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Abstract—Cloud computing that provides elastic computing and storage resource on demand has become increasingly 
important due to the emergence of “big data”. Cloud computing resources are a natural fit for processing big data streams as 
they allow big data application to run at a scale which is required for handling its complexities (data volume, variety and 
velocity) . With the data no longer under users' direct control, data security in cloud computing is becoming one of the most 
concerns in the adoption of cloud computing resources. In order to improve data reliability and availability, storing multiple 
replicas along with original datasets is a common strategy for cloud service providers. Public data auditing schemes allow users 
to verify their outsourced data storage without having to retrieve the whole dataset. However, existing data auditing techniques 
suffers from efficiency and security problems. First, for dynamic datasets with multiple replicas, the communication overhead for 
update verifications is very large, because each update requires updating of all replicas, where verification for each update 
requires O(logn) communication complexity. Second, existing schemes cannot provide public auditing and authentication of 
block indices at the same time. Without authentication of block indices, the server can build a valid proof based on data blocks 
other than the blocks client requested to verify. In order to address these problems, in this paper, we present a novel public 
auditing scheme named MuR-DPA. The new scheme incorporated a novel authenticated data structure based on the Merkle 
hash tree (MHT), which we call MR-MHT. To support full dynamic data updates and authentication of block indices, we included 
rank and level values in computation of MHT nodes. In contrast to existing schemes, level values of nodes in MR-MHT are 
assigned in a top-down order, and all replica blocks for each data block are organized into a same replica sub-tree. Such a 
configuration allows efficient verification of updates for multiple replicas. Compared to existing integrity verification and public 
auditing schemes, theoretical analysis and experimental results show that the proposed MuR-DPA scheme can not only incur 
much less communication overhead for both update verification and integrity verification of cloud datasets with multiple replicas, 
but also provide enhanced security against dishonest cloud service providers.  

Index Terms—Big Data, Cloud Computing, Data Security, Public Auditing, Replica Management 

——————————      —————————— 

1 INTRODUCTION

IG data has been one of the most intensive research 
topics in recent years. People from almost all major 

industries are increasingly realizing the values in their 
explosively growing datasets. Research directions for big 
data are always summarized into 4 v's: Velocity, Variety, 
Veracity and Volume, in which cloud can help in a big 
way. Cloud computing is the new-generation distributed 
computing platform that is extremely useful for big data 
storage and processing. With the pay-as-you-go payment 
model, elastic and scalable resource allocation and vari-
ous levels of services in IaaS (Infrastructure-as-a-Service), 
PaaS and SaaS, cloud is widely recognised as the most 
potent technological backbone for solving big data prob-
lems [5]. Cloud can also save a lot of investments in pur-
chasing and maintenance of hardware, which is also great 

for big data applications. A vision is that cloud, providing 
computational resources, can one day be integrated into 
our daily life as close as other utilities such as electricity, 
gas and water [11]. The exceptional scalability and elastic-
ity of cloud make it the ideal platform in process big data 
streams and handling the complexities of big data appli-
cations. 

Security/privacy is one of the major concerns in the 
usage of cloud computing [19, 26] for hosting applications, 
especially big data applications. As data are no longer 
under users' direct control, users are reluctant to move 
their valuable data onto cloud, especially public cloud 
with high consolidation and multi-tenancy. Also, from 
efficiency perspective, secure querying and retrieving of 
cloud data incurs significant network overhead as com-
pared to fetching data from with local servers.  

Datasets in big data applications are always dynamic 
in nature, such as surveillance data, Internet data, etc.. In 
fact, except for a few examples of large static datasets 
such as libraries and e-archives, datasets in most big data 
applications are under constant updating operations. In 
many applications data updates are very frequent, such 
as in social networks and business transactions. Therefore,  
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it is of extreme importance for a cloud security mecha-
nism, such as a public auditing scheme, to efficiently 
support dynamic data. 

Three main dimensions in security are confidentiality, 
integrity and availability. Aiming at integrity assurance, 
public auditing/auditability of cloud data, i.e., verifica-
tion of data integrity from an external party, has been an 
extensively investigated research problem in recent years. 
As user datasets stored on cloud storage servers (CSS) are 
out of the user's reach, auditing from the client, data user 
or a third party auditor is a common requirement, no 
matter how powerful the server-side mechanisms claim 
to be. With provable data possession (PDP) and proofs of 
retrieveability (POR), the data owner or a third-party 
auditor can verify integrity of their data without having 
to retrieve their data. In such schemes, a small metadata 
called 'homomorphic authenticator' or 'homomorphic 
tags' are stored along with each data block. When the cli-
ent needs to verify data integrity, the server will generate 
a proof with the authenticators of the selected data blocks, 
and data auditing is done by the client or a third-party 
auditor through verifying the proof with the public keys.  

Existing public auditing schemes can already support 
verification over data which can be subjected to dynamic 
updates. Such an auditing approach is supported by veri-
fying the auxiliary authentication information (AAI) 
managed by authenticated data structures (ADS) such as 
Merkle hash trees [17, 31]. However, there are still exists 
number of research gaps in above mentioned approach. 
Addressing these gaps is the aim of this paper. First, ex-
isting research lacks investigation of efficient public au-
diting for dynamic datasets that maintain multiple repli-
cas. Storing multiple replicas is a common strategy for 
reliability and availability of datasets stored over remote 
cloud storage. For highly dynamic data, each update will 
lead to update to every replica. Given the fact that update 
verifications in current auditing schemes are of O(logn) 
communication complexity, verifying these replicas one 
by one will be very costly in terms of communication. 
Second, current schemes for dynamic public auditing are 
susceptible to attacks from dishonest servers because of 
lack of block index authentication. Although there is an 
integrity verification scheme for dataset with replicas [13] 
and schemes with index verification such as [14], there 
will be security and/or efficiency problems if these 
schemes are extended directly to support public verifi-
ability. 

In this paper, we present a multi-replica dynamic pub-
lic auditing (MuR-DPA) scheme that can bridge the gaps 
mentioned above through a newly designed authenti-
cated data structure. Research contributions of this paper 
can be summarized as follows: 

1. To address the efficiency problem in verifiable up-
dates for cloud storage with multiple replicas, we propose 
a multi-replica public auditing (MuR-DPA) scheme. The 
new scheme is based on a novel multi-replica Merkle 
hash tree (MR-MHT), where all replica blocks for each 
data block are organized into a same replica sub-tree. Ex-

perimental results show that our scheme can drastically 
reduce communication overheads for update verification 
of cloud data storage with multiple replicas. 

