
elcome to the fourth installment of “Blue Skies.” This 
department, which will appear six times a year start-
ing with the January/February 2015 issue, will provide 
in-depth analyses of the most recent and influential 

research related to cloud computing and big data technologies. In 
this issue, I’ll discuss the role of modeling and simulation science in 
the era of big data applications. Modeling and simulation can em-
power practitioners and academics in conducting “what-if” analyses 
for scheduling policies under variable cloud resource (CPU, stor-
age, and network) configurations, big data processing framework 

(NoSQL databases, stream processing engines, MapReduce, SQL, and data mining) 
configurations, and workload (volume, variety, velocity, and query types). 

The Big Data Era
According to an IBM study, we’re creating 2.5 quin-
tillion (2.5 × 1018) bytes of data every day as of 2012 
(www-01.ibm.com/software/data/bigdata). A zettabyte 
(billion terabytes) of data passed through the Internet 
in the past year, and the International Data Corpo-
ration (IDC) predicts that the digital universe is set 
to explode to an unimaginable 8 zettabytes by 2015. 
We’re clearly in the era of big data. 

Big data is characterized by millions of struc-
tured and unstructured datastreams (high veloc-
ity), petabytes of historical data (high volume), and 
heterogeneous data types (high variety). Twitter 
produces an average of 6,000 tweets per second; 

however, the number expands to more than 140,000 
during certain events (New Year’s Eve, the Super 
Bowl, movie releases, natural disasters, and so on). 
For example, during the 2010 Haiti earthquake, 
text messaging via mobile devices and Twitter made 
headlines for being crucial to emergency respons-
es, but only some 100,000 messages were actually 
processed by government agencies.1 In the context 
of smart energy grids, utility companies are deploy-
ing smart meters in homes, offices, and businesses. 
Moving from the traditional one meter reading a 
month to automated smart readings once every 15 
minutes will lead to 96 million reads per day for ev-
ery million meters. This could result in a 3,000-fold 
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increase in generated data, which will 
pose a significant challenge in the real-
time diffusion and analysis of data for 
understanding consumers’ energy de-
mand and response patterns. 

Such data explosions have led to the 
next grand challenge in computing: the 
big data problem,2-5 which is defined as 
the practice of collecting complex da-
tasets so large that they’re difficult to 
store, process, and interpret manually 
or using traditional data management 
applications (such as Microsoft Excel, 
relational databases, and data ware-
housing technologies). 

Evolution of Big Data Processing 
Platforms
The key challenge posed by the big data 
problem is the ability to process an 
overwhelming flow of data character-
ized by the 3Vs—variety, velocity, and 
volume. Big data sources extend beyond 
the traditional structured database to 
include email, sensors, video cameras, 
social media, and mobile devices (text, 
video, and audio). 

New-generation big data processing 
technologies include:

•	 scalable computing infrastructures—
such as high-performance and elastic 
datacenter cloud resources6—which 
provide on-demand access to pay-as-
you-go hardware resources (CPU, 
GPUs, storage, network, and so on);

•	 data-ingestion frameworks—such as 
Apache Kafka (http://kafka.apache 
.org) and Amazon Kinesis (https://aws 
.amazon.com/kinesis)—which enable 
high-throughput and low-latency 
queuing of real-time messages;

•	 data storage frameworks—such as 
MongoDB (www.mongodb.org), 
BigTable,7 MySQL (www.mysql.com), 
and Cassandra (http://cassandra 
.apache.org)—which aid in the 
management of structured, unstruc-

tured, and semistructured data;
•	 parallel programming frameworks—

such as Apache Hadoop (http:// 
hadoop.apache.org) and Apache 
Storm (http://storm.incubator.apache 
.org)—which support development 
of applications for processing histor-
ical and streaming data across paral-
lel cluster of cloud resources; and

•	 scalable data mining frameworks—
such as Apache Mahout (http:// 
mahout.apache.org), GraphLab,8 
and MLBase9—which implement a 
wide range of data mining algorithms 
that can be seamlessly instantiated 
over parallel programming platforms 
such as Apache Hadoop. 

