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Abstract— In the current approaches to workflow scheduling,
there is no cooperation between the distributed workflow brokers
and as a result, the problem of conflicting schedules occur. To
overcome this problem, in this paper, we propose a decentralized
and cooperative workflow scheduling algorithm. The proposed
approach utilizes a Peer-to-Peer (P2P) coordination space with
respect to coordinating the application schedules among the Grid
wide distributed workflow brokers. The proposed algorithm is
completely decentralized in the sense that there is no central
point of contact in the system, the responsibility of the key
functionalities such as resource discovery and scheduling co-
ordination are delegated to the P2P coordination space. With
the implementation of our approach, not only the performance
bottlenecks are likely to be eliminated but also efficient scheduling
with enhanced scalability and better autonomy for the users are
likely to be achieved. We prove the feasibility of our approach
through an extensive trace driven simulation study.

I. INTRODUCTION

Workflow scheduling algorithm is a process of finding

the efficient mapping of tasks in a workflow to the suitable

resources so that the execution can be completed with the

satisfaction of objective functions such as execution time min-

imization as specified by Grid users. Therefore, the efficiency

of the workflow scheduling algorithm directly affects the

performance of the system with respect to delivered Quality

of Service (QoS), utilization, and system performance.

In the current approaches to workflow scheduling, there is

no cooperation between the distributed workflow brokers and

as a result, the problem of conflicting schedules can occur. For

example, consider a Grid environment (as shown in Fig. 1)

that consists of n number of resources and m number of

workflow brokers. Users submit their scientific applications to

the workflow brokers. These brokers generate the schedules

based on the resource information obtained from the Grid

Information Services (GIS). A schedule is effectively mapping

of the set of tasks in the workflow to the set of available

resources. However, if workflow broker 1 and workflow broker

2 query the GIS at the same time, they will get the similar

information about the resource availability pattern. Based on

this information, workflow broker 1 and workflow broker

2 will generate the same mapping for the tasks in their

locally submitted workflows, which will lead to conflicting

schedules. Hence, both the system and the application suffer

from degraded performance.
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Fig. 1. Existing workflow scheduling approach.

Other major drawback involved with current workflow

scheduling is that the existing workflow brokers rely on the

centralized (refer to Fig. 1) or semi-centralized hierarchical

resource information services such as MDS-2,3,4 [3]. Current

studies have shown that [19] existing centralized model for

information services do not scale well as the number of

users, brokers and providers increase in the system. Hence

in case, the centralized links leading to these services fail,

then no broker in the system can undertake scheduling related

activities due to the lack of up-to-date resource information. In

addition, considering the sheer dynamism of Grid computing

environment, any scheduling decision that is based on static

resource information, would certainly be sub-optimal.

Further, Grids [4] are heterogeneous and dynamic environ-

ments consisting of computing, storage and network resources

with different capability and availability. In [10], it is shown

that the dynamic scheduling algorithms based on heuristics

adapt to the changing resource conditions of Grids by perform-

ing just-in-time scheduling (generating schedules that maps the

tasks dynamically). But the workflow brokers running these

dynamic algorithms, still need to be coordinated in order to

avoid any conflict and generate schedule globally.

To overcome the limitation of exiting approaches, we pro-

pose a fully decentralized and cooperative workflow schedul-

ing algorithm based on Peer-to-Peer (P2P) coordination space.
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A P2P coordination space [8], [11] provides a global virtual

shared space that can be concurrently and associatively ac-

cessed by all participants in the system and the access is

independent of the actual physical or topological proximity

of the objects or hosts. New generation routing algorithms,

which are more commonly known as the Distributed Hash

Tables (DHTs) [15], [13] form the basis for organizing the

P2P coordination space. In the proposed approach, workflow

brokers post their resource demands by injecting a Resource

Claim object into the DHT-based decentralized coordination

space, while resource providers update the resource infor-

mation by injecting a Resource Ticket object. These objects

are mapped to the DHT-based coordination space using a

spatial hashing technique [16]. Once a resource ticket matches

with one or more resource claims, the coordinator space

sends notification messages to the resource claimers such that

it does not lead to the overloading of the concerned resource

ticket issuer. Thus, this mechanism prevents the workflow

brokers from overloading the same resource.