2. As the previous usage of Merkle hash tree (MHT) in 
public auditing of dynamic data did not involve authenti-
cation of node indices, such schemes are susceptible to 
cheating behaviours from a dishonest server. In this pa-
per, with the support of MR-MHT, we propose the first 
MHT-based dynamic public auditing scheme with au-
thentication of index information that is secure against 
dishonest servers. The main strategy is top-down level-
ling and verification of indices from both sides. 

3. With MR-MHT, we also designed a novel public au-
diting protocol for verification of all replicas at once. Ex-
perimental results show that our scheme can not only 
provide efficient verification for multiple replicas, but 
also incur less extra storage overhead at server side.  

Paper Organization: The rest of this paper is organ-
ized as follows. Section 2 discusses related work. Section 
3 provides an analysis of our research problem. Section 4 
provides a detailed description of our proposed scheme 
in detail. Section 5 provides security and efficiency analy-
sis for our design. Section 6 provides experimental results. 
Section 7 provides conclusion for this research. 

2 RELATED WORK 

Compared to traditional systems, scalability and elasticity 
are key advantages of cloud [1, 5, 11]. As such, efficiency 
in supporting dynamic data is of great importance. Secu-
rity and privacy protection on dynamic data has been 
studied extensively in the past [9, 14, 15, 31]. Frequent 
updates exist in many cloud applications such as business 
transaction logs, health records from hospitals and online 
social network data (e.g. Twitter [21]).  

Data security/privacy is one of the most pressing con-
cerns related to big data and cloud [22, 33, 37]. Intensive 
research has been published to enhance cloud data secu-
rity/privacy with technological approaches on cloud 
server side, such as [18, 34]. They are of equal importance 
as external verification approaches such as our focus of 
public auditing.  

Integrity verification for outsourced data storage has 
attracted extensive research interest. The concept of 
proofs of retrievability (POR) and its first model was pro-
posed by Jules et, al. [16]. Unfortunately, their scheme can 
only be applied to static data storage such as archive or 
library. In the same year, Ateniese et, al. proposed a simi-
lar model named ‘provable data possession’ (PDP) [7]. 
Their schemes offer ‘blockless verification’ which means 
the verifier can verify the integrity of a proportion of the 
outsourced file through verifying a combination of pre-
computed file tags which they call homomorphic verifi-
able tags (HVTs) or homomorphic linear authenticators 
(HLAs). Work by Shacham et, al. [23] provided an im-
proved POR model with stateless verification. They also 
proposed the first public verification scheme in the litera-
ture that based on BLS signature scheme [10]. In this 
scheme, the generation and verification of integrity proofs 
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are similar to signing and verification of BLS signatures. 
When wielding the same security strength (say, 80-bit 
security), a BLS signature (160 bit) is much shorter than 
an RSA signature (1024 bit), which in turn brings shorter 
proofs for a POR scheme. They also proved the security of 
both their schemes and the PDP scheme by Ateniese et, al. 
[6, 7]. Ateniese et, al. extended their scheme for enhanced 
scalability [9], but only partial data dynamics and a pre-
defined number of challenges is supported.  

Erway et, al. proposed the first PDP scheme that can 
support verification for full dynamic data updates [14]. A 
modified authenticated data structure (ADS) is used for 
verification of updates, which became the popular way of 
supporting verifiable updates in the following PDP/POR 
works. The ADS they used is called rank-based authenti-
cated skip list (RASL). However, public auditability and 
variable-sized file blocks are not supported in their 
framework. Wang et, al. [31] proposed a scheme based on 
BLS signature that can support public auditing (especially 
from a third-party auditor, TPA) and full data dynamics. 
To support verification of updates, they used another 
ADS called Merkle hash tree (MHT). However, their us-
age of ADS was flawed; without proper verification of 
block indices, when a challenged block is corrupted, a 
malicious server is able to cheat the client by computing 
another valid proof with other blocks. A follow-up work 
by Wang et, al. [30] added a random masking technology 
on top of [31] to ensure the TPA cannot infer the raw data 
file from a series of integrity proofs. In their scheme, they 
also incorporated a strategy first proposed in [23] to seg-
ment file blocks into multiple ‘sectors’. for trading-off of 
storage and communication costs. Work by Liu et, al. [17] 
investigated support for fine-grained updates and effi-
ciency for verification of small updates. However, their 
scheme is under a strong assumption, where they as-
sumed the server remains honest answering queries to 
file blocks. Also, none of the above schemes has consid-
ered the commonly employed multi-replica strategy in 
clouds. 

For cloud storage with multiple replicas, Curtmola et, 
al. proposed a scheme named MR-PDP [13] that can 
prove the integrity of multiple replicas along with the 
original data file. Although the scheme only requires only 
one authenticator for each block, it has two severe draw-
backs. First, since the verification process requires secret 
material, there will be security problems when extending 
MR-PDP scheme to support public auditing. Second, it 
does not support verification of dynamic data updates.  In 
order to allow a third-party auditor to verify datasets 
with multiple replicas without any secret material, the 
client still need to store and build different ADS for every 
replica, which will incur heavy communication overheads 
that needs to be optimised.  

Research in this area also includes the work of Ateni-
ese et, al. [8] on how to transform a mutual identification 
protocol to a PDP scheme; scheme by Zhu et, al. [36] 
which allows different service providers in a hybrid cloud 
to cooperatively prove data integrity to data owner. As 

cloud data sharing is happening in many scenarios, Wang 
et, al. worked on secure data verification of shared data 
storage [27] and also with efficient user management [29] 
and user privacy protection [28]. Zhang et, al. proposed a 
scheme with a new data structure called update tree [35]. 
Without conventional authenticated data structures such 
as MHT, the proposed scheme has a constant proof size 
and support fully data dynamics. However, the scheme 
also does not support public auditing. Cash et, al. [12] 
proposed a novel POR scheme based on oblivious RAM 
(ORAM). ORAM, or oblivious file system, was mostly 
used to hide data access patterns through shuffling and 
noise addition on outsourced data storage [25, 32]. Shi et, 
al. also proposed a more efficient scheme based on 
ORAM [24].  

