
0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 1

MuR-DPA: Top-down Levelled Multi-replica
Merkle Hash Tree Based Secure Public

Auditing for Dynamic Big Data Storage on
Cloud

Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, Senior Member, IEEE, and Jinjun
Chen, Senior Member, IEEE

Abstract—Cloud computing that provides elastic computing and storage resource on demand has become increasingly
important due to the emergence of “big data”. Cloud computing resources are a natural fit for processing big data streams as
they allow big data application to run at a scale which is required for handling its complexities (data volume, variety and
velocity) . With the data no longer under users' direct control, data security in cloud computing is becoming one of the most
concerns in the adoption of cloud computing resources. In order to improve data reliability and availability, storing multiple
replicas along with original datasets is a common strategy for cloud service providers. Public data auditing schemes allow users
to verify their outsourced data storage without having to retrieve the whole dataset. However, existing data auditing techniques
suffers from efficiency and security problems. First, for dynamic datasets with multiple replicas, the communication overhead for
update verifications is very large, because each update requires updating of all replicas, where verification for each update
requires O(logn) communication complexity. Second, existing schemes cannot provide public auditing and authentication of
block indices at the same time. Without authentication of block indices, the server can build a valid proof based on data blocks
other than the blocks client requested to verify. In order to address these problems, in this paper, we present a novel public
auditing scheme named MuR-DPA. The new scheme incorporated a novel authenticated data structure based on the Merkle
hash tree (MHT), which we call MR-MHT. To support full dynamic data updates and authentication of block indices, we included
rank and level values in computation of MHT nodes. In contrast to existing schemes, level values of nodes in MR-MHT are
assigned in a top-down order, and all replica blocks for each data block are organized into a same replica sub-tree. Such a
configuration allows efficient verification of updates for multiple replicas. Compared to existing integrity verification and public
auditing schemes, theoretical analysis and experimental results show that the proposed MuR-DPA scheme can not only incur
much less communication overhead for both update verification and integrity verification of cloud datasets with multiple replicas,
but also provide enhanced security against dishonest cloud service providers.

Index Terms—Big Data, Cloud Computing, Data Security, Public Auditing, Replica Management

——————————  ——————————

1 INTRODUCTION

IG data has been one of the most intensive research
topics in recent years. People from almost all major

industries are increasingly realizing the values in their
explosively growing datasets. Research directions for big
data are always summarized into 4 v's: Velocity, Variety,
Veracity and Volume, in which cloud can help in a big
way. Cloud computing is the new-generation distributed
computing platform that is extremely useful for big data
storage and processing. With the pay-as-you-go payment
model, elastic and scalable resource allocation and vari-
ous levels of services in IaaS (Infrastructure-as-a-Service),
PaaS and SaaS, cloud is widely recognised as the most
potent technological backbone for solving big data prob-
lems [5]. Cloud can also save a lot of investments in pur-
chasing and maintenance of hardware, which is also great

for big data applications. A vision is that cloud, providing
computational resources, can one day be integrated into
our daily life as close as other utilities such as electricity,
gas and water [11]. The exceptional scalability and elastic-
ity of cloud make it the ideal platform in process big data
streams and handling the complexities of big data appli-
cations.

Security/privacy is one of the major concerns in the
usage of cloud computing [19, 26] for hosting applications,
especially big data applications. As data are no longer
under users' direct control, users are reluctant to move
their valuable data onto cloud, especially public cloud
with high consolidation and multi-tenancy. Also, from
efficiency perspective, secure querying and retrieving of
cloud data incurs significant network overhead as com-
pared to fetching data from with local servers.

Datasets in big data applications are always dynamic
in nature, such as surveillance data, Internet data, etc.. In
fact, except for a few examples of large static datasets
such as libraries and e-archives, datasets in most big data
applications are under constant updating operations. In
many applications data updates are very frequent, such
as in social networks and business transactions. Therefore,

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 C. Liu, C.Yang, X. Zhang and J. Chen are with the Faculty of Engineering
and IT, University of Technology, Sydney, Australia. E-mail: {changliu.it,
chiyangit, xyzhanggz, jinjun.chen}@gmail.com

 R. Ranjan is with CSIRO Digital Productivity Flagship, Australia. E-mail:
raj.ranjan@csiro.au

 L. Wang is with the Institute of Remote Sensing and Digital Earth, Chi-
nese Academy of Sciences, China. E-mail: wanglz@radi.ac.cn.

B

mailto:author@nrim.go.jp

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

it is of extreme importance for a cloud security mecha-
nism, such as a public auditing scheme, to efficiently
support dynamic data.

Three main dimensions in security are confidentiality,
integrity and availability. Aiming at integrity assurance,
public auditing/auditability of cloud data, i.e., verifica-
tion of data integrity from an external party, has been an
extensively investigated research problem in recent years.
As user datasets stored on cloud storage servers (CSS) are
out of the user's reach, auditing from the client, data user
or a third party auditor is a common requirement, no
matter how powerful the server-side mechanisms claim
to be. With provable data possession (PDP) and proofs of
retrieveability (POR), the data owner or a third-party
auditor can verify integrity of their data without having
to retrieve their data. In such schemes, a small metadata
called 'homomorphic authenticator' or 'homomorphic
tags' are stored along with each data block. When the cli-
ent needs to verify data integrity, the server will generate
a proof with the authenticators of the selected data blocks,
and data auditing is done by the client or a third-party
auditor through verifying the proof with the public keys.

Existing public auditing schemes can already support
verification over data which can be subjected to dynamic
updates. Such an auditing approach is supported by veri-
fying the auxiliary authentication information (AAI)
managed by authenticated data structures (ADS) such as
Merkle hash trees [17, 31]. However, there are still exists
number of research gaps in above mentioned approach.
Addressing these gaps is the aim of this paper. First, ex-
isting research lacks investigation of efficient public au-
diting for dynamic datasets that maintain multiple repli-
cas. Storing multiple replicas is a common strategy for
reliability and availability of datasets stored over remote
cloud storage. For highly dynamic data, each update will
lead to update to every replica. Given the fact that update
verifications in current auditing schemes are of O(logn)
communication complexity, verifying these replicas one
by one will be very costly in terms of communication.
Second, current schemes for dynamic public auditing are
susceptible to attacks from dishonest servers because of
lack of block index authentication. Although there is an
integrity verification scheme for dataset with replicas [13]
and schemes with index verification such as [14], there
will be security and/or efficiency problems if these
schemes are extended directly to support public verifi-
ability.

In this paper, we present a multi-replica dynamic pub-
lic auditing (MuR-DPA) scheme that can bridge the gaps
mentioned above through a newly designed authenti-
cated data structure. Research contributions of this paper
can be summarized as follows:

1. To address the efficiency problem in verifiable up-
dates for cloud storage with multiple replicas, we propose
a multi-replica public auditing (MuR-DPA) scheme. The
new scheme is based on a novel multi-replica Merkle
hash tree (MR-MHT), where all replica blocks for each
data block are organized into a same replica sub-tree. Ex-

perimental results show that our scheme can drastically
reduce communication overheads for update verification
of cloud data storage with multiple replicas.

