] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, "Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing," IEEE Transactions on Parallel and Distributed Systems,
vol. 22, pp. 847 - 859, 2011.

[29] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, "TrustStore: Making
Amazon S3 Trustworthy with Services Composition," in Proceedings
of the 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing (CCGRID '10), Melbourne, Australia, 2010, pp.
600-605.

[30] Y. Zhang and M. Blanton, "Efficient Dynamic Provable Possession of
Remote Data via Update Trees," 2012.

[31] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, "Cooperative Provable Data
Possession for Integrity Verification in Multi-Cloud Storage," IEEE
Transactions on Parallel and Distributed Systems, vol. 23, pp.
2231-2244, 2012.

[32] D. Zissis and D. Lekkas, "Addressing Cloud Computing Security
Issues," Future Generation Computer Systems, vol. 28, pp. 583-592,
2011.

11351135