The main contributions of this work include: (i) a novel

decentralized and cooperative workflow scheduling algorithm

and (ii) extensive simulation based study to prove the effec-

tiveness of the proposed approach.

The rest of this paper is organized as follows. In the

next section, we describe the related work that focused on

decentralized workflow scheduling. Section 3 provides a brief

description of the system models used in our scheduling

approach. In Section 4, we present the details of our workflow

scheduling algorithm. The simulation model, experimental

setups, and the findings of the experiments performed are

discussed in Section 5. Finally, we conclude the paper with

the direction for future work.

II. RELATED WORK

The main focus of this section is to compare the novelty

of the proposed work with respect to the existing decen-

tralized scientific workflow scheduling strategies. In [18], a

workflow enactment engine with a just-in-time scheduling

system using tuple space is proposed to manage the exe-

cution of scientific workflow applications. In this system,

every task has its own scheduler called Task Manager (TM)

which implements a scheduling algorithm and handles the

processing of tasks. The TMs are controlled by a Workflow

Coordinator (WC). Besides, an event-driven mechanism with

subscription-notification methods supported by the tuple space

model is used to control and manage scheduling activities.

In this work, although the task managers are working in a

distributed fashion, they communicate with each other through

tuple space which is implemented based on a client-server

based centralized technology. Further, the WC in this system

does not communicate with other WCs, managing workflow

applications in the Grid. In contrast to this work, we propose

a completely decentralized workflow coordinator based on a

scalable P2P network model.

Yao et al. [17] have extended the aforementioned architec-

ture with an additive Reinforcement Learning Agent (RLA) to

perform the Decentralized Dynamic Workflow Scheduling us-

ing Reinforcement Learning (DDWS-RL) algorithm. DDWS-

RL enabled TMs query information from the RLA and make

decision on resource selection at the time of task execution.

Thus, RLA is used in the tuple space to facilitate the schedul-

ing algorithm to be more efficient. However, this approach

also involves the same architecture as the other approach,

stated above, which is based on centralized client-server model

with respect to resource discovery and coordination space

management. In contrast, with our approach there is no central

component that can prove to be a bottleneck.

GFA 2

Resource 2

user 2

Resource site 2

GFA 4

Resource 4

user 4

Resource site 4

GFA 3

Resource 3

user 3

Resource site 3

GFA 1

Resource 1user 1

Resource site 1

T2 T3

T1

T4

publish (ticket)

publish (ticket)

1

1

match()

index cell i

publish (ticket)

publish (ticket)

1

1

2

3

4
subscribe (claim)

spatial hash

P2P Tuple Space

submit (job)

notify()

6

7

5

T1

T1

GFA3

T2

T1

T4

T3

Fig. 2. Proposed workflow scheduling approach.

III. SYSTEM MODELS

A. Grid Model

The proposed workflow scheduling algorithm utilizes the

Grid-Federation [12] model in regards to resource organization

and Grid networking. Grid-Federation aggregates distributed

resource brokering and allocation services as part of a coopera-

tive resource sharing environment. The Grid-Federation, GF =
{R1, R2, . . . , Rn}, consists of a number of sites, n, with each

site contributing its resource to the federation. Every site in the

federation has its own resource description Ri which contains

the definition of the resource that it is willing to contribute. Ri,

can include information about the CPU architecture, number

of processors, memory size, secondary storage size, operating

system type, etc. In this work, Ri = (pi, xi, µi, øi), which

includes the number of processors pi, processor architecture

xi, their speed µi, and installed operating system type øi.