2. As the previous usage of Merkle hash tree (MHT) in
public auditing of dynamic data did not involve authenti-
cation of node indices, such schemes are susceptible to
cheating behaviours from a dishonest server. In this pa-
per, with the support of MR-MHT, we propose the first
MHT-based dynamic public auditing scheme with au-
thentication of index information that is secure against
dishonest servers. The main strategy is top-down level-
ling and verification of indices from both sides.

3. With MR-MHT, we also designed a novel public au-
diting protocol for verification of all replicas at once. Ex-
perimental results show that our scheme can not only
provide efficient verification for multiple replicas, but
also incur less extra storage overhead at server side.

Paper Organization: The rest of this paper is organ-
ized as follows. Section 2 discusses related work. Section
3 provides an analysis of our research problem. Section 4
provides a detailed description of our proposed scheme
in detail. Section 5 provides security and efficiency analy-
sis for our design. Section 6 provides experimental results.
Section 7 provides conclusion for this research.

2 RELATED WORK

Compared to traditional systems, scalability and elasticity
are key advantages of cloud [1, 5, 11]. As such, efficiency
in supporting dynamic data is of great importance. Secu-
rity and privacy protection on dynamic data has been
studied extensively in the past [9, 14, 15, 31]. Frequent
updates exist in many cloud applications such as business
transaction logs, health records from hospitals and online
social network data (e.g. Twitter [21]).

Data security/privacy is one of the most pressing con-
cerns related to big data and cloud [22, 33, 37]. Intensive
research has been published to enhance cloud data secu-
rity/privacy with technological approaches on cloud
server side, such as [18, 34]. They are of equal importance
as external verification approaches such as our focus of
public auditing.

Integrity verification for outsourced data storage has
attracted extensive research interest. The concept of
proofs of retrievability (POR) and its first model was pro-
posed by Jules et, al. [16]. Unfortunately, their scheme can
only be applied to static data storage such as archive or
library. In the same year, Ateniese et, al. proposed a simi-
lar model named ‘provable data possession’ (PDP) [7].
Their schemes offer ‘blockless verification’ which means
the verifier can verify the integrity of a proportion of the
outsourced file through verifying a combination of pre-
computed file tags which they call homomorphic verifi-
able tags (HVTs) or homomorphic linear authenticators
(HLAs). Work by Shacham et, al. [23] provided an im-
proved POR model with stateless verification. They also
proposed the first public verification scheme in the litera-
ture that based on BLS signature scheme [10]. In this
scheme, the generation and verification of integrity proofs

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 3

are similar to signing and verification of BLS signatures.
When wielding the same security strength (say, 80-bit
security), a BLS signature (160 bit) is much shorter than
an RSA signature (1024 bit), which in turn brings shorter
proofs for a POR scheme. They also proved the security of
both their schemes and the PDP scheme by Ateniese et, al.
[6, 7]. Ateniese et, al. extended their scheme for enhanced
scalability [9], but only partial data dynamics and a pre-
defined number of challenges is supported.

Erway et, al. proposed the first PDP scheme that can
support verification for full dynamic data updates [14]. A
modified authenticated data structure (ADS) is used for
verification of updates, which became the popular way of
supporting verifiable updates in the following PDP/POR
works. The ADS they used is called rank-based authenti-
cated skip list (RASL). However, public auditability and
variable-sized file blocks are not supported in their
framework. Wang et, al. [31] proposed a scheme based on
BLS signature that can support public auditing (especially
from a third-party auditor, TPA) and full data dynamics.
To support verification of updates, they used another
ADS called Merkle hash tree (MHT). However, their us-
age of ADS was flawed; without proper verification of
block indices, when a challenged block is corrupted, a
malicious server is able to cheat the client by computing
another valid proof with other blocks. A follow-up work
by Wang et, al. [30] added a random masking technology
on top of [31] to ensure the TPA cannot infer the raw data
file from a series of integrity proofs. In their scheme, they
also incorporated a strategy first proposed in [23] to seg-
ment file blocks into multiple ‘sectors’. for trading-off of
storage and communication costs. Work by Liu et, al. [17]
investigated support for fine-grained updates and effi-
ciency for verification of small updates. However, their
scheme is under a strong assumption, where they as-
sumed the server remains honest answering queries to
file blocks. Also, none of the above schemes has consid-
ered the commonly employed multi-replica strategy in
clouds.

For cloud storage with multiple replicas, Curtmola et,
al. proposed a scheme named MR-PDP [13] that can
prove the integrity of multiple replicas along with the
original data file. Although the scheme only requires only
one authenticator for each block, it has two severe draw-
backs. First, since the verification process requires secret
material, there will be security problems when extending
MR-PDP scheme to support public auditing. Second, it
does not support verification of dynamic data updates. In
order to allow a third-party auditor to verify datasets
with multiple replicas without any secret material, the
client still need to store and build different ADS for every
replica, which will incur heavy communication overheads
that needs to be optimised.

Research in this area also includes the work of Ateni-
ese et, al. [8] on how to transform a mutual identification
protocol to a PDP scheme; scheme by Zhu et, al. [36]
which allows different service providers in a hybrid cloud
to cooperatively prove data integrity to data owner. As

cloud data sharing is happening in many scenarios, Wang
et, al. worked on secure data verification of shared data
storage [27] and also with efficient user management [29]
and user privacy protection [28]. Zhang et, al. proposed a
scheme with a new data structure called update tree [35].
Without conventional authenticated data structures such
as MHT, the proposed scheme has a constant proof size
and support fully data dynamics. However, the scheme
also does not support public auditing. Cash et, al. [12]
proposed a novel POR scheme based on oblivious RAM
(ORAM). ORAM, or oblivious file system, was mostly
used to hide data access patterns through shuffling and
noise addition on outsourced data storage [25, 32]. Shi et,
al. also proposed a more efficient scheme based on
ORAM [24].

3 PROBLEM STATEMENT AND ANALYSIS

3.1 Multiple Replicas

For availability, storing multiple replicas is a default set-
ting for cloud service providers. Storing replicas at differ-
ent servers and/or locations will make user data easily
recoverable from service failures. A straightforward way
for users to verify the integrity of multiple replicas is to
store them as separate files and verify them one by one.
Currently, the most common technique used to support
dynamic data is authenticated data structure (ADS).
Given the communication complexity and storage
complexity of ADS (n is the total number of blocks, a very
large number when file is large), different replicas. More
importantly, an update for each data block will require
update of the corresponding block in every replica. If all
replicas are indexed in their own separated ADS, the cli-
ent must verify these updates one by one to maintain
verifiability. The 'proof of update' for each block contains
log(n) hash values as auxiliary authentication information
(AAI). Therefore, the communication cost in update veri-
fications will easily become a disaster for users whose
cloud datasets are highly dynamic. In previous schemes,
researchers have considered support for public auditing,
data dynamics and efficient verification of multiple repli-
cas, but none has considered them all together. In this
work, we try to address this problem with a new ADS
which links together all replicas for each block.

