
elcome to the fourth installment of “Blue Skies.” This
department, which will appear six times a year start-
ing with the January/February 2015 issue, will provide
in-depth analyses of the most recent and influential

research related to cloud computing and big data technologies. In
this issue, I’ll discuss the role of modeling and simulation science in
the era of big data applications. Modeling and simulation can em-
power practitioners and academics in conducting “what-if” analyses
for scheduling policies under variable cloud resource (CPU, stor-
age, and network) configurations, big data processing framework

(NoSQL databases, stream processing engines, MapReduce, SQL, and data mining)
configurations, and workload (volume, variety, velocity, and query types).

The Big Data Era
According to an IBM study, we’re creating 2.5 quin-
tillion (2.5 × 1018) bytes of data every day as of 2012
(www-01.ibm.com/software/data/bigdata). A zettabyte
(billion terabytes) of data passed through the Internet
in the past year, and the International Data Corpo-
ration (IDC) predicts that the digital universe is set
to explode to an unimaginable 8 zettabytes by 2015.
We’re clearly in the era of big data.

Big data is characterized by millions of struc-
tured and unstructured datastreams (high veloc-
ity), petabytes of historical data (high volume), and
heterogeneous data types (high variety). Twitter
produces an average of 6,000 tweets per second;

however, the number expands to more than 140,000
during certain events (New Year’s Eve, the Super
Bowl, movie releases, natural disasters, and so on).
For example, during the 2010 Haiti earthquake,
text messaging via mobile devices and Twitter made
headlines for being crucial to emergency respons-
es, but only some 100,000 messages were actually
processed by government agencies.1 In the context
of smart energy grids, utility companies are deploy-
ing smart meters in homes, offices, and businesses.
Moving from the traditional one meter reading a
month to automated smart readings once every 15
minutes will lead to 96 million reads per day for ev-
ery million meters. This could result in a 3,000-fold

Modeling and Simulation in
Performance Optimization
of Big Data Processing
Frameworks

76	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 14 /$ 31 . 0 0 © 2 0 14 I EEE

Rajiv Ranjan
Commonwealth
Scientific and In-
dustrial Research
Organization,
Australia

BLUE SKIES

N OV E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 77

increase in generated data, which will
pose a significant challenge in the real-
time diffusion and analysis of data for
understanding consumers’ energy de-
mand and response patterns.

Such data explosions have led to the
next grand challenge in computing: the
big data problem,2-5 which is defined as
the practice of collecting complex da-
tasets so large that they’re difficult to
store, process, and interpret manually
or using traditional data management
applications (such as Microsoft Excel,
relational databases, and data ware-
housing technologies).

Evolution of Big Data Processing
Platforms
The key challenge posed by the big data
problem is the ability to process an
overwhelming flow of data character-
ized by the 3Vs—variety, velocity, and
volume. Big data sources extend beyond
the traditional structured database to
include email, sensors, video cameras,
social media, and mobile devices (text,
video, and audio).

New-generation big data processing
technologies include:

•	 scalable computing infrastructures—
such as high-performance and elastic
datacenter cloud resources6—which
provide on-demand access to pay-as-
you-go hardware resources (CPU,
GPUs, storage, network, and so on);

•	 data-ingestion frameworks—such as
Apache Kafka (http://kafka.apache
.org) and Amazon Kinesis (https://aws
.amazon.com/kinesis)—which enable
high-throughput and low-latency
queuing of real-time messages;

•	 data storage frameworks—such as
MongoDB (www.mongodb.org),
BigTable,7 MySQL (www.mysql.com),
and Cassandra (http://cassandra
.apache.org)—which aid in the
management of structured, unstruc-

tured, and semistructured data;
•	 parallel programming frameworks—

such as Apache Hadoop (http://
hadoop.apache.org) and Apache
Storm (http://storm.incubator.apache
.org)—which support development
of applications for processing histor-
ical and streaming data across paral-
lel cluster of cloud resources; and

•	 scalable data mining frameworks—
such as Apache Mahout (http://
mahout.apache.org), GraphLab,8
and MLBase9—which implement a
wide range of data mining algorithms
that can be seamlessly instantiated
over parallel programming platforms
such as Apache Hadoop.