3 PROBLEM STATEMENT AND ANALYSIS 

3.1 Multiple Replicas 

For availability, storing multiple replicas is a default set-
ting for cloud service providers. Storing replicas at differ-
ent servers and/or locations will make user data easily 
recoverable from service failures. A straightforward way 
for users to verify the integrity of multiple replicas is to 
store them as separate files and verify them one by one. 
Currently, the most common technique used to support 
dynamic data is authenticated data structure (ADS).  
Given the        communication complexity and storage 
complexity of ADS (n is the total number of blocks, a very 
large number when file is large), different replicas. More 
importantly, an update for each data block will require 
update of the corresponding block in every replica. If all 
replicas are indexed in their own separated ADS, the cli-
ent must verify these updates one by one to maintain 
verifiability. The 'proof of update' for each block contains 
log(n) hash values as auxiliary authentication information 
(AAI). Therefore, the communication cost in update veri-
fications will easily become a disaster for users whose 
cloud datasets are highly dynamic. In previous schemes, 
researchers have considered support for public auditing, 
data dynamics and efficient verification of multiple repli-
cas, but none has considered them all together. In this 
work, we try to address this problem with a new ADS 
which links together all replicas for each block. 

In [13], the authors proposed a multi-replica verifica-
tion scheme, named MR-PDP, with great efficiency by 
associating only one authenticator (HLA) for each block 
and all replica blocks. Although this approach can bring 
great benefits such as lower storage cost at server side 
and less pre-processing time at client side, their scheme  is 
not secure when replacing the verifier with a TPA. The 
verification process needs the privately kept padding 
randoms      (or at least the pseudo-random function    

that used to generate them). If they are leaked, another 
party will know how to compute the original message 
based on any replica as well as how to compute an arbi-
trary replica based on an original file block. To make 
things worse, if      is known by the cloud server (or if 
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there are collusions between cloud server and TPA), the 
cloud server will be able to fake an integrity proof of a 
given replica block based on any other replica block, even 
if the challenged replica block is corrupted. Therefore, the 
MR-PDP scheme is not secure in a setting with public 
verifications. 

To sum up, from our considerations, desired proper-
ties of a multi-replica verification scheme should simulta-
neously include the following: 

1. Public Auditability and Support for Dynamic Data -- 
Enables a third-party auditor to do the regular verifica-
tion for the client without requiring any secret material, 
and allow the client to verify data updates. It will be un-
reasonable for the client to conduct verification herself on 
a regular basis, where she only wants to know when 
something went wrong about her data. Meanwhile, sup-
port for dynamic data is important as it exists in most big 
data applications. 

2. All-round Auditing -- Enables efficient verification 
for all replicas at once so that the verifier will get better 
confidence. If any of the replicas fails, the server will be 
notified on time. 

3. Single-Replica Auditing -- Enables verification for an 
arbitrary replica for some specific blocks; because the 
verifier may only wants to know if at least one replica is 
intact for less important data.   

 

3.2 Secure Dynamic Public Auditing 

Fig.1 shows the relations between the participating par-
ties in public auditing, which demonstrates that the three 
parties in a public auditing game -- the client, the cloud 
service provider and third-party auditor -- do not fully 
trust each other. Authenticated data structures (ADS) 
such as MHT or RASL can enable other parties to verify 
the content and updates of data blocks. The authentica-
tion for a block is accomplished with the data node itself 
and its auxiliary authentication information (AAI) which 
is constructed with node values on or near its verification 
path.  Without verification of block indices, a dishonest 
server can easily take another intact block and its AAI to 
fake a proof that could pass authentication. This will 
cause several security holes. First, the proofs of updates 

are no longer reliable. A dishonest server can store new 
data block anywhere, as long as it transfers back a consis-
tent pair of hash       and AAI that can be used to com-
pute the correct root value. Second, for auditing of dy-
namic data,      , the hash value of the block itself, is 
needed in authenticator computation instead of hash of 
any value that contains block indices such as      or 
       , otherwise an insert/delete will cause change of 
authenticators of all following blocks, which will be disas-
trous, especially that the client is the only one who can 
compute authenticators. Therefore, in order for each au-
thenticator to include a block-specific hash value,        
seemed to be the only choice. In this case, as the verifier 
(client or TPA) does not possess the original dataset, the 
client will solely rely on cloud server -- who keeps the 
actual dataset -- to compute       for verification of data 
integrity. As the only way for the client to verify the cor-
rectness of       is through ADS, the server can cheat the 
client with another hash and AAI pair. In other words, 
the server can take any other healthy block to replace the 
block that should be verified, which denies the primary 
aim of integrity verification. To the best of our knowledge, 
there is no existing public auditing scheme that supports 
full dynamic data can deal with this problem. 

Erway et, al.'s RASL [14] can provide authentication 
for indices, which is resilient to the above attacks. Aside 
from the effective ADS, they did propose a scheme where 
the authenticator/tag   is computed as      where   is 
a generator and   is the message to be audited, but it is 
too simple to support public auditing. Without a hash 
value, they can be over-easily integrated or separated. In 
fact, the RASL cannot be directly applied into a public 
auditing scheme supporting dynamic data. As stated ear-
lier,       -- the hash value of message block    -- is to be 
used in authenticators for support of dynamic data. 
Therefore, the client needs       computed by (and later 
transferred from) the cloud server for verification. In or-
der to achieve verifiability of index information, the leaf 
nodes no longer stores the hash value of file blocks, but 
the hash value of a concatenation of multiple values in the 
form of                                  . Therefore, 
the server need to send back both values of      and 
    , and the client will need to verify     . In an RASL, 
a common case is that multiple leaf nodes are in the same 
verification path, such as          in Fig. 2. Let's say 
         represents message blocks         . As stated 
earlier, the client needs       computed by and trans-
ferred from the cloud server for verification. In this case, 
if verification of    is needed, the server not only needs 

 

Fig. 2. A Rank-based Authenticated Skip List (RASL) in [14].    de-
notes the indexed file blocks. 