In [13], the authors proposed a multi-replica verifica-
tion scheme, named MR-PDP, with great efficiency by
associating only one authenticator (HLA) for each block
and all replica blocks. Although this approach can bring
great benefits such as lower storage cost at server side
and less pre-processing time at client side, their scheme is
not secure when replacing the verifier with a TPA. The
verification process needs the privately kept padding
randoms (or at least the pseudo-random function

that used to generate them). If they are leaked, another
party will know how to compute the original message
based on any replica as well as how to compute an arbi-
trary replica based on an original file block. To make
things worse, if is known by the cloud server (or if

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

there are collusions between cloud server and TPA), the
cloud server will be able to fake an integrity proof of a
given replica block based on any other replica block, even
if the challenged replica block is corrupted. Therefore, the
MR-PDP scheme is not secure in a setting with public
verifications.

To sum up, from our considerations, desired proper-
ties of a multi-replica verification scheme should simulta-
neously include the following:

1. Public Auditability and Support for Dynamic Data --
Enables a third-party auditor to do the regular verifica-
tion for the client without requiring any secret material,
and allow the client to verify data updates. It will be un-
reasonable for the client to conduct verification herself on
a regular basis, where she only wants to know when
something went wrong about her data. Meanwhile, sup-
port for dynamic data is important as it exists in most big
data applications.

2. All-round Auditing -- Enables efficient verification
for all replicas at once so that the verifier will get better
confidence. If any of the replicas fails, the server will be
notified on time.

3. Single-Replica Auditing -- Enables verification for an
arbitrary replica for some specific blocks; because the
verifier may only wants to know if at least one replica is
intact for less important data.

3.2 Secure Dynamic Public Auditing

Fig.1 shows the relations between the participating par-
ties in public auditing, which demonstrates that the three
parties in a public auditing game -- the client, the cloud
service provider and third-party auditor -- do not fully
trust each other. Authenticated data structures (ADS)
such as MHT or RASL can enable other parties to verify
the content and updates of data blocks. The authentica-
tion for a block is accomplished with the data node itself
and its auxiliary authentication information (AAI) which
is constructed with node values on or near its verification
path. Without verification of block indices, a dishonest
server can easily take another intact block and its AAI to
fake a proof that could pass authentication. This will
cause several security holes. First, the proofs of updates

are no longer reliable. A dishonest server can store new
data block anywhere, as long as it transfers back a consis-
tent pair of hash and AAI that can be used to com-
pute the correct root value. Second, for auditing of dy-
namic data, , the hash value of the block itself, is
needed in authenticator computation instead of hash of
any value that contains block indices such as or
 , otherwise an insert/delete will cause change of
authenticators of all following blocks, which will be disas-
trous, especially that the client is the only one who can
compute authenticators. Therefore, in order for each au-
thenticator to include a block-specific hash value,
seemed to be the only choice. In this case, as the verifier
(client or TPA) does not possess the original dataset, the
client will solely rely on cloud server -- who keeps the
actual dataset -- to compute for verification of data
integrity. As the only way for the client to verify the cor-
rectness of is through ADS, the server can cheat the
client with another hash and AAI pair. In other words,
the server can take any other healthy block to replace the
block that should be verified, which denies the primary
aim of integrity verification. To the best of our knowledge,
there is no existing public auditing scheme that supports
full dynamic data can deal with this problem.

Erway et, al.'s RASL [14] can provide authentication
for indices, which is resilient to the above attacks. Aside
from the effective ADS, they did propose a scheme where
the authenticator/tag is computed as where is
a generator and is the message to be audited, but it is
too simple to support public auditing. Without a hash
value, they can be over-easily integrated or separated. In
fact, the RASL cannot be directly applied into a public
auditing scheme supporting dynamic data. As stated ear-
lier, -- the hash value of message block -- is to be
used in authenticators for support of dynamic data.
Therefore, the client needs computed by (and later
transferred from) the cloud server for verification. In or-
der to achieve verifiability of index information, the leaf
nodes no longer stores the hash value of file blocks, but
the hash value of a concatenation of multiple values in the
form of . Therefore,
the server need to send back both values of and
 , and the client will need to verify . In an RASL,
a common case is that multiple leaf nodes are in the same
verification path, such as in Fig. 2. Let's say
 represents message blocks . As stated
earlier, the client needs computed by and trans-
ferred from the cloud server for verification. In this case,
if verification of is needed, the server not only needs

Fig. 2. A Rank-based Authenticated Skip List (RASL) in [14]. de-
notes the indexed file blocks.

Fig. 1. Relations between the participating parties in public auditing
of cloud data. The client authorises the TPA to audit data stored on
CSS, where the three parties are not fully trusted by each other.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 5

to return all 3 values on as part of AAI, but also
needs to compute and transfer all
 . As only a small fraction of
blocks (460 for 99% confidence when auditing 1GB file), it
is not likely that these consecutive blocks are chosen for

one audit, which means much excessive overheads. Also，
the bottom-up levelling restricts the insertions. If leaf
nodes are level 0 as defined in [14], any insertion that cre-
ates a new level below level 0 will cause update of all
level values (therefore all hash values of all nodes), which
is hardly possible for the client to verify. For these reasons,
we choose to use MHT with top-down levelling, instead
of RASL, to design the new ADS. Now that the leaf nodes
are on different levels, we will need both the client and
verifier to remember the total number of blocks and ver-
ify the block index from both directions (leftmost to
rightmost, rightmost to leftmost) to make sure the server
do not cheat the client with another node on the verifica-
tion path.

4 MUR-DPA IN DETAIL

4.1 Notations

We first briefly introduce some symbols used for describ-
ing our scheme; detailed definitions and usage can be
found in the rest of this section.

 : Raw data file to be uploaded by the client to store in
CSS.

 : The ith file block of . There are a total of n blocks.

 : The jth replica of file .

 : The ith block of replica .

 : Padding message used to generate replica block

with the original file block .
 : The RMHT developed based on .
 : The Replica-sub Tree of based on .
 : Hash value of message m.
 : Values stored in node from RMHT T.
 : The level of node .
 : The maximum number of nodes in the

leaf(bottom) level that can be reached from v.
 : The homomorphic authenticator for .

 : Number of segments per block.
 : The set of tuples for all intermediate nodes

in the RST .
 : A signature used for authorisation of TPA.
 : A set of tuples that are used as 's auxiliary au-

thentication information (AAI).
 : The hash value stored in the root node of .
 : The kth tuple in where is the hash

value, is the level of node, is the rank value and
indicates whether this node is a left or right child node.

 : A tuple of variables used for verification.
For a successful verification, after iterative computation
with , will become the number of total file blocks,
will become the root value R, will become the block in-
dex and will become the reversed block index, i.e., the
block count from right.