However, despite the immense potential
of existing big data processing platforms,
designing, developing, and implement-
ing an optimal big data scheduling
platform10-12 that can guarantee13-15
performance (minimize response time
or latency, maximize throughput) and
fault tolerance (maximize availability or
reliability) constraints at the same time
is challenging, owing to several com-
plexities and uncertainties.

The first complexity is resource con-
tention and interference. To minimize
infrastructure cost, multiple big data
processing frameworks are often hosted
on shared cluster computing infrastruc-
tures. Sharing cluster resources among
heterogeneous big data processing

frameworks can also save the huge data
migration costs involved in dataflow
pipelines. However, such scenarios lead
to resource contention and interference
as colocated big data processing frame-
works will compete for resources and
interfere with each other’s performance,
making it extremely hard to meet per-
formance requirements for real-time
decision-making applications such as
disaster management, stock purchas-
ing, credit card fraud detection, online
patient heart rate monitoring, and traf-
fic management. Although these appli-
cations require short response times,
current big data application scheduling
platforms such as Apache Yarn10 and

Mesos12 can’t guarantee performance
because of resource contention, lack of
workload prioritization intelligence, and
lack of coordinated scheduling capabil-
ity across multiple big data processing
frameworks.

Big data processing frameworks
must also deal with heterogeneous
dataflows (for example, static, stream-
ing, and transactional), heterogeneous
data processing semantics (batch pro-
cessing in Hadoop, continuous stream
processing in Storm, and transaction
processing in MySQL and Cassandra),
and heterogeneous data types (such
as unstructured data from Twitter,
structured data from traditional SQL
databases, and image data from video

The International Data Corporation
(IDC) predicts that the digital universe
is set to explode to an unimaginable 8

zettabytes by 2015.

78	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

cameras) governed by varying data vol-
ume, data velocity, and query types.
To guarantee performance, scheduling
platforms need to be able predict the
demands and behaviors of underlying
frameworks so they can intelligently
distribute and prioritize workloads. Fur-
ther, it’s not clear how such priorities
can be preserved across multiple frame-
works because dataflows are processed
across a distributed platform.

Third, big data processing frame-
works must deal with uncertain resource
needs. Big data processing platforms
normally span heterogeneous and dis-

tributed software frameworks. These
frameworks require heterogeneous and
dynamic allocation and configuration
of datacenter resources (for example,
number and speed of CPUs; storage,
cache, and RAM size; and network I/O
bandwidth) to accommodate workload
changes (3Vs and query types) and to
guarantee analytic results within an ac-
ceptable delay. Determining an optimal
resource configuration for big data pro-
cessing frameworks is extremely hard
because different big data applications
have different performance constraints
and complexity (3Vs). Current sched-
uling platforms, such as Apache Yarn
and Mesos, entail considerable manual
effort, where an administrator has to
know in advance how many resources
to allocate to each framework with-

out overprovisioning the available re-
source pool. Further, it’s extremely hard
to define and aggregate performance
constraints of multiple frameworks
to get a holistic view of end-to-end
performance.

Lack of robustness is another com-
plexity. Big data scheduling platforms
such as YARN,10 Omega,11 and Me-
sos12 can’t handle uncertainties arising
from failure of datacenter resources,
data overloading, malicious attacks,
and network link congestion. Most of
these scheduling platforms implement
a simple failure model, in which a CPU

resource instance hosting a big data
processing framework (NoSQL or Ha-
doop, for example) is reconfigured (or
restarts, fires a new instance, and so on)
and doesn’t respond to a certain number
of network probes. Such reconfigura-
tion is done without understanding the
underlying causes of failures, such as
disk failure, processor overload, mali-
cious data, or malicious queries.

Addressing these challenges re-
quires careful consideration of nu-
merous design and performance
optimization tasks when developing
robust and fault-tolerant big data pro-
cessing solutions for those applications
requiring real-time decision making
such as disaster management, stock
purchase, credit card fraud detection,
and traffic management.