Resource brokering, indexing and allocation in Grid-

Federation are facilitated by a Resource Management Sys-

tem (RMS) known as Grid Federation Agent (GFA). Fig. 2

shows an example Grid-Federation resource sharing model

consisting of Internet-wide distributed parallel resources. Ev-

ery contributing site maintains its own GFA service. GFA ser-

vice is composed of 3 software entities: Grid Resource Man-

ager (GRM), Local Resource Management System (LRMS)

and Distributed Information Manager (DIM) or Grid Peer.
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The GRM component of GFA exports a Grid site to the

federation and is responsible for coordinating federation wide

application scheduling and resource allocation. The GRM is

responsible for scheduling locally submitted jobs (workflows)

in the federation. Further, it also manages the execution of

remote jobs (workflows) in conjunction with local resource

management system. The LRMS software module can be

realized using systems such as PBS [1], SGE [6]. Additionally,

LRMS performs the other activities for facilitating federation

wide job submission and migration process such as answering

the GRM queries related to local job queue length, expected

response time, and current resource utilization status.

The Grid peer module in conjunction with publish/subscribe

indexing service performs tasks related to decentralized re-

source lookups and updates. A Grid Peer service generates

two basic types of objects with respect to coordinated resource

brokering: (i) a claim, is an object sent by a broker service to

the P2P space for locating the resources that match the user’s

application requirements and (ii) a ticket, is an update object

sent by a Grid site mentioning about the underlying resource

conditions. Since, a Grid resource is identified by more than

one attribute, a claim or ticket is always d-dimensional.

Further, both of these queries can specify different kinds of

constraints on the attribute values. If a query specifies a fixed

value for each attribute then it is referred to as a d-dimensional

Point Query (DPQ). However, if the query specifies a range

of values for the attributes, then it is referred to as a d-

dimensional Window Query (DWQ) or a d-dimensional Range

Query (DRQ) [14]. Thus the Grid peer component of a GFA

service is responsible for ticket publication, claim subscription,

and overlay management processes.

B. Application Model

In this work, we consider the e-Science workflow applica-

tions as the case study for the proposed scheduling approach.

Here, a workflow application is modeled as a Directed Acyclic

Graph (DAG) where, the tasks in the workflow are represented

as nodes in the graph and the dependencies among the tasks

are represented as the directed arcs among the nodes. Let Vi,j,k

be the finite set of tasks {T1, T2, . . . , Tx, . . . , Ty, Tm} for the

i-th submitted workflow from the j-th user of k-th workflow

broker (GFA) and Ei,j,k be the set of dependencies of the form

{Txi,j,k
, Tyi,j,k

} where, Txi,j,k
is the parent task of Tyi,j,k

.

Thus, the i-th submitted workflow from the j-th user of k-th

workflow broker in the system can be represented as

Wi,j,k = {Vi,j,k, Ei,j,k}

In a workflow, we call a task that does not have any parent

task, an entry task and a task that does not have any child

task, an exit task. We also assume that a child task can not

be executed until all of its parent tasks are completed. At any

time of scheduling, the task that has all of its parent tasks

finished, is called a ready task.

C. Coordination Space Model

In this section, we first describe the communication, coor-

dination and indexing models that are utilized to facilitate the

P2P coordination space. Then, we present the composition of

objects, access primitives that form the basis for coordinating

application schedules among distributed GFAs/brokers.
1) Coordination Objects: This section gives details about

the resource claim and ticket objects that form the basis for

enabling decentralized coordination mechanism among the

brokers/GFAs in the Grid-Federation system. These coordi-

nation objects include Resource Claim and Resource Ticket.
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Fig. 3. Resource allocation and application scheduling coordination across
Grid sites.

Every GFA in the federation posts its resource ticket through

the local Coordination service. A resource ticket object ui

or update query consists of a resource description Ri, for a

resource i.

Resource Ticket: Total-Processors = 100 && Processor-

Arch= Pentium && Processor-Speed= 2 GHz && Operating-

System = Linux && Utilization=0.80.

A resource claim or lookup object encapsulates the resource

configuration requirements of a task in the workflow submitted

by the users. In this work, we focus on the workflows

for which the requirements are confined to a computational

Grid or PlanetLab resources. Users submit their workflow

application’s resource requirements to the local GFA (refer

to Fig. 2). The corresponding GFA service is responsible for

searching the suitable resources in the federated system. A

GFA aggregates the characteristics of a task including number

of processors, processor architecture, and installed operating

system with constraint on maximum speed, and resource

utilization into a resource claim object, ri,j,k .