4.1 Preliminaries

4.1.1 Bilinear Pairing

Bilinear pairing is essential in this public auditing scheme
for building and verifying homomorphic authenticators.
Assume a group is a gap Diffie-Hellman (GDH) group
with prime order . A bilinear map is a map constructed
as where is a multiplicative cyclic group
with prime order. A useful bilinear map should have
the following properties:

1. Bilinearity – ;
2. Non-degeneracy – ;

and
3. Computability – should be efficiently computable.
As denoted in [10], a more efficient asymmetric bilin-

ear map may also be applied. For simplic-
ity, we will use this symmetric bilinear map in our
scheme description.

4.1.2 Merkle Hash Tree

The Merkle Hash Tree (MHT) [20] has been intensively
studied in the past. Similar to a binary tree, each node
will have a maximum of 2 child nodes. In fact, according
to the update algorithm, every non-leaf node will con-
stantly have two child nodes. Information contained in
one node in an MHT is constructed as follows. For a
leaf node based on a file block , node value is com-
puted as . A parent node of and is con-
structed as . A leaf node ’s auxiliary
authentication information (AAI) is a set of hash values
chosen from every of its upper level so that the root value
 can be computed through .

4.2 MuR-DPA: Multi-replica Dynamic Public
Auditing

4.2.1 MR-MHT

A multi-replica Merkle hash tree (MR-MHT) is a novel
authenticated data structure designed for efficient verifi-
cation of data updates, as well as authentication for block
indices. Each MR-MHT is constructed based on not only a
logically segmented file, but also all its replicas, as well as
a pre-defined cryptographic hash function H. An example
of MR-MHT, constructed based on a file with 4 blocks
and 3 replicas, is shown in Fig. 3. The differences from the
MHT are as follows:

Fig. 3. An example of MR-MHT

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

1. Value stored in the leaf nodes are hash values of
stored replica blocks. In MR-MHT, leaf nodes represents
replica blocks , namely the jth replica of the ith file

block.
2. Value stored in a node v from a none-leaf level is

computed from the hash values of its child nodes and two
other indices and . is the level of node and
 is the maximum number of nodes in the leaf(bottom)
level that can be reached from v. Different to RASL in [14],
the levels are defined in an top-down order, i.e., the level
of root node is defined as 0, and levels of its child nodes
are defined as 1, etc.. The values stored in leaf nodes

are ; the value in each none-leaf node

is computed as where and

denotes the values stored in its left child node and right
child node, respectively. In Fig. 3, under our definition,

 (and for all leaf nodes) is 4, . For example,

the value is computed as:

and , , etc..

3. The AAI is different from the MHT in [31] as fol-

lows. They now contain not hash values of the intermedi-
ate nodes only, but tuples in the format of , one
tuple for each node. h is the hash value stored on this
node, l is the level of this node, q is the maximum number
of leaf nodes reachable from this node, and d is a Boolean
value that indicates this node is to the right (0) or left (1)
of the node on the verification path, i.e. the nodes from
leaf node to the root . For example, in Fig. 3, for rep-

lica block is defined as

 , and its verification path is

 .

4. All replicas of one file block are organized into a
same sub-tree which we call replica sub-tree (RST), see
Fig. 3. Note that each RST has the same structure. Each
block has exactly c replicas because there are c replica files
for the original data file. The total number of leaf nodes
for every RST is the total replica number c. Different from
[13], replica blocks are treated independently and each
replica block has its own authenticator. The root of each
RST, which we denote as , will play a vital role in the
newly proposed multi-replica verification and update
verification in the following sections. We use to denote
the AAI for , i.e., one can verify the content and index of
 with and , similar to discussed earlier but has

less hash values. Although roots of RSTs are non-leaf
nodes, they can still be authenticated in the same way as
leaf nodes. In addition, we define as the set of tuples
 for all intermediate nodes in each RST , where
 are defined the same as above, and t is the sequence
number for the nodes, ordered from top to bottom and
left to right in . For example, in Fig. 3, contains only
one node where . As the number of
replicas is only a small number (less than 10), for simplic-
ity of description, we assume the structure of is stored

at client (and TPA) side, which applies to every RST and
takes only a negligible amount of storage. In this case, the

client can compute , therefore , based on and

 without requesting from the server. For less cli-

ent-side storage, the client may also request from the

server and verify them via and .

Based on this new ADS, we now describe our scheme
in detail.

4.2.2 Setup

The user and cloud server will first establish common
parameters, including a bilinear map , and a
cryptographic hash function H.

 : The client generates a secret value

and a generator of , then compute where
are the public key and is the secret key. Another secret
signing key pair is chosen with respect to a des-
ignated provably secure signature scheme whose signing
algorithm is denoted as . This algorithm outputs
 as the secret key and as the public
key .

 :
1) For a dataset to be stored on cloud server, the client

will first make c replicas based on the original files. In
order to enable the verifiability of these replicas, they
should be different from one another; otherwise, the
server may cheat the client by responding to challenges
with the correct proofs but actually storing only one rep-
lica. From an original file , we denote

its jth replica file as . The

replica blocks are transformed from , and the trans-

form is reversible, i.e., the client can recover the original
file through retrieval and reversed transformation of

any replica . Therefore, the client do not have to upload

 ; she can recover with any intact replica if needed. For
example, a method described in [13] is to choose
pseudo-random functions to compute random values
 then output as ; the replicas

may also be computed with other methods such as pub-
lic-key techniques.

2) The client constructs a MR-MHT based on , com-

putes the root value R, and computes its signature
with .

3) The client will compute an authenticator

 for every replica block .

Finally, this algorithm outputs and then

uploads them all to the cloud server.

4.2.3 Data Updates and Verification

In this paper, types of updates considered are whole-
block insertion I, deletion D and modification M. These
are the minimum requirements for support of full data
dynamics [14]. In multi-replica scenario, when a block
needs to be updated, all its corresponding replica blocks
 are also needed to be updated in the same way to

maintain consistency. For insertion and modification, the
client needs to upload new data block. As the only one
that has the capability to compute replica blocks based

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 7

on the original file block , the client will compute the
new replica blocks

 then send them to the server along

with the update type I, D or M.
 : The server will parse

 into
 and perform the update to

file blocks, indices and ADS according to the update re-
quest. Specifically, the server will need to update the
value for nodes in insertions and deletions. Note that val-
ues in none-leaf nodes in stays the same after the up-
date process.

For insertions and deletions, the situations are more
complex than in past schemes [14, 17, 31]. In a traditional
MHT, level or rank information is not contained in the
nodes; in an RASL, all leaf nodes stays constantly on level
0. Therefore, there is no need to change the hash value in
other nodes. In this top-down levelled MHT however, the
levels of all leaf nodes in adjacent RST have also changed
by +1 with insertion/-1 with deletion, as the level value is
a part in computation of node value. For example, in Fig.