How Modeling and Simulation
Can Help
A hard challenge for big data is balanc-
ing performance and cost tradeoffs by
optimizing configuration at both the
hardware and software layers to accom-
modate users’ constraints (for example,
analytics result delay and alert genera-
tion delay) while addressing the four
complexities noted. Hence, we need
an approach that can help engineers
and researchers analyze the impact of
these complexities as well as software
and hardware configuration interdepen-
dencies upon the final performance re-
quirements achievable from a big data
application. Conducting such a study in
a real computing environment can be
challenging for several reasons:

•	 Procuring or renting a large-scale
datacenter resource pool that will
accurately reflect realistic applica-
tion deployment and let practitioners
experiment with dynamic hardware
and software resource configura-
tions and 3Vs isn’t cost effective.

•	 Frequently changing experiment
configurations in a large-scale real
testbed involves a lot of manual con-
figuration, making the performance
analysis itself time consuming. As a
result, reproducing results becomes
extremely difficult, making most of
the experiments non-repeatable.

•	 Incorporating and controlling dif-
ferent types of failure behaviors
and benchmarks across heteroge-
neous software and hardware re-
source types in a real testbed (such
as Amazon EC2, Open Cirrus, and
Microsoft Azure) environment is
extremely hard.

Simulation-based approaches to
performance testing and benchmark-
ing offer significant advantages. For
example, multiple big data application

A hard challenge for big data
is balancing performance and
cost tradeoffs by optimizing

configuration at both the hardware
and software layers.

N OV E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 79

developers and researchers can perform
tests in a controllable and repeatable
manner. In addition, it’s easier to find
performance bottlenecks in a simulated
environment than in a real-world test-
bed. Simulation-based approaches also
simplify experimenting with various
hardware resource and big data pro-
cessing framework configurations and
collecting insights about the impact of
each design choice on the performance
guarantees (service-level agreements).
They also let developers and research-
ers share their simulation datasets and
environment setups, leading to better
validation of hypothesis and reproduc-
ibility of results. Finally, using these
approaches, developers and researchers
can instantiate multiple big data pro-
cessing frameworks and diverse work-
load scenarios.

Distributed System Simulators
Over the last decades, many simula-
tion frameworks have been developed
for studying the behavior of large-scale
distributed systems for hosting ap-
plication services (for example, social
networking, Web hosting, scientific
applications, and content delivery).
Popular simulators can be classified
based on the distributed system mod-
el they are capable of simulating and
modeling:

•	 GridSim,16 MicroGrid,17 Gang-
Sim,18 SimGrid,19 and OptorSim20

simulate grid computing system
models and scheduling algorithms.

•	 PlanetSim simulates peer-to-peer
network models such as structured
and unstructured overlay net-
works.21 In one study, researchers
integrated PlanetSim with Grid-
Sim to evaluate the performance
of decentralized and coordinated
scheduling of scientific applications
across multiple computational sites

(clusters, supercomputers, and so
on).22

•	 CDNSim, developed by extending
the OMNet++ library, simulates
content delivery networks for study-
ing content management policies
(caching, redirection, replica place-
ment, and load balancing).23

Although these simulators were
widely adopted, they unfortunately
don’t support modeling and simulation
of diverse big data processing frame-
works and virtualized datacenter-based
cloud resources. Following the tradition
of the grid computing era, research-
ers developed several simulators to fa-
cilitate research on various aspects of
cloud computing infrastructures.

GreenCloud, a packet-level simula-
tor developed by extending the Network
Simulator (NS-2; http://nsnam.isi.edu/
nsnam/index.php/User_Information),
models behaviors of network links,
switches, gateways, and other hardware
resources (CPU and storage) in a cloud
datacenter.24 GreenCloud aims to sim-
plify performance tests of energy-aware
scheduling algorithms in cloud envi-
ronments. Because it’s a packet-level
simulator, it requires extra memory and
processing power to create and transmit
packets across simulation entities.

MDCSim supports simulation of
specified hardware resources in a data-
center from multiple vendors and allows
energy consumption profiling for study-
ing scheduling and resource manage-
ment policies.25 The current MDCSim
release support models for simulating
multitier applications consisting of web-
server, application server, and database
service. It also implements two types
of cluster network routing models: In-
finiBand architecture and 10-Gigabit
Ethernet.