Resource Claim: ‘ Total-Processors ≥ 70 && Processor-

Arch= Pentium && 2 GHz ≤ Processor-Speed ≤ 5GHz &&

Operating-System = Solaris && 0.0 ≤ Utilization ≤ 0.90.
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The resource ticket and claim objects are spatially hashed

to an index cell i in the d-dimensional coordination space.

Similarly, the coordination services of the resource sites in

the Grid network hash themselves into this coordination space

using the overlay hashing function (SHA-1 in case of Chord

and Pastry). In Fig. 3, resource claim objects issued by site p

and l are mapped to the index cell i and these claim objects

are currently hashed to the site s. Thus site s is responsible

for coordinating the resource sharing among all the resource

claims that are mapped to the cell i. Subsequently, site u issues

a resource ticket (shown as small dark circles in Fig. 3) that

falls under a region of the space currently required by users

at site p and l. In this case, the coordination service of site

s has to decide, which of the sites (i.e. either l or p or both)

will be allowed to claim the ticket issued by site u. This load-

distribution decision is based on the fact that it should not lead

to over-provisioning of resources at site u.

Once a resource ticket matches with one or more resource

claims, a coordination service sends notification messages

to the resource claimers such that it does not lead to the

overloading of the concerned resource ticket issuer. Thus, this

mechanism prevents the workflow brokers from overloading

the same resource. As a result, the problem of conflicting

schedules is overcome.

2) D-dimensional Coordination Object Mapping and Rout-

ing: 1-dimensional hashing, provided by current implementa-

tion of DHTs are insufficient to manage complex objects such

as resource tickets and claims. DHTs generally hash a given

unique value/identifier (e.g. a file name) to a 1-dimensional

DHT key space and hence they cannot support mapping and

lookups for complex objects. Management of these objects

whose extents lie in the d-dimensional space requires the

embedding of a logical index structure over the 1-dimensional

DHT key space.

We now describe the features of the P2P-based spatial index

that we utilize for mapping the d-dimensional claim and ticket

objects over the DHT space. Providing the background and

details on this topic is beyond the scope of this paper; here

we only give a high level view. The spatial index that we

consider in this work, assigns regions of space to the Grid

peers in the Grid-Federation system. If a Grid peer is assigned

a region of d-dimensional space, then it is responsible for

handling query computation associated with the claim and

ticket objects that intersect this region, as well as storing the

objects that are associated with the region. Fig. 4 depicts a 2-

dimensional Grid resource attribute space for mapping claim

and ticket objects. The attribute space has a grid-like structure

due to its recursive division process. The index cells, resulted

from this process, remain constant throughout the life of the

d-dimensional attribute space and serve as the entry points for

subsequent mapping of claim and ticket objects. The number

of index cells produced at the minimum division level,fmin is

always equal to (fmin)dim, where dim is the dimensionality of

the Cartesian space. These index cells are called base index

cells and they are computed when the Grid peers bootstrap

to the coordination network. Finer details on recursive sub-

division technique can be found in [16]. Every Grid peer in the

network has the basic information about the Cartesian space

coordinate values, dimensions and minimum division level.
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= 2, dim=2.

Every cell at the fmin level is uniquely identified by its

centroid, termed as control point. Fig. 4 depicts four control

points A, B, C and D. A DHT hashing method such as the

Chord method is utilized to hash these control points. So the

responsibility for managing an index cell is associated with a

Grid peer in the system. In Fig. 4, control point C is hashed

to the Grid peer t, which is responsible for managing all claim

and ticket objects that are stored with that control point (Claim

X, Z and Ticket M).

For mapping claim objects, the process of mapping index

cells to the Grid peers depends on whether it is a DPQ or

DRQ. For a DPQ type query, the mapping is simple since

every point is mapped to only one cell in the Cartesian space.