 

Fig. 1. Relations between the participating parties in public auditing 
of cloud data. The client authorises the TPA to audit data stored on 
CSS, where the three parties are not fully trusted by each other. 
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to return all 3 values on          as part of AAI, but also 
needs to compute and transfer all 
                     . As only a small fraction of 
blocks (460 for 99% confidence when auditing 1GB file), it 
is not likely that these consecutive blocks are chosen for 

one audit, which means much excessive overheads. Also， 
the bottom-up levelling restricts the insertions. If leaf 
nodes are level 0 as defined in [14], any insertion that cre-
ates a new level below level 0 will cause update of all 
level values (therefore all hash values of all nodes), which 
is hardly possible for the client to verify. For these reasons, 
we choose to use MHT with top-down levelling, instead 
of RASL, to design the new ADS. Now that the leaf nodes 
are on different levels, we will need both the client and 
verifier to remember the total number of blocks and ver-
ify the block index from both directions (leftmost to 
rightmost, rightmost to leftmost) to make sure the server 
do not cheat the client with another node on the verifica-
tion path.   

4 MUR-DPA IN DETAIL 

4.1 Notations 

We first briefly introduce some symbols used for describ-
ing our scheme; detailed definitions and usage can be 
found in the rest of this section. 

 : Raw data file to be uploaded by the client to store in 
CSS. 

  : The ith file block of  . There are a total of n blocks. 

   : The jth replica of file  . 

    : The ith block of replica    . 

    : Padding message used to generate replica block      

with the original file block   . 
 : The RMHT developed based on     . 
  : The Replica-sub Tree of    based on     . 
    : Hash value of message m. 
       : Values stored in node   from RMHT T. 
    : The level of node  . 
    : The maximum number of nodes in the 

leaf(bottom) level that can be reached from v. 
    : The homomorphic authenticator for     . 

 : Number of segments per block. 
  : The set of tuples           for all intermediate nodes 

in the RST   . 
       : A signature used for authorisation of TPA. 
  : A set of tuples that are used as    's auxiliary au-

thentication information (AAI).  
 : The hash value stored in the root node of  . 
             : The kth tuple in    where    is the hash 

value,    is the level of node,    is the rank value and    
indicates whether this node is a left or right child node. 

             : A tuple of variables used for verification. 
For a successful verification, after iterative computation 
with   ,    will become the number of total file blocks,   
will become the root value R,   will become the block in-
dex and   will become the reversed block index, i.e., the 
block count from right. 
 

4.1 Preliminaries 

4.1.1 Bilinear Pairing 

Bilinear pairing is essential in this public auditing scheme 
for building and verifying homomorphic authenticators. 
Assume a group   is a gap Diffie-Hellman (GDH) group 
with prime order  . A bilinear map is a map constructed 
as          where    is a multiplicative cyclic group 
with prime order. A useful bilinear map   should have 
the following properties:  

1. Bilinearity –                            ;  
2. Non-degeneracy –                  ; 

and 
3. Computability –   should be efficiently computable.  
As denoted in [10], a more efficient asymmetric bilin-

ear map            may also be applied. For simplic-
ity, we will use this symmetric bilinear map in our 
scheme description. 

4.1.2 Merkle Hash Tree 

The Merkle Hash Tree (MHT) [20] has been intensively 
studied in the past. Similar to a binary tree, each node   
will have a maximum of 2 child nodes. In fact, according 
to the update algorithm, every non-leaf node will con-
stantly have two child nodes.  Information contained in 
one node   in an MHT   is constructed as follows. For a 
leaf node based on a file block   , node value is com-
puted as         . A parent node of    and    is con-
structed as               . A leaf node   ’s auxiliary 
authentication information (AAI)    is a set of hash values 
chosen from every of its upper level so that the root value 
  can be computed through        .   

4.2 MuR-DPA: Multi-replica Dynamic Public 
Auditing 

4.2.1 MR-MHT  

A multi-replica Merkle hash tree (MR-MHT) is a novel 
authenticated data structure designed for efficient verifi-
cation of data updates, as well as authentication for block 
indices. Each MR-MHT is constructed based on not only a 
logically segmented file, but also all its replicas, as well as 
a pre-defined cryptographic hash function H. An example 
of MR-MHT, constructed based on a file with 4 blocks 
and 3 replicas, is shown in Fig. 3. The differences from the 
MHT are as follows: 

 

Fig. 3. An example of MR-MHT 
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1. Value stored in the leaf nodes are hash values of 
stored replica blocks. In MR-MHT, leaf nodes represents 
replica blocks     , namely the jth replica of the ith file 

block. 
2. Value stored in a node v from a none-leaf level is 

computed from the hash values of its child nodes and two 
other indices      and     .      is the level of node   and 
     is the maximum number of nodes in the leaf(bottom) 
level that can be reached from v. Different to RASL in [14], 
the levels are defined in an top-down order, i.e., the level 
of root node   is defined as 0, and levels of its child nodes 
are defined as 1, etc.. The values stored in leaf nodes 

are                      ; the value in each none-leaf node 

is computed as                        where       and        

denotes the values stored in its left child node and right 
child node, respectively. In Fig. 3, under our definition, 

        (and for all leaf nodes) is 4,          . For example, 

the value    is computed as: 

                                   

                           

and                         ,                   , etc.. 

3. The AAI      is different from the MHT in [31] as fol-

lows. They now contain not hash values of the intermedi-
ate nodes only, but tuples in the format of          , one 
tuple for each node. h is the hash value stored on this 
node, l is the level of this node, q is the maximum number 
of leaf nodes reachable from this node, and d is a Boolean 
value that indicates this node is to the right (0) or left (1) 
of the node on the verification path, i.e. the nodes from 
leaf node to the root  . For example, in Fig. 3,      for rep-

lica block      is defined as 

                                                              
           , and its verification path is  

                          .  