DCSim supports simulation and
modeling of CPU resources, data rep-

lication policies, and CPU migration
policies.26 However, it doesn’t support
network topology in lieu of improving
scalability. To support dynamic appli-
cation component migration studies,
DCSim implements features for virtual
machine (VM) live migration and rep-
lication. Because the application entity
is only implemented at an abstract level,
users must implement specific cloud ap-
plication models.

CloudSim is one of the most widely
used discrete-event simulation frame-
works because it’s highly extensible
and flexible.27 It provides models for
all hardware resources including CPUs
(VMs), storage, and networks (network
contention and delays) within mul-
tiple datacenters. The network simu-
lation in CloudSim is built upon the
BRITE network topology generator and
communication model.28 CloudSim
has extensive support for application
scheduling level simulation (such as for
scientific and Web hosting), because
it provides cloud broker and cloud ex-
change (for federated datacenter re-
source pooling) entities.

MR-CloudSim is an extension of
CloudSim for simulating MapReduce
big data processing models.29 However,
MR-CloudSim only supports simplistic,
single-state map and reduce computa-
tions. Further, it lacks support for net-
work link modeling, which is a critical
element affecting the performance of
MapReduce applications.

To support provider-specific analysis
of application performance, CDOSim30
extends CloudSim and integrates with
the cloud migration framework (Cloud-
MIG).31 Unfortunately, CDOSim and
CloudMIG are based on the enterprise
resource planning system model, whose
computational, data storage, data pro-
cessing, and software modeling needs
fundamentally differ from those of big
data applications and frameworks.

80	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

Big Data Framework Benchmarks
Fueled by the need to analyze the per-
formance of different big data pro-
cessing frameworks, researchers have
introduced several benchmarks, in-
cluding BigDataBench,32 BigBench,33
Hibench,34 PigMix, CloudSuite,35 and
GridMix. These benchmark suites
model workloads for stress testing one
or more categories of big data process-
ing frameworks. For example, Hibench
has Sort, WordCount, TeraSort, PageR-
ank, K-means, and Bayes classification
workloads for loading Hadoop and Hive
frameworks. Among these frameworks,
BigDataBench is most comprehensive
as it constitutes workload models for
NoSQL, DBMS, SPEs, and batch pro-
cessing frameworks. Primarily, Big-
DataBench targets the search engine,
social network, and e-commerce appli-
cation domains.

espite the significant progress,
we still need a holistic, compre-

hensive simulation platform that lets
us analyze big data application sched-
uling across heterogeneous big data
processing frameworks and hardware
resources. Hence, future research ef-
forts need to focus on developing an in-
tegrated simulation and benchmarking
framework that can support modeling
of both heterogeneous data program-
ming abstractions such as MapReduce
in Hadoop, continuous query operators
in Storm, and transactional operators
in MySQL and Cassandra; and hetero-
geneous dataflows (for example, static,
streams, and transactions), workload
processing (batch processing in Ha-
doop, continuous stream processing
in Storm, and transaction processing
in MySQL and Cassandra), and hard-
ware resource configurations. It must
also support evaluation templates that
incorporate details on application-level

performance constraints, fault-injection
models, big data processing benchmarks
and configurations relevant to specific
application types (such as credit card
fraud detection and emergency manage-
ment). Finally, such a framework must
support failure injection models at both
the software and hardware layer.

References
	1.	 J. Heinzelman and K. Baptista, “Ef-

fective Disaster Response Needs In-
tegrated Messaging,” SciDevNet, 16
Nov. 2012; www.scidev.net/en/new
-technologies/icts/opinions/effective
-disaster-response-needs-integrated
-messaging.html.

	2.	X. Wu et al., “Data Mining with Big
Data,” IEEE Trans. Knowledge and
Data Eng., vol. 26, no. 1, 2014, pp.
97–107.

	3.	Z. Deng et al., “Parallel Process-
ing of Dynamic Continuous Que-
ries over Streaming Data Flows,”
IEEE Trans. Parallel and Distrib-
uted Systems, preprint, doi:10.1109/
TPDS.2014.2311811.