However, despite the immense potential 
of existing big data processing platforms, 
designing, developing, and implement-
ing an optimal big data scheduling 
platform10-12 that can guarantee13-15 
performance (minimize response time 
or latency, maximize throughput) and 
fault tolerance (maximize availability or 
reliability) constraints at the same time 
is challenging, owing to several com-
plexities and uncertainties.

The first complexity is resource con-
tention and interference. To minimize 
infrastructure cost, multiple big data 
processing frameworks are often hosted 
on shared cluster computing infrastruc-
tures. Sharing cluster resources among 
heterogeneous big data processing 

frameworks can also save the huge data 
migration costs involved in dataflow 
pipelines. However, such scenarios lead 
to resource contention and interference 
as colocated big data processing frame-
works will compete for resources and 
interfere with each other’s performance, 
making it extremely hard to meet per-
formance requirements for real-time 
decision-making applications such as 
disaster management, stock purchas-
ing, credit card fraud detection, online 
patient heart rate monitoring, and traf-
fic management. Although these appli-
cations require short response times, 
current big data application scheduling 
platforms such as Apache Yarn10 and 

Mesos12 can’t guarantee performance 
because of resource contention, lack of 
workload prioritization intelligence, and 
lack of coordinated scheduling capabil-
ity across multiple big data processing 
frameworks.

Big data processing frameworks 
must also deal with heterogeneous 
dataflows (for example, static, stream-
ing, and transactional), heterogeneous 
data processing semantics (batch pro-
cessing in Hadoop, continuous stream 
processing in Storm, and transaction 
processing in MySQL and Cassandra), 
and heterogeneous data types (such 
as unstructured data from Twitter, 
structured data from traditional SQL 
databases, and image data from video 

The International Data Corporation 
(IDC) predicts that the digital universe 
is set to explode to an unimaginable 8 

zettabytes by 2015.
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cameras) governed by varying data vol-
ume, data velocity, and query types. 
To guarantee performance, scheduling 
platforms need to be able predict the 
demands and behaviors of underlying 
frameworks so they can intelligently 
distribute and prioritize workloads. Fur-
ther, it’s not clear how such priorities 
can be preserved across multiple frame-
works because dataflows are processed 
across a distributed platform.

Third, big data processing frame-
works must deal with uncertain resource 
needs. Big data processing platforms 
normally span heterogeneous and dis-

tributed software frameworks. These 
frameworks require heterogeneous and 
dynamic allocation and configuration 
of datacenter resources (for example, 
number and speed of CPUs; storage, 
cache, and RAM size; and network I/O 
bandwidth) to accommodate workload 
changes (3Vs and query types) and to 
guarantee analytic results within an ac-
ceptable delay. Determining an optimal 
resource configuration for big data pro-
cessing frameworks is extremely hard 
because different big data applications 
have different performance constraints 
and complexity (3Vs). Current sched-
uling platforms, such as Apache Yarn 
and Mesos, entail considerable manual 
effort, where an administrator has to 
know in advance how many resources 
to allocate to each framework with-

out overprovisioning the available re-
source pool. Further, it’s extremely hard 
to define and aggregate performance 
constraints of multiple frameworks 
to get a holistic view of end-to-end 
performance.

Lack of robustness is another com-
plexity. Big data scheduling platforms 
such as YARN,10 Omega,11 and Me-
sos12 can’t handle uncertainties arising 
from failure of datacenter resources, 
data overloading, malicious attacks, 
and network link congestion. Most of 
these scheduling platforms implement 
a simple failure model, in which a CPU 

resource instance hosting a big data 
processing framework (NoSQL or Ha-
doop, for example) is reconfigured (or 
restarts, fires a new instance, and so on) 
and doesn’t respond to a certain number 
of network probes. Such reconfigura-
tion is done without understanding the 
underlying causes of failures, such as 
disk failure, processor overload, mali-
cious data, or malicious queries. 

Addressing these challenges re-
quires careful consideration of nu-
merous design and performance 
optimization tasks when developing 
robust and fault-tolerant big data pro-
cessing solutions for those applications 
requiring real-time decision making 
such as disaster management, stock 
purchase, credit card fraud detection, 
and traffic management.