4-a, with the insertion of
 , the levels of have

increased by 1, which will cause change to all ;

while in Fig. 4-b, with the deletion of , levels of the

old
 (i.e., old) have decreased by 1. To output

the correct , these updates are needed to be performed
in the hash tree as well. For insertions and modifications,

The server will then output

and returns it to the client. For deletions, the server will

need to additionally transfer .
 : In order to verify this up-

date, the client first need to parse . Let the tuples

in be for each node in an decreasing
order of levels, i.e., . A little
different from the definition, is the max number of RST
roots, instead of leaf nodes, that can be reached from .
Since the structure of RST is known to the client, she
will be able to compute and , the old and new roots

of , with (got from the server) and
 alone

respectively.
1. The client will first iteratively compute tuples

 for nodes on the verification path with
nodes in as follows, :

if : , ,
 and ;

or:
if : , ,

 and

where , , , .

After is obtained, client will verify
 with , and verify if and
hold at the same time. If the three values passed this au-
thentication, the authenticity of (also) and its index

 can be confirmed.

2. For deletion, the client needs to verify . Note

that represented the same block and replicas

whose root of RST was stored as the first tuple in , e.g.,

in Fig. 4-b, and represented the same set of

data; the only difference is that .

Therefore, the client has enough information to verify

 with , and R. The verification processes

are similar to those above. As for insertion, has

already been verified along with ; the client can safely
compute the new without additional verifications,
see Fig. 4-a.

3. With RST structure, the client will then compute

with , then compute with and and com-

pare with .
If all 3 verifications passed, it means that the server has

performed the update to all replicas honestly. The client
will update the total block number n, then compute

(the authenticators for
) and store them on server.

The protocol for verification of updates is demon-
strated in Fig. 5.

4.2.4 Challenge and Verification for Multi-replica Public
Auditing
Within our top-down levelled setting, the verifier will

need to verify the auditing equation as it is not

stored in the MR-MHT. Here we discuss how to conduct
verification on all replica blocks for a given set of indices
in one go.

Fig. 4-a. An Insertion before the 3rd block into the MR-MHT in Fig. 3

Fig. 4-b. A Deletion of the 3rd block for the MR-MHT in Fig. 3

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 : The third-party
auditor TPA generates challenge message with the give
accuracy Acc, and sends an authorization. For example,
same as before, for a 99% accuracy, the verifier needs to
verify 460 blocks out of a 1GB file. The challenge message

is
 where is for authorization, I

is the random set of indices chosen for verification, and
 are random numbers for integration of .

 : The cloud server will first
verify , same as in [17]. Then, it will compute

 and for every replica, and

send

 back to TPA.

 : Since the verifier knows the structure of

RSTs, it will compute R with and verify

for each ith chosen block. The verification process is simi-
lar as in section 4.2.3, with iterative triples and verifica-
tion of of . Also, it needs to verify the authen-

ticity of by verifying if

 , where can be in-

ferred from which equals level of the first node in .
For example, in Fig. 3, . When we know that
 from (is the first node in), we can

easily derive . If this veri-

fications passed, TPA will trust the retrieved are

genuine, then it can verify c replicas one by one by verify-
ing the following c equations:

If these equations holds then the verification will out-
put 'ACCEPT', otherwise output 'REJECT'. The process is
demonstrated in Fig. 6.

4.3 Discussions and Extensions

Since each replica block has its own authenticator ,

our scheme also supports single replica verification. The
process will be similar to the verification in [31] with ad-

ditional verification of and the index of .

Except for the rank verifications of are now

 and . other details
will be similar as the verifications described above.

In [23], the authors proposed a value for trade-off of
storage and communication overheads. In this strategy,
every file block is segmented into s segments
(length of each segment equals the length of a block with-
out s, typically 20bytes), and the authenticators are com-

puted as

 . In this case, the proof

size has increased by because there will be multiple
 , instead of one, to be included in the proof.
However, the storage overhead has decreased to 1/s as
there is only one authenticator stored along with s sectors.
As our scheme is also based on BLS signature, with same
block segmentation strategy, the trade-off can easily be
applied to our scheme to support dynamic data with mul-
tiple replicas. We will show our experimental results un-
der different s values in Section 6.

Based on the segmented blocks, Liu, et, al. have inves-
tigated fine-grained updates for variable-sized file blocks
with different segmentations and RMHT in [17]. If we
extend MR-MHT to let the nodes to store the 'rank' in-
formation computed from different sizes of blocks, our
scheme can also support fine-grained updates and en-
hance the scheme in [17] with efficient support for update
of multiple replicas.

Wang et, al. have proposed a random masking tech-
nology for privacy protection against the third-party
auditor [30]. In their scheme, the server will mask the
proof (integrated blocks) with a random r and generate
a new so that TPA will not learn the users
data from multiple challenging of the same set of blocks.
In the multi-replica setting, the proof is computed based
on replica blocks instead of the message blocks .

Therefore, in most scenarios it is not necessary to apply
another masking from the server. Even TPA can infer

from multiple challenges, it will not get any information
of the user data without knowing the transformation
method, which is known only by the client, from to .

If there is any need to protect replica blocks against the
TPA, our scheme can be extended with the same server-

Fig. 5. Data update and verification

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 9

side padding strategy.

5 SECURITY AND EFFICIENCY ANALYSIS

As before, the security of our scheme is based on :
1. Collision-resistance of the hash function,
2. Difficulty of gap Diffie-Hellman problem, and
3. Unforgeability of the chosen signature scheme.

5.1 Verifiable Multi-Replica Updates

Lemma 1. With , RST structure, total number of blocks n
and a given block index , if a returned block-AAI com-
bination for an RST root passed the authentication,
then either it is computed with the actual replica blocks, or
the server has found a way to find collisions in the hash
function H.

Proof. The client will first infer , the level of , from
 . Let be the number of tuples in , then . If
the a dishonest server does not have the ability to find arbi-
trary collisions of hash functions, it must select an existing
node N and its corresponding AAI in the MR-MHT in
order to let the client to compute R, thereby verify ,
through iterative hashing. When N is not the queried node,
i.e., when the server is acting dishonestly, the situation can
be covered by the following 3 cases:
1. If N is not located on the verification path of , then ei-
ther the server provides wrong level or rank values, which
will lead to failure in computing the right R; or verification
of both values of and will fail.
2. When the queried node is a left child node, choosing any
other hash value and the corresponding AAI from the veri-
fication path will let the verification process output the
correct (the number of file blocks, i.e., leaf nodes, left of
this node), but not the correct (the number of file
blocks, i.e., leaf nodes, right of this node). Therefore, the
verification of will fail.
3. When the queried node is a right child node, choosing
any hash value and the corresponding AAI from the verifi-
cation path will let the verification process output the cor-
rect , but not the correct . The reason is similar as the
second case.

Therefore, except for finding hash collisions, the server

must return the exact in order to let all three values
pass the verification.

With this Lemma, we can now describe the soundness
and security of the update verification process in MuR-
DPA through the following theorems.

Theorem 1. If there is any fault to the new data content or
index in the server execution of an update request

 , the client verification will fail.