 	4.	W. Fan and A. Bifet, “Mining Big
Data: Current Status, and Forecast
to the Future,” SIGKDD Explora-
tions Newsletter, vol. 14, no. 2, 2013,
pp. 1–5.

	5.	R. Ranjan, “Streaming Big Data Pro-
cessing in Datacenter Clouds,” IEEE
Cloud Computing, vol.1, no.1, 2014,
pp. 78–83.

	6.	L. Wang et al., eds., Cloud Comput-
ing: Methodology, System, and Appli-
cations, CRC Press, Taylor & Fran-
cis, 2011.

	 7.	F. Chang et al., “Bigtable: A Distrib-
uted Storage System for Structured
Data,” ACM Trans. Computer Sys-
tems, vol. 26, no. 2, 2008, article 4.

	8.	Y. Low et al., “Distributed GraphLab:
A Framework for Machine Learn-
ing and Data Mining in the Cloud,”
Proc. VLDB Endowment, vol. 5, no.

8, 2012, pp. 716–727.
	9.	T. Kraska et al., “MLbase: A Distrib-

uted Machine-Learning System,”
Proc. 6th Biennial Conf. Innovative
Data Systems Research (CIDR 13),
2013.

	10.	V. Kumar et al., “Apache Hadoop
YARN: Yet Another Resource Nego-
tiator,” Proc. 4th Ann. Symp. Cloud
Computing (SOCC 13), 2013, article
5.

	11.	M. Schwarzkopf et al., “Omega: Flex-
ible, Scalable Schedulers for Large
Compute Clusters,” Proc. 8th ACM
European Conf. Computer Systems
(EuroSys 13), 2013, pp. 351–364.

	12	B. Hindman, “Mesos: A Platform for
Fine-Grained Resource Sharing in
the Data Center,” Proc. 8th USENIX
Conf. Networked Systems Design and
Implementation (NSDI 11), 2011, pp.
295–308.

	13.	R. Zhang et al., “Getting Your Big
Data Priorities Straight: A Demon-
stration of Priority-Based QoS Us-
ing Social-Network-Driven Stock
Recommendation,” Proc. 40th Int’l
Conf. Very Large Data Bases (VLDB
14), 2014, pp. 1665–1668.

	14.	M. Kunjir et al., “Thoth: Towards
Managing a Multi-System Cluster,”
Proc. 40th Int’l Conf. Very Large
Data Bases (VLDB 14), 2014.

	15.	A. Simitsis et al., “Optimizing Ana-
lytic Data Flows for Multiple Execu-
tion Engines,” Proc. ACM SIGMOD
Int’l Conf. Management of Data
(SIGMOD 12), 2012, pp. 829–840.

	16.	R. Buyya and M. Murshed, “Grid-
Sim: A Toolkit for the Modeling and
Simulation of Distributed Resource
Management and Scheduling for
Grid Computing,” J. Concurrency
and Computation: Practice and Ex-
perience, vol. 14, nos. 13–15, 2002,
pp. 1175–1220.

	17.	H.J. Song et al., “The MicroGrid: A
Scientific Tool for Modeling Com-

N OV E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 81

Selected CS articles and columns
are also available for free at http://
ComputingNow.computer.org.

putational Grids,” Proc. ACM/IEEE
Conf. Supercomputing (SC 00),
2000, article 53.

	18.	C.L. Dumitrescu and I. Foster,
“GangSim: A Simulator for Grid
Scheduling Studies,” Proc. 5th IEEE
Int’l Symp. Cluster Computing and
the Grid (CCGrid 05), vol. 2, 2005,
pp. 1151–1158.

	19.	H. Casanova, “Simgrid: A Toolkit
for the Simulation of Application
Scheduling,” Proc. 1st Int’l Symp.
Cluster Computing and the Grid
(CCGRID 01), 2001, pp. 430–437.

	20.	W.H. Bell et al., “Simulation of Dy-
namic Grid Replication Strategies in
OptorSim,” Proc. 3rd Int’l Workshop
Grid Computing (GRID 02), 2002,
pp. 46–57.

	21.	P. García et al., “PlanetSim: A New
Overlay Network Simulation Frame-
work,” Proc. 4th Int’l Conf. Software
Eng. and Middleware (SEM 04),
2004, pp. 123–136.