For a DRQ type query, mapping is not always singular because

a range lookup can cross more than one cell. To avoid mapping

a DRQ to all the cells that it crosses (which can create many

unnecessary duplicates), a mapping strategy based on diagonal

hyperplane [7] of the Cartesian space is utilized. This mapping

involves feeding a DRQ candidate index cell as an input into

a mapping function, Fmap. This function returns the IDs of

index cells to which given DRQ should be mapped. Spatial

hashing is performed on these IDs (which returns keys for

Chord space) to identify the current Grid peers responsible

for managing the given keys. A Grid peer service uses the

index cell(s) currently assigned to it and a set of known base

index cells obtained at initialization as the candidate index

cells.

Similarly, the mapping process of ticket also involves the

identification of the cell in the Cartesian space. A ticket is

always associated with a region [7] and all cells that fall fully

or partially within that region will be selected to receive the

corresponding ticket. The calculation of the region is based

upon the diagonal hyperplane of the Cartesian space.

IV. PROPOSED ALGORITHMS

A. Scheduling Algorithm

In this section, we provide detailed descriptions of the

scheduling algorithm that is undertaken by a GFA in the Grid-

Federation system following the arrival of a job or workflow:
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1. When a workflow application Wi,j,k arrives at a GFA, the

GFA compiles resource ticket objects for the entry or ready

tasks in the workflow. It then posts resource ticket objects for

the ready tasks to the P2P tuple space. In Fig. 2 GFA1 is

posting a resource claim for the task T1 on behalf of its local

user, User1.

2. When a GFA receives a notification of match for a task

from the P2P coordination space, it contacts the ticket issuer

GFA for possible task submission. After notifying the claimer

GFA, the coordination service unsubscribes the resource claim

for that task from the tuple space. In Fig. 2, the match event

for the submitted task T1 occurs in the tuple space and claimer

GFA (GFA1) is notified that it can submit the task to the ticket

issuer GFA (GFA3).

3. Once the ticket issuer GFA agrees to grant access

to its local resources, then the claimer GFA transfers the

locally submitted task to that GFA. Further, the claimer GFA

unsubscribes the claim object from the tuple space to remove

duplicates.

4. However, if the ticket issuer GFA fails to grant access

due to local resource sharing policy, then the claimer GFA

reposts the resource claim for that task to the tuple space for

future notifications.

B. Coordination Algorithm

The details of the decentralized resource provisioning algo-

rithm that is undertaken by the coordination services across

the P2P tuple space is presented in this section.

1. When a resource claim object arrives at a coordina-

tion service for future consideration, the coordination service

queues it in the existing claim list.

2. When a resource ticket object arrives at a coordination

service, the coordination service computes the list of resource

claims, which overlap with the submitted resource ticket object

in the d-dimensional space. This list is referred to as the

match list. The overlap signifies that the task associated with

the given claim object can be executed on the ticket issuer’s

resource subject to its availability.

3. From the match list, the resource claimers are selected

one by one based on the First-Come-First-Serve (FCFS) allo-

cation strategy. The coordination service notifies the resource

claimers about the resource ticket match until the ticket issuer

is not over-provisioned. The coordination procedure can utilize

the dynamic resource parameters such as the number of

available processors, queue length etc. as the over-provision

indicator. These over-provision indicators are encapsulated

with the resource ticket object by the GFAs.

4. The GFAs can post the resource ticket object to the tuple

space either periodically or whenever the resource condition

changes such as a task completion event happens.

V. PERFORMANCE EVALUATION

A. Simulation Model

Our simulation model considers an interconnected net-

work of n Grid peers, where a Grid peer node (through its

Chord routing service) is connected to an outgoing message

Chord
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Grid peers
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Chord
Service

Grid peer2
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Index messages
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Index
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M/M/1/K
Network
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λin
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λin
t

µn
λout

λin
index

λin
a

µr

Fig. 5. Network message queueing model at a Grid peer i.

queue and an incoming link from the Internet (as shown in

Fig. 5). The network messages, delivered through the incoming

link (effectively coming from other Grid peers in the overlay)

are processed as soon as they arrive. We denote the rates

for claim and ticket object by λin
c and λin

t respectively. The

queries are directly sent to the local index service which first

processes them and then forwards them to the local Chord

routing service. Although, we consider a message queue for

the index service but we do not take into account the queuing

and processing delays as it is in microseconds. Index service

also receives messages from the Chord routing service at a rate

λin
index. The index messages include the claims and tickets that

map to the control area currently owned by the Grid peer, and

the notification messages arriving from the network. The local

index service sends message to its Chord service at a rate, λin
a .