Proof. According to Lemma 1, the RST root and its AAI
 returned by the server are the correct representa-

tives for the RST where resided, otherwise the

verification of R will fail.

 1. For insertions and modifications, if
 was updated

incorrectly, then , therefore R', will be computed in-
correctly due to the collision resistance of hash function
H. According to the property of MHT, stays the
same throughout the update. As the client has the right

 and , the values and R' at client side will be

correct. Therefore, the verification will fail.

 2. For deletions, the returned
 will be incorrect

once there is any fault in this update. As
 is in-

cluded in the , the client will identify the ab-

normality if
 is incorrect.

 Therefore, through the verification, the client will be
able to detect any fault caused by accident or dishonest
behaviours in the update. 

This concludes the proof that the MuR-DPA scheme
can support public auditing of dynamic data without
cheated by a dishonest server. As for efficiency, the AAI
 will be taking the majority of data transfer because it is
composed of log(n) hash values and rank/level informa-
tion for each update. For updating of multiple replicas
(which is a must for cloud storage with multiple replicas),
only one, instead of c AAIs, is needed to be transferred for
verification of c replica blocks. Therefore, the more replica
there is, the more efficiency advantage our scheme would
have.

Fig. 6. Public auditing of all replicas at once

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

5.2 All-at-once Multi-Replica Verification

Same as verifiable updates, there is need for verification of
 .

Theorem 3. In MuR-DPA scheme, If integrity of any replica
 of the i-th block was breached, the server cannot build a

response that can successfully

pass the verification, unless any of the 3 assumptions at the
beginning of this section fails to hold.

Proof. As the structure of RST is known by the verifier, the
verifier will be able to re-build the RST under ,

thereby compute based on . With Lemma 1,

the authenticity of can be verified via , i and n.

Therefore, if are not all correct,

then will be incorrect; with , the verification for

R will fail. Because was computed with

 and , if all these 3 values are cor-

rect, then the returned must be correct, other-

wise the client will fail to verify the equation

 . Therefore, our design can

make sure the returned are indeed the hash

values of the designated replicas for the ith block. On
the other hand, the soundness and security of verifica-

tion equation

 itself has

already been proven in [23] and [31]. Therefore, any in-
tegrity breach will be identified with MuR-DPA. 

The proof above is based on the assumption that the
verifier knows the structure of RST. In fact, even when
the RST structure was unknown to the verifier, the verifi-
cation for all replicas may still be resilient to dishonest
servers as exchanging the orders of replicas under an RST
does not affect the verification. We leave this problem as
future work.

Our scheme is also based on MHT. Therefore, same as
past schemes, the proof size is also dependent of the data
size and number of data blocks. As a drawback, MR-MHT
introduced more levels (depth of RSTs) than each MHT in
SiR-DPA to store replica blocks. Therefore, the verifica-
tion cost for one replica in MuR-DPA will be slightly lar-
ger than in SiR-DPA. However, as replica number is small

(usually less than 10), the depth of RSTs is constant (usu-
ally only less than 4 levels). Therefore, there is no signifi-
cant additional overhead for the client to verify a single
replica. Details will be discussed in the next section.

6 EVALUATION AND ANALYSIS

6.1 Experimental Environment

We conducted our experiments on U-Cloud -- a cloud
computing environment located in University of Tech-
nology, Sydney (UTS). The computing facilities of this
system are located in several labs in the Faculty of Engi-
neering and IT, UTS. On top of hardware and Linux OS,
We installed KVM Hypervisor [3] which virtualizes the
infrastructure and allows it to provide unified computing
and storage resources. Upon virtualized data centers,
Hadoop [2] is installed to facilitate the MapReduce pro-
gramming model and distributed file system. Moreover,
we installed OpenStack open source cloud platform [4]
which is responsible for global management, resource
scheduling, task distribution and interaction with users.
The structure of U-Cloud is demonstrated in Fig. 7.

6.2 Performance Evaluations

Before demonstrating experimental results, a qualita-
tive comparison for our schemes and the existing schemes
is demonstrated in Table 1.

Fig. 7. U-Cloud environment

TABLE 1
COMPARISON OF EXTERNAL INTEGRITY VERIFICATION SCHEMES

 POR
[16]

PDP
[7]

Scalable
PDP [9]

Compact
POR [23]

MR-PDP
[13]

DPDP
[14]

SiR-DPA
[31]

FU-DPA
[17]

MuR-
DPA

Blockless Verification No Yes Yes Yes Yes Yes Yes Yes Yes

Stateless Verification No Yes Yes Yes Yes Yes Yes Yes Yes

Infinite Verifications No Yes No Yes Yes Yes Yes Yes Yes

Public Verifiability/Auditability No Yes No Yes No No Yes Yes Yes

Coarse-grained Verifiable Data Updating No No Partly No No Yes Yes Yes Yes

Fine-grained Verifiable Data Updating No No No No No No No Yes Capable

Variable-sized Data Blocks No Yes Yes No Yes Yes No Yes Yes

Authorized Auditing No No No No No No No Yes Yes

Authentication of Block Indices (for
schemes with ADS)

N/A N/A N/A N/A N/A Yes No No Yes

One Interaction for Updating All Replicas No No No No No No No No Yes

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 11

For quantitative evaluations, we provide experimental
results to demonstrate the improved efficiency of MuR-
DPA when deployed on cloud data storage. We compare
our new scheme, MuR-DPA, against the direct extension
of the existing scheme in [31] with tags of each replica
indexed in separate MHTs and MHTs are with levels and
ranks for index authentication. We name this scheme as
SiR-DPA - Dynamic Public Auditing with Separately-
indexed Replicas. We implemented both schemes on U-
Cloud, using a virtual machine with 36 CPU cores, 32GB
RAM and 1TB storage in total. The design of public audit-
ing schemes do not take into account the content of data.
Therefore, as in previous work, we also used a 1GB ran-
domly generated dataset for each testing, with the repli-
cas computed as . BLS parameters are cho-

sen with 80-bit security, i.e., the length of order of G is 160
bits. All experimental results are an average of 20 runs.

As in previous studies, the computation time is not the
primary concern in our new scheme, because the chal-
lenged blocks are a constant value regardless of the file
size, and the time consumption in proof computation or
proof verification only takes less than 1 second. Therefore,
we will mainly focus on measuring the communication
and storage costs, especially those incurred in verification
of updates.

We first measured the communication overhead for
verification of updates. Table 2 shows the total communi-
cation overhead for update verification of only one rep-
lica, where overheads of SiR-DPA and MuR-DPA are the
same. The testing dataset is 1 GB and we are updating
half of the blocks with 512MB new content in total; with
adjusting parameter s. Communication overhead for up-
date verification in the protocol in [14] and the MHT-
based scheme in [31] will be similar to our SiR-DPA set-

ting, as the communication complexities in MHT and
RASL are both with high propabilitiy (whp).
Note that in this experiment, there is only one update for
each block for all modifications. Under this setting, we
can see that this overhead is always a heavy burden. Even
for a large , there's still 154MB verification data
needed to be transferred from the server for update of
size 512MB. Although the communication overhead will
decrease for a larger block size (because the number of
blocks will be smaller), it may take several update proc-
esses to update half of its content, where the communica-
tion overhead will increase beyond the amount in Table 1.
To make things worse, with multiple replicas, SiR-DPA
scheme will multiply this communication overhead,
which has to be avoided if possible, given the fact that
cloud service providers always keep multiple replicas for
storage services.