4. All replicas of one file block are organized into a 
same sub-tree which we call replica sub-tree (RST), see 
Fig. 3. Note that each RST has the same structure. Each 
block has exactly c replicas because there are c replica files 
for the original data file. The total number of leaf nodes 
for every RST is the total replica number c. Different from 
[13], replica blocks are treated independently and each 
replica block has its own authenticator. The root of each 
RST, which we denote as   , will play a vital role in the 
newly proposed multi-replica verification and update 
verification in the following sections. We use    to denote 
the AAI for   , i.e., one can verify the content and index of 
   with    and  , similar to      discussed earlier but has 

less hash values. Although roots of RSTs are non-leaf 
nodes, they can still be authenticated in the same way as 
leaf nodes. In addition, we define    as the set of tuples 
          for all intermediate nodes in each RST   , where 
      are defined the same as above, and t is the sequence 
number for the nodes, ordered from top to bottom and 
left to right in   . For example, in Fig. 3,    contains only 
one node    where                . As the number of 
replicas is only a small number (less than 10), for simplic-
ity of description, we assume the structure of    is stored 

at client (and TPA) side, which applies to every RST and 
takes only a negligible amount of storage. In this case, the 

client can compute   , therefore   , based on         and 

        without requesting    from the server. For less cli-

ent-side storage, the client may also request    from the 

server and verify them via           and   . 

Based on this new ADS, we now describe our scheme 
in detail.  

4.2.2 Setup  

The user and cloud server will first establish common 
parameters, including a bilinear map         , and a 
cryptographic hash function H. 

          : The client generates a secret value      

and a generator   of  , then compute      where     
are the public key and   is the secret key. Another secret 
signing key pair           is chosen with respect to a des-
ignated provably secure signature scheme whose signing 
algorithm is denoted as      . This algorithm outputs 
        as the secret key    and           as the public 
key   . 

                   :  
1) For a dataset to be stored on cloud server, the client 

will first make c replicas based on the original files. In 
order to enable the verifiability of these replicas, they 
should be different from one another; otherwise, the 
server may cheat the client by responding to challenges 
with the correct proofs but actually storing only one rep-
lica. From an original file               , we denote 

its jth replica file as                               . The 

replica blocks      are transformed from   , and the trans-

form is reversible, i.e., the client can recover the original 
file   through retrieval and reversed transformation of 

any replica    . Therefore, the client do not have to upload 

 ; she can recover   with any intact replica if needed. For 
example, a method described in [13] is to choose   
pseudo-random functions   to compute random values 
             then output      as             ; the replicas 

may also be computed with other methods such as pub-
lic-key techniques.  

2) The client constructs a MR-MHT based on     , com-

putes the root value R, and computes its signature     
with    .  

3) The client will compute an authenticator      

         
     

 
 for every replica block     .  

Finally, this algorithm outputs                   and then 

uploads them all to the cloud server. 

4.2.3 Data Updates and Verification  

In this paper, types of updates considered are whole-
block insertion I, deletion D and modification M. These 
are the minimum requirements for support of full data 
dynamics [14]. In multi-replica scenario, when a block    
needs to be updated, all its corresponding replica blocks 
     are also needed to be updated in the same way to 

maintain consistency. For insertion and modification, the 
client needs to upload new data block. As the only one 
that has the capability to compute replica blocks      based 
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on the original file block   , the client will compute the 
new replica blocks     

  then send them to the server along 

with the update type I, D or M.  
                        : The server will parse  

          into              
    and perform the update to 

file blocks, indices and ADS according to the update re-
quest. Specifically, the server will need to update the   
value for nodes in insertions and deletions. Note that val-
ues in none-leaf nodes in    stays the same after the up-
date process.  

For insertions and deletions, the situations are more 
complex than in past schemes [14, 17, 31]. In a traditional 
MHT, level or rank information is not contained in the 
nodes; in an RASL, all leaf nodes stays constantly on level 
0. Therefore, there is no need to change the hash value in 
other nodes. In this top-down levelled MHT however, the 
levels of all leaf nodes in adjacent RST have also changed 
by +1 with insertion/-1 with deletion, as the level value is 
a part in computation of node value. For example, in Fig. 

4-a, with the insertion of      
  , the levels of        have 

increased by 1, which will cause change to all          ; 

while in Fig. 4-b, with the deletion of       , levels of the 

old      
   (i.e., old       ) have decreased by 1. To output 

the correct   , these updates are needed to be performed 
in the hash tree as well. For insertions and modifications, 

The server will then output                               

and returns it to the client. For deletions, the server will 

need to additionally transfer          . 
                        : In order to verify this up-

date, the client first need to parse        . Let the   tuples 

in    be               for each node    in an decreasing 
order of levels, i.e.,                       . A little 
different from the definition,    is the max number of RST 
roots, instead of leaf nodes, that can be reached from   . 
Since the structure of RST    is known to the client, she 
will be able to compute    and    , the old and new roots 

of   , with         (got from the server) and       
   alone 

respectively. 
1. The client will first iteratively compute tuples 

              for nodes on the verification path with 
nodes    in    as follows,        : 

if     :             ,                       , 
           and        ;  

or: 
if     :             ,                       , 

        and             

where           ,     ,     ,     .  

After               is obtained, client will verify 
     with    , and verify if        and        
hold at the same time. If the three values passed this au-
thentication, the authenticity of    (also     ) and its index 

  can be confirmed.  

2. For deletion, the client needs to verify         . Note 

that          represented the same block and replicas 

whose root of RST was stored as the first tuple in    , e.g., 

in Fig. 4-b,          and         represented the same set of 

data; the only difference is that                   . 

Therefore, the client has enough information to verify 

         with        ,    and R. The verification processes 

are similar to those above. As for insertion,         has 

already been verified along with   ; the client can safely 
compute the new        without additional verifications, 
see Fig. 4-a. 

3. With RST structure, the client will then compute     

with         , then compute      with    and     and com-

pare      with   .  
If all 3 verifications passed, it means that the server has 

performed the update to all replicas honestly. The client 
will update the total block number n, then compute     

  

(the authenticators for     
 ) and store them on server.  

The protocol for verification of updates is demon-
strated in Fig. 5. 
 
4.2.4 Challenge and Verification for Multi-replica Public 
Auditing 
Within our top-down levelled setting, the verifier will 

need         to verify the auditing equation as it is not 

stored in the MR-MHT. Here we discuss how to conduct 
verification on all replica blocks for a given set of indices 
in one go.  

 

Fig. 4-a. An Insertion before the 3rd block into the MR-MHT in Fig. 3 

 

Fig. 4-b. A Deletion of the 3rd block for the MR-MHT in Fig. 3 

 



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

                             : The third-party 
auditor TPA generates challenge message with the give 
accuracy Acc, and sends an  authorization. For example, 
same as before, for a 99% accuracy, the verifier needs to 
verify 460 blocks out of a 1GB file. The challenge message 

is                     
 where         is for authorization, I 

is the random set of indices chosen for verification, and 
     are random numbers for integration of     .  