The index service sends notification messages (claim-ticket

match message) to its broker service at a rate, µr.

Further, the Chord routing service receives messages from

local publish/subscribe index service. These messages are

processed as soon as they arrive at the Chord routing service.

After processing, Chord routing service queues the messages

in the local outgoing queue at a rate, λout. We denote the mes-

sage processing rate of outgoing queue by µn. Basically, this

queue models the network latencies that a message encounters

as it is transferred from one Chord routing service to another

on the overlay. The distributions for the delays (including

queuing and processing) encountered in an outgoing queue

are given by the M/M/1/K queue steady state probabilities.

B. Simulation Setup

Our simulation infrastructure is created by combining two

discrete event simulators namely GridSim [2], and Planet-

Sim [5]. GridSim offers a concrete base framework for simula-

tion of different kinds of heterogeneous resources, services and

application types. PlanetSim is an event-based overlay network

simulator that can simulate both unstructured and structured

overlays.

1) Workload Configuration: We implement a workflow

generator that creates various formats of weighted pseudo-

application workflows. The following input parameters are

used to create a workflow.

• N, the total number of tasks in the workflow.

• Shape parameter, α: α represents the ratio of the total

number of tasks to the width (i.e. maximum number of

tasks in a level). Hence, width: W= ⌈N
α
⌉.
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In this study, we consider fork-join workflow and an ex-

ample of such workflow is WIEN2K [9], which is a quan-

tum chemistry application developed at Vienna University

of Technology. In this kind of workflow, forks of tasks are

created and then joined, such that there can be only one

entry task and one exit task. But the number of tasks at

each level depends on total number of tasks and the width

of that level, W . Number of levels in a fork-join workflow

is computed as ⌊ N
W+1

⌋. We vary the number of tasks in a

workflow over the interval [20, 100] and the size of each task

is randomly generated form a uniform distribution between

50000 MI (Million Instruction) to 500000 MI. Further, we

assume that workflows are computation intensive. Thus, the

data dependency among the tasks in the workflow is negligible.

2) Network Configuration: The experiments run a Chord

overlay with 32 bit configuration i.e. number of bits utilized

to generate node and key ids. The GFA/broker network size

n is fixed to 100. Further, network queue message processing

rate, µn, is fixed at 4000 messages per second and message

queue size, K , is fixed at 104.

3) Resource Claim and Ticket Injection Rate: The GFAs

inject the ticket objects based on the exponential inter-arrival

time distribution. The injection rate, 1

λin
t

, for the resource

tickets is distributed over the interval [100, 300] in step of 100
secs. Note that, the inter-arrival delay between injecting the

ticket objects is modeled to be the same for all the GFAs in the

system. At the beginning of the simulation, the resource claims

for the entry tasks of all the workflows in the system are in-

jected. Subsequently, when these tasks finish, then the resource

claims for the successive tasks in the workflow are posted.

This process is repeated until all the tasks in the workflow are

successfully completed. Spatial extent of both resource claims

and ticket objects lie in a 4-dimensional attribute space. These

attribute dimensions include the number of processors, pi, their

speed, mi, their architecture, xi, and operating system type,

φi. The distribution for these resource dimensions is generated

by utilizing the configuration of resources that are deployed in

the various Grids including NorduGrid, AuverGrid, Grid5000,

NaregiGrid, and SHARCNET1.

4) Spatial Index Configuration: In this simulation, the fmin

of logical d-dimensional spatial index is set to 4. The index

space resembles a Grid-like structure, where each index cell

is randomly hashed to a Grid peer based on its control point

value. With dim = 4, total of 256 index cells were produced

at the fmin level. Hence in a network that consisted of 100

GFAs, on an average the responsibility of managing 2.5 index

cells were assigned to each GFA.