	22.	R. Ranjan, A. Harwood, and R.
Buyya, “Coordinated Load Man-
agement in Peer-to-Peer Coupled
Federated Grid Systems,” J. Super-
computing, vol. 61, no. 2, 2012, pp.
292–316.

	23.	K. Stamos et al., “CDNsim: A Simu-
lation Tool for Content Distribution
Networks,” ACM Trans. Modelling
and Computer Simulation, vol. 20,
no. 2, 2010, article 10.

	24.	D. Kliazovich et al., “GreenCloud: A
Packet-Level Simulator of Energy-
Aware Cloud Computing Data Cen-
ters,” Proc. Global Telecomm. Conf.
(GLOBECOM 10), 2010, pp. 1–5.

25.	S.H. Lim et al., “MDCSim: A Multi-
Tier Data Center Simulation, Plat-
form,” Proc. IEEE Int’l Conf. Cluster
Computing and Workshops, 2009,
pp. 1–9.

	26.	C. Chen, Y. Liu, and R. Chang, “DC-
Sim: Design Analysis on Virtualiza-
tion Data Center,” Proc. 9th Int’l

Conf. Ubiquitous Intelligence and
Computing and 9th Int’l Conf. Auto-
nomic and Trusted Computing (UIC-
ATC 12), 2012, pp. 900–905.

	27.	R.N. Calheiros et al., “CloudSim: A
Toolkit for the Modeling and Simu-
lation of Cloud Resource Manage-
ment and Application Provisioning
Techniques,” J. Software: Practice
and Experience, vol. 41, no. 1, 2011,
pp. 23–50.

	28.	A. Medina et al., “BRITE: An Ap-
proach to Universal Topology Gen-
eration,” Proc. Int’l Workshop on
Modeling, Analysis and Simulation
of Computer and Telecomm. Systems
(MASCOTS 01), 2001, pp. 346–353.

	29.	J. Jung and H Kim, “MR-Cloud-
Sim: Designing and Implementing
MapReduce Computing Model on
CloudSim,” Proc. Int’l Conf. ICT
Convergence (ICTC 12), 2012, pp.
504–509.

	30.	F. Fittkau, S. Frey, and W. Hassel-
bring, “CDOSim: Simulating Cloud
Deployment Options for Software
Migration Support,” Proc. IEEE 6th
Int’l Workshop Maintenance and
Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA 12),
2012, pp. 37–46.

	31.	S. Frey, W. Hasselbring, and B.
Schnoor, “Automatic Conformance
Checking for Migrating Software
Systems to Cloud Infrastructures
and Platforms,” J. Software Mainte-
nance and Evolution: Research and
Practice, vol. 25, no. 10, 2012, pp.
1089–1115.

	32.	L. Wang et al., “BigDataBench: A
Big Data Benchmark Suite from
Internet Services,” Proc. 20th IEEE
Int’l Symp. High-Performance Com-
puter Architecture (HPCA 14), 2014,
pp. 488-499.

	33.	A. Ghazal, “BigBench: Towards
an Industry Standard Benchmark
for Big Data Analytics,” Proc. 2013

ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD 13), 2013,
pp. 1197–1208.

	34.	S. Huang et al., “The HiBench
Benchmark Suite: Characterization
of the MapReduce-based Data Anal-
ysis,” Proc. IEEE 26th Int’l Conf.
Data Eng. Workshops (ICDEW 10),
2010, pp. 41–51.

	35.	M. Ferdman et al., “Clearing the
Clouds: A Study of Emerging Scale-
out Workloads on Modern Hard-
ware,” SIGARCH Computer Archi-
tecture News, vol. 40, no. 1, 2012, pp.
37–48.

RAJIV RANJAN is a senior research
scientist, Julius Fellow, and project
leader at the Commonwealth Scientific
and Industrial Research Organization.
At CSIRO, he leads research projects re-
lated to cloud computing, content deliv-
ery networks, and big data analytics for
Internet of Things (IoT) and multimedia
applications. Ranjan has a PhD in com-
puter science and software engineering
from the University of Melbourne.

Joan
Sticky Note
Add:
Contact him at rajiv.ranjan@csiro.au.