How Modeling and Simulation 
Can Help
A hard challenge for big data is balanc-
ing performance and cost tradeoffs by 
optimizing configuration at both the 
hardware and software layers to accom-
modate users’ constraints (for example, 
analytics result delay and alert genera-
tion delay) while addressing the four 
complexities noted. Hence, we need 
an approach that can help engineers 
and researchers analyze the impact of 
these complexities as well as software 
and hardware configuration interdepen-
dencies upon the final performance re-
quirements achievable from a big data 
application. Conducting such a study in 
a real computing environment can be 
challenging for several reasons: 

•	 Procuring or renting a large-scale 
datacenter resource pool that will 
accurately reflect realistic applica-
tion deployment and let practitioners 
experiment with dynamic hardware 
and software resource configura-
tions and 3Vs isn’t cost effective.

•	 Frequently changing experiment 
configurations in a large-scale real 
testbed involves a lot of manual con-
figuration, making the performance 
analysis itself time consuming. As a 
result, reproducing results becomes 
extremely difficult, making most of 
the experiments non-repeatable. 

•	 Incorporating and controlling dif-
ferent types of failure behaviors 
and benchmarks across heteroge-
neous software and hardware re-
source types in a real testbed (such 
as Amazon EC2, Open Cirrus, and 
Microsoft Azure) environment is 
extremely hard. 

Simulation-based approaches to 
performance testing and benchmark-
ing offer significant advantages. For 
example, multiple big data application 

A hard challenge for big data  
is balancing performance and  
cost tradeoffs by optimizing 

configuration at both the hardware 
and software layers. 
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developers and researchers can perform 
tests in a controllable and repeatable 
manner. In addition, it’s easier to find 
performance bottlenecks in a simulated 
environment than in a real-world test-
bed. Simulation-based approaches also 
simplify experimenting with various 
hardware resource and big data pro-
cessing framework configurations and 
collecting insights about the impact of 
each design choice on the performance 
guarantees (service-level agreements). 
They also let developers and research-
ers share their simulation datasets and 
environment setups, leading to better 
validation of hypothesis and reproduc-
ibility of results. Finally, using these 
approaches, developers and researchers 
can instantiate multiple big data pro-
cessing frameworks and diverse work-
load scenarios. 

Distributed System Simulators 
Over the last decades, many simula-
tion frameworks have been developed 
for studying the behavior of large-scale 
distributed systems for hosting ap-
plication services (for example, social 
networking, Web hosting, scientific 
applications, and content delivery). 
Popular simulators can be classified 
based on the distributed system mod-
el they are capable of simulating and 
modeling:

•	 GridSim,16 MicroGrid,17 Gang-
Sim,18 SimGrid,19 and OptorSim20 

simulate grid computing system 
models and scheduling algorithms.

•	 PlanetSim simulates peer-to-peer 
network models such as structured 
and unstructured overlay net-
works.21 In one study, researchers 
integrated PlanetSim with Grid-
Sim to evaluate the performance 
of decentralized and coordinated 
scheduling of scientific applications 
across multiple computational sites 

(clusters, supercomputers, and so 
on).22

•	 CDNSim, developed by extending 
the OMNet++ library, simulates 
content delivery networks for study-
ing content management policies 
(caching, redirection, replica place-
ment, and load balancing).23

Although these simulators were 
widely adopted, they unfortunately 
don’t support modeling and simulation 
of diverse big data processing frame-
works and virtualized datacenter-based 
cloud resources. Following the tradition 
of the grid computing era, research-
ers developed several simulators to fa-
cilitate research on various aspects of 
cloud computing infrastructures.

GreenCloud, a packet-level simula-
tor developed by extending the Network 
Simulator (NS-2; http://nsnam.isi.edu/
nsnam/index.php/User_Information), 
models behaviors of network links, 
switches, gateways, and other hardware 
resources (CPU and storage) in a cloud 
datacenter.24 GreenCloud aims to sim-
plify performance tests of energy-aware 
scheduling algorithms in cloud envi-
ronments. Because it’s a packet-level 
simulator, it requires extra memory and 
processing power to create and transmit 
packets across simulation entities. 