Second, we tested the communication overhead for
updates with different numbers of replicas and different
sizes of blocks. Results are depicted in Figs. 8 and 9. From
Fig. 8, we can see that the length of server response for
modification and insertion has been greatly reduced
when there are multiple replicas, which means the load
and utilisation server's crucial downlink bandwidth will
be comparatively lesser. It is clear that MuR-DPA will
scale gracefully with increases in number of replicas of
the dataset. We can also safely conclude that overheads
for deletions will be similar as there is only one more
hash value to be included in server response. Therefore,
evaluation for the deletion operation is omitted here. The

TABLE 2
PRICE OF DYNAMISM - COMMUNICATION OVERHEAD

FOR VERIFYING UPDATES OF HALF BLOCKS IN A 1GB

FILE

s (number of
sectors per block)

Data Up-
dated (MB)

Total Server Response
for Verification (MB)

1 512/1024 19.507

5 512/1024 3,625

10 512/1024 1,743

20 512/1024 837

50 512/1024 321

100 512/1024 154

Fig. 8. Length of server response for one verifiable modifica-
tion/insertion of one block

 (a) (b)

Fig. 9. Total communication for one verifiable update of one block when (a) s = 1; (b) s = 10

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

total communication overheads for verification of up-
dates to dataset with multiple replicas are also tested. For
block insertion and modification, the new data block need
to be uploaded. Therefore, for a larger s, (i.e. a larger
block size), the total communication cost will rise. For
block deletion, nothing needs to be uploaded since there
is no new data block. Therefore, the total communication
overhead for a single deletion stays unchanged with dif-
ferent s values. Either way, for s = 1 and s = 10, our results
show that communication overheads of verification of
updates in MuR-DPA always has significant advantage
compared to SiR-DPA.

Third, we evaluate the storage overhead for dynamic
public auditability, as well as communication overhead
for auditing of multiple replicas simultaneously. Al-
though the total number of authenticators stayed the
same, now there is only one MHT (although with more
levels) as opposed to c MHTs in SiR-DPA. We can infer
from Fig. 10 that the extra storage cost is reduced by a
significant percentage when there are multiple replicas
stored in cloud. Communication overheads for simulta-
neously verifying multiple replicas are depicted in Fig 11.
We can see that the with increases in number of replicas

that a server stores, the MuR-DPA scheme seems to out-
performSiR-DPA more significantly in terms of commu-
nication overhead. We also note that with the growth of
number of replicas, the communication overhead for veri-
fying all replicas with MuR-DPA scheme is comparable to
verifying a single replica, while the overhead of SiR-DPA
grows in a much faster pace. For example, when
 , verifying all 5 replicas with MuR-DPA takes 26.8%
more communication than verifying only 1 replica, while
this percentage for SiR-DPA is 398.8%. Therefore, the
MuR-DPA scheme is not only useful for verification of
dynamic data, but also seems to scale much better when
subjected to multiple replica updates.

We also tested the communication cost for one replica,
under different s value. As analysed in section 5, our
scheme will constantly incur more communication over-
head because of the extended RSTs. However, as can be
seen from Fig. 12, the extra communication overhead is
small and can be considered negligible. Even for an exag-
gerated case where and , the extra com-
munication for verification of one replica in MuR-DPA
scheme is only 15.3% compared to SiR-DPA scheme. For a
more common choice of 4 replicas and , this per-
centage is only 8.1%. Given that the MuR-DPA scheme
has much less communication cost for verification of all
replicas at once as well as verification of updates, it is
always an advantageous trade-off.

From these analyses and experimental results, we can
see that the MuR-DPA scheme has significant advantage
in auditing cloud storage with multiple replicas. The per-
formance of public auditing schemes are not affected by
the contents of data. Therefore, size of file blocks, s value
and the number of replicas are main impact factors for the
overall performance. As our experiments are based on
these metrics, we believe the experimental results demon-
strated here can accurately present the advantage our
scheme when deployed in practice.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel public auditing
scheme named MuR-DPA. The new scheme incorporated
a novel authenticated data structure based on the Merkle
hash tree, which we refer to as MR-MHT. The level values
of nodes in MR-MHT are generated in a top-down order,

Fig. 12. Communication for auditing of 1 chosen replica for a data-

set with 1, 4 and 8 total replicas with different s value

Fig. 10. Extra storage overhead at server side for support of public
auditability and data dynamics

Fig. 11-a. Total communication for auditing of all replicas when s = 1

Fig. 11-b. Total communication for auditing of all replicas when s = 10

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 13

and all replica blocks for each data block are organized
into a same replica sub-tree. As a result, our MuR-DPA
scheme can support fully dynamic data updates, authen-
tication of block indices and efficient verification of up-
dates for multiple replicas at the same time. Compared to
existing integrity verification and public auditing
schemes, theoretical analysis and experimental results
have shown that the MuR-DPA scheme: (i) incurs much
less communication overhead for both update verification
and integrity verification of cloud datasets with multiple
replicas and (ii) provides enhanced security against dis-
honest cloud service providers. Despite all these advan-
tages, the proof size still depends on the size of the data-
set. Supporting secure public auditing of dynamic data
and streaming data with constant-sized integrity proofs
still remains an open problem.

ACKNOWLEDGMENT

This work is supported in part by ARC LP0990393 and
CSIRO Office of Chief Executive Top-UP PhD scholarship.
Rajiv Ranjan's research at CSIRO is funded by
AISRF08140 grant titled Innovative Solutions for De-
ployment of BigData and Disaster Management applica-
tions on Clouds. The funding authority is department of
industry, Australia.

REFERENCES

[1] Customer Presentations on Amazon Summit Australia. Sydney,

2012. Available: http://aws.amazon.com/apac/awssummit-au/,

accessed on 6 June, 2014.

[2] Hadoop MapReduce. Available: http://hadoop.apache.org,

accessed on 6 June, 2014.

[3] KVM Hypervisor. Available: www.linux-kvm.org/, accessed on

6 June, 2014.

[4] OpenStack Open Source Cloud Software. Available:

http://openstack.org/, accessed on 6 June, 2014.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, "A View of Cloud Computing," Communications of the

ACM, vol. 53, pp. 50-58, 2010.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L.

Kissner, Z. Peterson, and D. Song, "Remote Data Checking

Using Provable Data Possession," ACM Transactions on

Information and System Security, vol. 14, p. Article 12, 2011.