                     : The cloud server will first 
verify         , same as in [17]. Then, it will compute 

     
   

    
    and               for every replica, and 

send  

                              
       back to TPA.  

            : Since the verifier knows the structure of 

RSTs, it will compute R with              and verify     

for each ith chosen block. The verification process is simi-
lar as in section 4.2.3, with iterative triples and verifica-
tion of         of . Also, it needs to verify the authen-

ticity of         by verifying if 

                              , where         can be in-

ferred from       which equals level of the first node in   . 
For example, in Fig. 3,    . When we know that 
        from          (  is the first node in   ), we can 

easily derive                              . If this veri-

fications passed, TPA will trust the retrieved         are 

genuine, then it can verify c replicas one by one by verify-
ing the following c equations:  

                  
       

 
            

If these equations holds then the verification will out-
put 'ACCEPT', otherwise output 'REJECT'. The process is 
demonstrated in Fig. 6. 

4.3 Discussions and Extensions 

Since each replica block      has its own authenticator     , 

our scheme also supports single replica verification. The 
process will be similar to the verification in [31] with ad-

ditional verification of         and the index of        . 

Except for the rank verifications of     are now    

            and               . other details 
will be similar as the verifications described above. 

In [23], the authors proposed a value   for trade-off of 
storage and communication overheads. In this strategy, 
every file block    is segmented into s segments     
(length of each segment equals the length of a block with-
out s, typically 20bytes), and the authenticators are com-

puted as             
    

    
 

 . In this case, the proof 

size has increased by    because there will be multiple 
          , instead of one, to be included in the proof. 
However, the storage overhead has decreased to 1/s as 
there is only one authenticator stored along with s sectors. 
As our scheme is also based on BLS signature, with same 
block segmentation strategy, the trade-off can easily be 
applied to our scheme to support dynamic data with mul-
tiple replicas. We will show our experimental results un-
der different s values in Section 6.  

Based on the segmented blocks, Liu, et, al. have inves-
tigated fine-grained updates for variable-sized file blocks 
with different segmentations and RMHT in [17]. If we 
extend MR-MHT to let the nodes to store the 'rank' in-
formation computed from different sizes of blocks, our 
scheme can also support fine-grained updates and en-
hance the scheme in [17] with efficient support for update 
of multiple replicas. 

Wang et, al. have proposed a random masking tech-
nology for privacy protection against the third-party 
auditor [30]. In their scheme, the server will mask the 
proof   (integrated blocks) with a random r and generate 
a new         so that TPA will not learn the users 
data from multiple challenging of the same set of blocks. 
In the multi-replica setting, the proof   is computed based 
on replica blocks      instead of the message blocks   . 

Therefore, in most scenarios it is not necessary to apply 
another masking from the server. Even TPA can infer      

from multiple challenges, it will not get any information 
of the user data    without knowing the transformation 
method, which is known only by the client, from      to   . 

If there is any need to protect replica blocks against the 
TPA, our scheme can be extended with the same server-

 

Fig. 5. Data update and verification 
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side padding strategy.  

5 SECURITY AND EFFICIENCY ANALYSIS 

As before, the security of our scheme is based on : 
1. Collision-resistance of the hash function, 
2. Difficulty of gap Diffie-Hellman problem, and  
3. Unforgeability of the chosen signature scheme.  

5.1 Verifiable Multi-Replica Updates 

Lemma 1. With    , RST structure, total number of blocks n 
and a given block index    , if a returned block-AAI com-
bination         for an RST root passed the authentication, 
then either it is computed with the actual replica blocks, or 
the server has found a way to find collisions in the hash 
function H. 

Proof. The client will first infer      , the level of   , from 
  . Let   be the number of tuples in   , then        . If 
the a dishonest server does not have the ability to find arbi-
trary collisions of hash functions, it must select an existing 
node N and its corresponding AAI    in the MR-MHT in 
order to let the client to compute R, thereby verify    , 
through iterative hashing. When N is not the queried node, 
i.e., when the server is acting dishonestly, the situation can 
be covered by the following 3 cases: 
1. If N is not located on the verification path of   , then ei-
ther the server provides wrong level or rank values, which 
will lead to failure in computing the right R; or verification 
of both values of    and    will fail. 
2. When the queried node is a left child node, choosing any 
other hash value and the corresponding AAI from the veri-
fication path will let the verification process output the 
correct    (the number of file blocks, i.e., leaf nodes, left of 
this node), but not the correct    (the number of file 
blocks, i.e., leaf nodes, right of this node). Therefore, the 
verification of   will fail.  
3. When the queried node is a right child node, choosing 
any hash value and the corresponding AAI from the verifi-
cation path will let the verification process output the cor-
rect   , but not the correct   . The reason is similar as the 
second case. 

Therefore, except for finding hash collisions, the server 

must return the exact     in order to let all three values 
pass the verification.                                                      

With this Lemma, we can now describe the soundness 
and security of the update verification process in MuR-
DPA through the following theorems. 

Theorem 1. If there is any fault to the new data content or 
index in the server execution of an update request 

             
   , the client verification will fail. 

Proof. According to Lemma 1, the RST root    and its AAI 
   returned by the server are the correct representa-

tives for the RST where        resided, otherwise the 

verification of R will fail. 

 1. For insertions and modifications, if     
  was updated 

incorrectly, then     , therefore R', will be computed in-
correctly due to the collision resistance of hash function 
H. According to the property of MHT,    stays the 
same throughout the update. As the client has the right 
    

  and   , the values     and R' at client side will be 

correct. Therefore, the verification will fail.  

 2. For deletions, the returned       
   will be incorrect 

once there is any fault in this update. As       
   is in-

cluded in the        , the client will identify the ab-

normality if       
   is incorrect.  

 Therefore, through the verification, the client will be 
able to detect any fault caused by accident or dishonest 
behaviours in the update.  