MDCSim supports simulation of 
specified hardware resources in a data-
center from multiple vendors and allows 
energy consumption profiling for study-
ing scheduling and resource manage-
ment policies.25 The current MDCSim 
release support models for simulating 
multitier applications consisting of web-
server, application server, and database 
service. It also implements two types 
of cluster network routing models: In-
finiBand architecture and 10-Gigabit 
Ethernet.

DCSim supports simulation and 
modeling of CPU resources, data rep-

lication policies, and CPU migration 
policies.26 However, it doesn’t support 
network topology in lieu of improving 
scalability. To support dynamic appli-
cation component migration studies, 
DCSim implements features for virtual 
machine (VM) live migration and rep-
lication. Because the application entity 
is only implemented at an abstract level, 
users must implement specific cloud ap-
plication models. 

CloudSim is one of the most widely 
used discrete-event simulation frame-
works because it’s highly extensible 
and flexible.27 It provides models for 
all hardware resources including CPUs 
(VMs), storage, and networks (network 
contention and delays) within mul-
tiple datacenters. The network simu-
lation in CloudSim is built upon the 
BRITE network topology generator and 
communication model.28 CloudSim 
has extensive support for application 
scheduling level simulation (such as for 
scientific and Web hosting), because 
it provides cloud broker and cloud ex-
change (for federated datacenter re-
source pooling) entities.

MR-CloudSim is an extension of 
CloudSim for simulating MapReduce 
big data processing models.29 However, 
MR-CloudSim only supports simplistic, 
single-state map and reduce computa-
tions. Further, it lacks support for net-
work link modeling, which is a critical 
element affecting the performance of 
MapReduce applications. 

To support provider-specific analysis 
of application performance, CDOSim30 
extends CloudSim and integrates with 
the cloud migration framework (Cloud-
MIG).31 Unfortunately, CDOSim and 
CloudMIG are based on the enterprise 
resource planning system model, whose 
computational, data storage, data pro-
cessing, and software modeling needs 
fundamentally differ from those of big 
data applications and frameworks. 
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Big Data Framework Benchmarks
Fueled by the need to analyze the per-
formance of different big data pro-
cessing frameworks, researchers have 
introduced several benchmarks, in-
cluding BigDataBench,32 BigBench,33 
Hibench,34 PigMix, CloudSuite,35 and 
GridMix. These benchmark suites 
model workloads for stress testing one 
or more categories of big data process-
ing frameworks. For example, Hibench 
has Sort, WordCount, TeraSort, PageR-
ank, K-means, and Bayes classification 
workloads for loading Hadoop and Hive 
frameworks. Among these frameworks, 
BigDataBench is most comprehensive 
as it constitutes workload models for 
NoSQL, DBMS, SPEs, and batch pro-
cessing frameworks. Primarily, Big-
DataBench targets the search engine, 
social network, and e-commerce appli-
cation domains. 

espite the significant progress, 
we still need a holistic, compre-

hensive simulation platform that lets 
us analyze big data application sched-
uling across heterogeneous big data 
processing frameworks and hardware 
resources. Hence, future research ef-
forts need to focus on developing an in-
tegrated simulation and benchmarking 
framework that can support modeling 
of both heterogeneous data program-
ming abstractions such as MapReduce 
in Hadoop, continuous query operators 
in Storm, and transactional operators 
in MySQL and Cassandra; and hetero-
geneous dataflows (for example, static, 
streams, and transactions), workload 
processing (batch processing in Ha-
doop, continuous stream processing 
in Storm, and transaction processing 
in MySQL and Cassandra), and hard-
ware resource configurations. It must 
also support evaluation templates that 
incorporate details on application-level 

performance constraints, fault-injection 
models, big data processing benchmarks 
and configurations relevant to specific 
application types (such as credit card 
fraud detection and emergency manage-
ment). Finally, such a framework must 
support failure injection models at both 
the software and hardware layer.
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