5) Resource Load Indicator: The GFAs/brokers encode the

metric “number of available processors” at time t with the

resource ticket object, ui. A coordination service utilizes this

metric as the indicator for the current load on a resource,

Ri. In other words, a coordination service stops sending the

notifications as the number of processors available with a ticket

issuer approaches zero.

1http://gwa.ewi.tudelft.nl/

C. Results and Observations

In our simulation, we vary the resource ticket (update) inter-

arrival delay over the interval [100, 300] in steps of 100

seconds and the size of the workflow from 20 to 100 tasks.

The graphs in Fig. 6 and Fig. 7 show the performance of

the proposed scheduling algorithm in terms of scheduling and

coordination perspective, respectively.

1) Scheduling perspective: As a measurement of schedul-

ing performance, we use the following metrics namely, average

makespan, average coordination delay, average response time,

and average number of negotiations. The metric coordination

delay sums up the latencies for: (i) resource claim to reach

the index cell, (ii) waiting time till a resource ticket matches

with the claim, and (iii) notification delay from coordination

service to the relevant GFA. CPU time for a task is defined

as the time, a task takes to actually execute on a processor.

Response time for a task is the delay between the submission

time and the arrival time of execution output. Effectively, the

response time includes the latencies for coordination and the

CPU time. Makespan is measured as the response time of a

whole workflow, which equals to the difference between the

submission time of the entry task in the workflow and the

output arrival time of the exit task in that workflow. Note

that, these measurements (except makespan) are collected by

averaging the values obtained for each task in the system. The

measurement of makespan is taken by averaging over all the

workflows in the system.

Fig. 6(a) presents the results of average coordination delay

for a task with respect to the increase of the number of tasks

in a workflow for different inter-arrival delays of resource

information update (ticket posting frequency). The results

show that at higher inter-arrival delay of tickets, the tasks

in a workflow experience increased coordination delay. This

happens due to the reason that in this case, the resource

claim objects of the corresponding tasks have to wait for

longer period of time before they are hit by ticket objects.

As the task processing time (CPU time) is not affected by the

ticket posting frequency, the average response time for a task

shows (refer to Fig. 6(b)) the similar trend as coordination

delay with the changes of resource information update delay.

However, when the number of tasks in the workflow increases,

the resource claim to ticket ratio in the system also increases.

This leads to increased coordination delay for each task due to

longer waiting period. Therefore, the response time of a task

in the workflow is also increased, while the size of workflow

increases.

The average makespan of the workflows also shows (see

Fig. 6(c)) similar growth over number of tasks and ticket inter-

arrival delay as reflected in coordination delay or response

time. Thus in our proposed scheduling environment, if the

resources update their availability information frequently, then

the workflows submitted by the users will be completed early.

The proposed scheduling approach is also highly successful

in reducing the number of negotiations undertaken for the

successful submission of a task (see Fig. 6(d)). In a centralized

6



100 200 300

 20

 40

 60

 80

 100

 120

 140

 160

 20  30  40  50  60  70  80  90  100

 no. of tasks 

p
er

 t
as

k
 (

se
cs

)

av
g

. 
co

o
rd

in
at

io
n

 d
el

ay
 

(a) Number of tasks vs. Coordination delay

100 200 300

 160

 180

 200

 220

 240

 260

 280

 300

 20  30  40  50  60  70  80  90  100

 no. of tasks 

p
er

 t
as

k
 (

se
cs

)

av
g

. 
re

sp
o

n
se

 t
im

e

(b) Number of tasks vs. Response time

mean ticket inter−arrival delay (secs)

100 200 300

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 20  30  40  50  60  70  80  90  100

 no. of tasks 

w
o

rk
fl

o
w

 (
se

c
s)

a
v

g
. 

m
a
k

e
sp

a
n

 p
e
r

(c) Number of tasks vs. Makespan

100 200 300

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 20  30  40  50  60  70  80  90  100

p
er

 t
as

k

av
g

. 
n

o
. 

o
f 

n
eg

o
ti

at
io

n
s

 no. of tasks 

(d) Number of tasks vs. Number of negotiations

Fig. 6. Effect of workflow size and resource information update interval on different performance metrics (scheduling perspective).

scheduling technique, it requires few negotiation iterations to

successfully submit a task, while in this case, the average

number of negotiations per task is about one. Moreover, the

GFAs/brokers in the system receive on an average, around

1 coordination notification per task. This suggests that the

negotiation and notification complexity involved with the

scheduling technique is Θ(1).