This concludes the proof that the MuR-DPA scheme 
can support public auditing of dynamic data without 
cheated by a dishonest server. As for efficiency, the AAI 
   will be taking the majority of data transfer because it is 
composed of log(n) hash values and rank/level informa-
tion for each update. For updating of multiple replicas 
(which is a must for cloud storage with multiple replicas), 
only one, instead of c AAIs, is needed to be transferred for 
verification of c replica blocks. Therefore, the more replica 
there is, the more efficiency advantage our scheme would 
have. 

 
Fig. 6. Public auditing of all replicas at once 
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5.2 All-at-once Multi-Replica Verification 

Same as verifiable updates, there is need for verification of 
  .  

Theorem 3. In MuR-DPA scheme, If integrity of any replica 
     of the i-th block was breached, the server cannot build a 

response                                     that can successfully 

pass the verification, unless any of the 3 assumptions at the 
beginning of this section fails to hold. 

Proof. As the structure of RST is known by the verifier, the 
verifier will be able to re-build the RST under     , 

thereby compute      based on        . With Lemma 1, 

the authenticity of         can be verified via    , i and n. 

Therefore, if                         are not all correct, 

then      will be incorrect; with   , the verification for 

R will fail. Because         was computed with 

                and        , if all these 3 values are cor-

rect, then the returned         must be correct, other-

wise the client will fail to verify the equation         

                            . Therefore, our design can 

make sure the returned         are indeed the hash 

values of the designated replicas for the ith block. On 
the other hand, the soundness and security of verifica-

tion equation                   
       

     itself has 

already been proven in [23] and [31]. Therefore, any in-
tegrity breach will be identified with MuR-DPA. 

The proof above is based on the assumption that the 
verifier knows the structure of RST. In fact, even when 
the RST structure was unknown to the verifier, the verifi-
cation for all replicas may still be resilient to dishonest 
servers as exchanging the orders of replicas under an RST 
does not affect the verification. We leave this problem as 
future work. 

Our scheme is also based on MHT. Therefore, same as 
past schemes, the proof size is also dependent of the data 
size and number of data blocks. As a drawback, MR-MHT 
introduced more levels (depth of RSTs) than each MHT in 
SiR-DPA to store replica blocks. Therefore, the verifica-
tion cost for one replica in MuR-DPA will be slightly lar-
ger than in SiR-DPA. However, as replica number is small 

(usually less than 10), the depth of RSTs is constant (usu-
ally only less than 4 levels). Therefore, there is no signifi-
cant additional overhead for the client to verify a single 
replica. Details will be discussed in the next section. 

6 EVALUATION AND ANALYSIS 

6.1 Experimental Environment 

We conducted our experiments on U-Cloud -- a cloud 
computing environment located in University of Tech-
nology, Sydney (UTS). The computing facilities of this 
system are located in several labs in the Faculty of Engi-
neering and IT, UTS. On top of hardware and Linux OS, 
We installed KVM Hypervisor [3] which virtualizes the 
infrastructure and allows it to provide unified computing 
and storage resources. Upon virtualized data centers, 
Hadoop [2] is installed to facilitate the MapReduce pro-
gramming model and distributed file system. Moreover, 
we installed OpenStack open source cloud platform [4] 
which is responsible for global management, resource 
scheduling, task distribution and interaction with users. 
The structure of U-Cloud is demonstrated in Fig. 7. 

6.2 Performance Evaluations 

Before demonstrating experimental results, a qualita-
tive comparison for our schemes and the existing schemes 
is demonstrated in Table 1.  

 

Fig. 7. U-Cloud environment 

TABLE 1 
COMPARISON OF EXTERNAL INTEGRITY VERIFICATION SCHEMES 

 POR  
[16] 

PDP 
[7] 

Scalable 
PDP [9] 

Compact 
POR [23] 

MR-PDP 
[13] 

DPDP  
[14] 

SiR-DPA 
[31] 

FU-DPA 
[17] 

MuR-
DPA 

Blockless Verification No Yes Yes Yes Yes Yes Yes Yes Yes 

Stateless Verification No Yes Yes Yes Yes Yes Yes Yes Yes 

Infinite Verifications No Yes No Yes Yes Yes Yes Yes Yes 

Public Verifiability/Auditability No Yes No Yes No No Yes Yes Yes 

Coarse-grained Verifiable Data Updating No No Partly No No Yes Yes Yes Yes 

Fine-grained Verifiable Data Updating No No No No No No No Yes Capable 

Variable-sized Data Blocks No Yes Yes No Yes Yes No Yes Yes 

Authorized Auditing No No No No No No No Yes Yes 

Authentication of Block Indices (for 
schemes with ADS) 

N/A N/A N/A N/A N/A Yes No No Yes 

One Interaction for Updating All Replicas No No No No No No No No Yes 
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For quantitative evaluations, we provide experimental 
results to demonstrate the improved efficiency of MuR-
DPA when deployed on cloud data storage. We compare 
our new scheme, MuR-DPA, against the direct extension 
of the existing scheme in [31] with tags of each replica 
indexed in separate MHTs and MHTs are with levels and 
ranks for index authentication. We name this scheme as 
SiR-DPA - Dynamic Public Auditing with Separately-
indexed Replicas. We implemented both schemes on U-
Cloud, using a virtual machine with 36 CPU cores, 32GB 
RAM and 1TB storage in total. The design of public audit-
ing schemes do not take into account the content of data. 
Therefore, as in previous work, we also used a 1GB ran-
domly generated dataset for each testing, with the repli-
cas computed as               . BLS parameters are cho-

sen with 80-bit security, i.e., the length of order of G is 160 
bits. All experimental results are an average of 20 runs. 

As in previous studies, the computation time is not the 
primary concern in our new scheme, because the chal-
lenged blocks are a constant value regardless of the file 
size, and the time consumption in proof computation or 
proof verification only takes less than 1 second. Therefore, 
we will mainly focus on measuring the communication 
and storage costs, especially those incurred in verification 
of updates.  