[7] G. Ateniese, R. B. Johns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, "Provable Data Possession at Untrusted

Stores," in Proceedings of the 14th ACM Conference on Computer

and Communications Security (CCS '07), 2007, pp. 598-609

[8] G. Ateniese, S. Kamara, and J. Katz, "Proofs of Storage from

Homomorphic Identification Protocols," in Proceedings of the

15th International Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT '09), Tokyo,

Japan, 2009, pp. 319 - 333.

[9] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,

"Scalable and Efficient Provable Data Possession," in

Proceedings of the 4th International Conference on Security and

Privacy in Communication Netowrks (SecureComm '08), İstanbul,

Turkey, 2008, pp. 1-10.

[10] D. Boneh, H. Shacham, and B. Lynn, "Short Signatures from the

Weil Pairing," Journal of Cryptology, vol. 17, pp. 297-319, 2004.

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

"Cloud Computing and Emerging IT Platforms: Vision, Hype,

and Reality for Delivering Computing as the 5th Utility," Future

Generation Computer Systems, vol. 25, pp. 599-616, 2009.

[12] D. Cash, A. Küpçü, and D. Wichs, "Dynamic Proofs of

Retrievability via Oblivious RAM," in Proceedings of the 32nd

Annual International Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT '13), Athens, Greece,

2013, pp. 279-295.

[13] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese:, "MR-PDP:

Multiple-Replica Provable Data Possession. ," in Proceedings of

the 28th IEEE International Conference on Distributed Computing

Systems (ICDCS '08), Beijing, China, 2008, pp. 411-420.

[14] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,

"Dynamic Provable Data Possession," in Proceedings of the 16th

ACM Conference on Computer and Communications Security

(CCS’09), Chicago, USA, 2009, pp. 213-222.

[15] Y. He, S. Barman, and J. F. Naughton, "Preventing Equivalence

Attacks in Updated, Anonymized Data," in Proceedings of the

27th IEEE International Conference on Data Engineering (ICDE

'11), 2011, pp. 529-540.

[16] A. Juels and J. B. S. Kaliski, "PORs: Proofs of Retrievability for

Large Files," in Proceedings of the 14th ACM Conference on

Computer and Communications Security (CCS '07), Alexandria,

USA, 2007, pp. 584-597.

[17] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and K.

Ramamohanarao, "Authorized Public Auditing of Dynamic Big

Data Storage on Cloud with Efficient Verifiable Fine-grained

Updates," IEEE Transactions on Parallel and Distributed Systems,

in press, 2013.

[18] C. Liu, X. Zhang, C. Yang, and J. Chen, "CCBKE - Session Key

Negotiation for Fast and Secure Scheduling of Scientific

Applications in Cloud Computing," Future Generation Computer

Systems, Vol. 29, pp. 1300-1308, 2013.

[19] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and

Privacy: An Enterprise Perspective on Risks and Compliance.

O'Reilly Media, 2009.

[20] R. C. Merkle, "A Digital Signature Based on a Conventional

Encryption Function," in Proceedings of A Conference on the

Theory and Applications of Cryptographic Techniques on Advances

in Cryptology (CRYPTO '87), 1987, pp. 369-378.

[21] E. Naone, What Twitter Learns from All Those Tweets. Available:

http://www.technologyreview.com/view/420968/what-twitter-

learns-from-all-those-tweets/, accessed on 6 June, 2014.

[22] S. E. Schmidt, Security and Privacy in the AWS Cloud. Available:

http://aws.amazon.com/apac/awssummit-au/, accessed on 6

June, 2014.

[23] H. Shacham and B. Waters, "Compact Proofs of Retrievability,"

in Proceedings of the 14th International Conference on the Theory

and Application of Cryptology and Information Security

(ASIACRYPT '08), 2008, pp. 90 - 107

[24] E. Shi, E. Stefanov, and C. Papamanthou, "Practical Dynamic

Proofs of Retrievability," in Proceedings of the 2013 ACM SIGSAC

Conference on Computer and Communications Security (CCS '13),

2013, pp. 325-336.

[25] E. Stefanov, M. v. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S.

Devadas, "Path ORAM: An Extremely Simple Oblivious RAM

Protocol," in Proceedings of the 2013 ACM SIGSAC Conference on

Computer and Communications Security (CCS '13), 2013, pp. 299-

310.

[26] S. Subashini and V. Kavitha, "A Survey on Security Issues in

Service Delivery Models of Cloud Computing," Journal of

Network and Computer Applications, vol. 34, pp. 1-11, 2010.

[27] B. Wang, S. S. M. Chow, M. Li, and H. Li, "Storing Shared Data

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2014.2375190, IEEE Transactions on Computers

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

on the Cloud via Security-Mediator," in 33rd IEEE International

Conference on Distributed Computing Systems (ICDCS '13),

Philadelphia, USA, 2013.

[28] B. Wang, B. Li, and H. Li, "Oruta: Privacy-Preserving Public

Auditing for Shared Data in the Cloud," in Proceedings of the

2012 IEEE Fifth International Conference on Cloud Computing

(CLOUD '12), Hawaii, USA, 2012, pp. 295-302.

[29] B. Wang, B. Li, and H. Li, "Public Auditing for Shared Data

with Efficient User Revocation in the Cloud," in Proceedings of

the 32nd Annual IEEE International Conference on Computer

Communications (INFOCOM'13), Turin, Italy, 2013, pp. 2904-

2912.

[30] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving

Public Auditing for Data Storage Security in Cloud

Computing," in Proceedings of the 29th Annual IEEE International

Conference on Computer Communications (INFOCOM'10), San

Diego, USA, 2010, pp. 1 - 9.

[31] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, "Enabling Public

Auditability and Data Dynamics for Storage Security in Cloud

Computing," IEEE Transactions on Parallel and Distributed

Systems, vol. 22, pp. 847 - 859, 2011.

[32] P. Williams, R. Sion, and A. Tomescu, "PrivateFS: A Parallel

Oblivious File System," in Proceedings of the 2012 ACM

Conference on Computer and Communications Security (CCS '12),

2012, pp. 977-988.

[33] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, "TrustStore:

Making Amazon S3 Trustworthy with Services Composition,"

in Proceedings of the 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing (CCGRID '10), Melbourne,

Australia, 2010, pp. 600-605.

[34] X. Zhang, C. Liu, S. Nepal, S. Panley, and J. Chen, "A Privacy

Leakage Upper-bound Constraint based Approach for Cost-

effective Privacy Preserving of Intermediate Datasets in

Cloud," IEEE Transactions on Parallel and Distributed Systems,

2012.

[35] Y. Zhang and M. Blanton, "Efficient Dynamic Provable

Possession of Remote Data via Update Trees," IACR Cryptology

ePrint Archive 2012:291.

[36] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, "Cooperative Provable

Data Possession for Integrity Verification in Multi-Cloud

Storage," IEEE Transactions on Parallel and Distributed Systems,

vol. 23, pp. 2231-2244, 2012.

[37] D. Zissis and D. Lekkas, "Addressing Cloud Computing

Security Issues," Future Generation Computer Systems, vol. 28, pp.

583-592, 2011.