2) Coordination perspective: Here, we analyze the per-

formance overhead of the DHT-based coordination space in

regards to facilitating coordinated scheduling among the dis-

tributed GFAs. For that, we measure the following metrics:(i)

number of routing hops, undertaken per task to map claim

and ticket objects to index cells (ii) total number of tickets

and claims, produced in the system and, (iii) total number

of messages, generated for the successfully mapping the

coordination objects and receiving notifications.

Fig. 7(a) shows the number of routing hops, undertaken at

different ticket injection rates across the GFAs in the system

for different sizes of workflow. Suffices “t” and “c” are used

as the label in Fig. 7(a) to represent the values for ticket and

claim object, respectively. From the figure, it is evident that the

number of routing hops is not changed significantly with the

increase of the ticket injection rate or the size of the workflow.

Here, the average number of routing hops for mapping ticket

or claim objects is around 3.6. This shows that the routing

hops for mapping claim/ticket object is as expected in a Chord

based routing space, i.e., bounded by the function O(log n).
As log2 (100) = 6.64, it can be easily shown that c1 × 3.6
= 6.64, where c1 is a constant.

However, the number of claims, generated during the sim-

ulation, remains same with the variation of ticket inter-arrival

delay (refer to Fig. 7(b)). But it shows a linear growth over

the increase in number of tasks in the workflow.

In Fig. 7(c) and 7(d), we show the message overhead,

involved with the inter-arrival delay of ticket objects. Fig. 7(c)

depicts the total number of ticket objects, posted by all GFAs

in the system with respect to increasing workflow size and

ticket inter-arrival delay. In Fig. 7(d), we can see that as

ticket inter-arrival delay and size of the workflow increase,

the number of messages generated during simulation period

increases. For instance, when ticket inter-arrival delay is 100

seconds and each workflow consists of 80 tasks, 14000 tickets

as well as 410000 messages are generated in the system.

Thus if the GFAs publish tickets at relatively faster rate, the

message overhead of the system increases substantially. But in

this case, average coordination delays per task also decreases

moderately (see Fig. 6(a)). Therefore, the ticket inter-arrival

delay should be chosen in such a way that a balance between

coordination delay and message overhead can exist in the

system. In addition, from Fig. 7(d), it is evident that our system

is scalable since the total number of messages is increased

linearly with respect to number of tasks in the workflow.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a decentralized and cooper-

ative scheduling technique for workflow applications on global

Grids. Using simulation, we have measured the performance

of our scheduling approach in respect to both scheduling and

coordination perspective. The results show that our approach

is scalable in terms of scheduling message complexity and

makespan. As we leverage the DHT-based coordination space

for our scheduling, it can also avoid the limitation of single

point of failure regarding resource information service in

centralized scheduling techniques.

In future, we intend to investigate the incorporation of

different optimizations into our proposed algorithm such as

spatial hashing of all the tasks in a workflow within a single

claim object. This hashing is based on the assumption that the
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Fig. 7. Effect of workflow size and resource information update interval on different performance metrics (coordination perspective).

tasks have homogeneous requirements in regards to resource

configuration. This approach would be significantly helpful

in curbing the number of messages, produced as a result

of mapping individual claim objects for different tasks in a

workflow. Further, the matchmaking of claim objects to ticket

objects is currently based on greedy FCFS approach, which

generally leads to suboptimal resource utilization. We want to

investigate the matchmaking of claims and tickets based on

Back-filling scheduling techniques.
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