We first measured the communication overhead for 
verification of updates. Table 2 shows the total communi-
cation overhead for update verification of only one rep-
lica, where overheads of SiR-DPA and MuR-DPA are the 
same. The testing dataset is 1 GB and we are updating 
half of the blocks with 512MB new content in total; with 
adjusting parameter s. Communication overhead for up-
date verification in the protocol in [14] and the MHT-
based scheme in [31] will be similar to our SiR-DPA set-

ting, as the communication complexities in MHT and 
RASL are both         with high propabilitiy (whp). 
Note that in this experiment, there is only one update for 
each block for all modifications. Under this setting, we 
can see that this overhead is always a heavy burden. Even 
for a large      , there's still 154MB verification data 
needed to be transferred from the server for update of 
size 512MB. Although the communication overhead will 
decrease for a larger block size (because the number of 
blocks will be smaller), it may take several update proc-
esses to update half of its content, where the communica-
tion overhead will increase beyond the amount in Table 1. 
To make things worse, with multiple replicas, SiR-DPA 
scheme will multiply this communication overhead, 
which has to be avoided if possible, given the fact that 
cloud service providers always keep multiple replicas for 
storage services.  

Second, we tested the communication overhead for 
updates with different numbers of replicas and different 
sizes of blocks. Results are depicted in Figs. 8 and 9. From 
Fig. 8, we can see that the length of server response for 
modification and insertion has been greatly reduced 
when there are multiple replicas, which means the load 
and utilisation server's crucial downlink bandwidth will 
be comparatively lesser. It is clear that MuR-DPA will 
scale gracefully with increases in number of replicas of 
the dataset. We can also safely conclude that overheads 
for deletions will be similar as there is only one more 
hash value to be included in server response. Therefore, 
evaluation for the deletion operation is omitted here. The 

TABLE 2 
PRICE OF DYNAMISM - COMMUNICATION OVERHEAD 

FOR VERIFYING UPDATES OF HALF BLOCKS IN A 1GB 

FILE 

s (number of 
sectors per block) 

Data Up-
dated (MB) 

Total Server Response 
for Verification (MB) 

1 512/1024 19.507 

5 512/1024 3,625 

10 512/1024 1,743 

20 512/1024 837 

50 512/1024 321 

100 512/1024 154 

 

Fig. 8. Length of server response for one verifiable modifica-
tion/insertion of one block 

      
   (a)      (b) 

Fig. 9. Total communication for one verifiable update of one block when (a) s = 1; (b) s = 10 
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total communication overheads for verification of up-
dates to dataset with multiple replicas are also tested. For 
block insertion and modification, the new data block need 
to be uploaded. Therefore, for a larger s, (i.e. a larger 
block size), the total communication cost will rise. For 
block deletion, nothing needs to be uploaded since there 
is no new data block. Therefore, the total communication 
overhead for a single deletion stays unchanged with dif-
ferent s values. Either way, for s = 1 and s = 10, our results 
show that communication overheads of verification of 
updates in MuR-DPA always has significant advantage 
compared to  SiR-DPA. 

Third, we evaluate the storage overhead for dynamic 
public auditability, as well as communication overhead 
for auditing of multiple replicas simultaneously. Al-
though the total number of authenticators stayed the 
same, now there is only one MHT (although with more 
levels) as opposed to c MHTs in SiR-DPA. We can infer 
from Fig. 10 that the extra storage cost is reduced by a 
significant percentage when there are multiple replicas 
stored in cloud. Communication overheads for simulta-
neously verifying multiple replicas are depicted in Fig 11. 
We can see that the with increases in number of replicas 

that a server stores, the MuR-DPA scheme seems to out-
performSiR-DPA more significantly in terms of commu-
nication overhead. We also note that with the growth of 
number of replicas, the communication overhead for veri-
fying all replicas with MuR-DPA scheme is comparable to 
verifying a single replica, while the overhead of SiR-DPA 
grows in a much faster pace. For example, when   
     , verifying all 5 replicas with MuR-DPA takes 26.8% 
more communication than verifying only 1 replica, while 
this percentage for SiR-DPA is 398.8%. Therefore, the 
MuR-DPA scheme is not only useful for verification of 
dynamic data, but also seems to scale much better when 
subjected to multiple replica updates.  

We also tested the communication cost for one replica, 
under different s value. As analysed in section 5, our 
scheme will constantly incur more communication over-
head because of the extended RSTs. However, as can be 
seen from Fig. 12, the extra communication overhead is 
small and can be considered negligible. Even for an exag-
gerated case where         and    , the extra com-
munication for verification of one replica in MuR-DPA 
scheme is only 15.3% compared to SiR-DPA scheme. For a 
more common choice of 4 replicas and     , this per-
centage is only 8.1%. Given that the MuR-DPA scheme 
has much less communication cost for verification of all 
replicas at once as well as verification of updates, it is 
always an advantageous trade-off.  

From these analyses and experimental results, we can 
see that the MuR-DPA scheme has significant advantage 
in auditing cloud storage with multiple replicas. The per-
formance of public auditing schemes are not affected by 
the contents of data. Therefore, size of file blocks, s value 
and the number of replicas are main impact factors for the 
overall performance. As our experiments are based on 
these metrics, we believe the experimental results demon-
strated here can accurately present the advantage our 
scheme when deployed in practice. 

7 CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a novel public auditing 
scheme named MuR-DPA. The new scheme incorporated 
a novel authenticated data structure based on the Merkle 
hash tree, which we refer to as MR-MHT. The level values 
of nodes in MR-MHT are generated in a top-down order, 

 
Fig. 12. Communication for auditing of 1 chosen replica for a data-

set with 1, 4 and 8 total replicas with different s value 

 
Fig. 10. Extra storage overhead at server side for support of public 
auditability and data dynamics 

 
Fig. 11-a. Total communication for auditing of all replicas when s = 1 

 

Fig. 11-b. Total communication for auditing of all replicas when s = 10 
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and all replica blocks for each data block are organized 
into a same replica sub-tree. As a result, our MuR-DPA 
scheme can support fully dynamic data updates, authen-
tication of block indices and efficient verification of up-
dates for multiple replicas at the same time. Compared to 
existing integrity verification and public auditing 
schemes, theoretical analysis and experimental results 
have shown that the MuR-DPA scheme: (i) incurs much 
less communication overhead for both update verification 
and integrity verification of cloud datasets with multiple 
replicas and  (ii) provides enhanced security against dis-
honest cloud service providers. Despite all these advan-
tages, the proof size still depends on the size of the data-
set. Supporting secure public auditing of dynamic data 
and streaming data with constant-sized integrity proofs 
still remains an open problem. 
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