
CLAMS: Cross-Layer Multi-Cloud Application Monitoring-as-a-Service Framework
Khalid Alhamazani1, Rajiv Ranjan2, Karan Mitra3, Prem Prakash Jayaraman2, Zhiqiang (George) Huang 2, Lizhe Wang4, Fethi Rabhi1

1School of Computer Science and Engineering, University of New South Wales
{ktal130, Fethir}@cse.unsw.edu.au
2CSIRO Computational Informatics

{rajiv.ranjan, prem.jayaraman, zhiqiang.huang}@csiro.au
3Luleå University of Technology, Skellefteå Campus, 93187 Skellefteå, Sweden

karan.mitra@ltu.se
4Chinese Academy of Sciences, Beijing, China

{lizhe.wang}@gmail.com

Abstract—Cloud computing provides on-demand access to
affordable hardware (e.g., multi-core CPUs, GPUs, disks, and
networking equipment) and software (e.g., databases,
application servers, data processing frameworks, etc.)
platforms. Application services hosted on single/multiple cloud
provider platforms have diverse characteristics that require
extensive monitoring mechanisms to aid in controlling run-
time quality of service (e.g., access latency and number of
requests being served per second, etc.). To provide essential
real-time information for effective and efficient cloud
application quality of service (QoS) monitoring, in this paper
we propose, develop and validate CLAMS—Cross-Layer
Multi-Cloud Application Monitoring-as-a-Service Framework.
The proposed framework is capable of: (a) performing QoS
monitoring of application components (e.g., database, web
server, application server, etc.) that may be deployed across
multiple cloud platforms (e.g., Amazon and Azure); and (b)
giving visibility into the QoS of individual application
component, which is something not supported by current
monitoring services and techniques. We conduct experiments
on real-world multi-cloud platforms such as Amazon and
Azure to empirically evaluate our framework and the results
validate that CLAMS efficiently monitors applications running
across multiple clouds.

Keywords- multi-clouds; cross-layer monitoring; QoS; cloud
computing.

I. INTRODUCTION

 Cloud computing is an emerging ICT service paradigm,
that offers a flexible access to huge pool of resources such as
processing, storage and network bandwidth with practically
no capital investment and with modest operating costs
proportional to the actual use (pay-as-you use model) [19].
A number of public cloud providers have emerged to be very
successful in the recent past including Amazon Web Services
(AWS), Microsoft Azure, Salesforce.com and Google App
Engine. In cloud platforms, the infrastructure to deploy
applications is enabled by virtualization technology also
called Virtual Machine Monitor (VMM) [1]. Virtualization
technologies are utilized in cloud platforms to run multiple
instances of machines on the same physical machine and
share its resources at the same time. Typically, these VMs
are isolated and operate independently from each other. With
virtualization, there is a host operating system and a guest
operating system, the former runs on the physical machine
whereas the latter runs on a virtual machine [2].

Virtualization isolates the VMs from each other, thereby
making fault tolerant and isolated security context behavior
possible. Most widely adopted virtualization technologies in
the cloud computing paradigm include Xen, VMware,
Hyper-V, KVM, and OpenVZ.

The advent of virtualization has led to the transformation
of traditional data centers into flexible cloud infrastructure.
With the benefit of virtualization, data centers progressively
provide flexible online application service hosting [18] such
as: web hosting, search, e-mails, and gaming. Largely,
virtualization provides the opportunity to achieve high
availability of applications in datacenters at reduced costs.
The cloud platform is usually composed of several layers
namely, Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS) and Infrastructure-as-a-Service (IaaS). For reliable
and efficient management of application performance hosted
on the *aaS layers, system administrators have to be fully
aware of the compute, storage, networking resources,
application performance and their respective quality of
service (QoS) across the layers. QoS parameters (e.g,
latency, renting cost, throughput, etc.) play an important role
in maintaining the grade of services delivered to the
application consumer and administrator as specified and
agreed upon in the Service Level Agreement (SLA)
document. The SLA guarantees scope and nature of an
agreed QoS performance objective (also referred to as the
QoS targets) that the cloud application consumer and
administrators can expect from cloud service provider(s).

 It is essential to note that the QoS parameters such as
availability, application load, and throughput can vary in
unpredictable ways depending on several factors (e.g.,
number of end-users connecting to application, physical
resource or VM failure, VM overload etc.), making QoS
monitoring an important task in ensuring the fulfillment of
QoS targets (as specified in the SLA documents). Being
aware of system’s current software and hardware service
status is vital to meeting QoS targets of cloud-hosted
applications [9].

Based on the discussion above, it is obvious that cloud
monitoring is an important task required for ensuring the
QoS of applications hosted on the cloud platform [7] [8] [9]
[10]. Primarily, monitoring is vital for: i) managing the QoS
of software and hardware resources offered by the cloud; ii)
providing continuous information on the status of resources
to cloud providers and application administrators; and (iii)
detecting and debugging software and hardware problems

2014 IEEE International Conference on Services Computing

978-1-4799-5066-9/14 $31.00 © 2014 IEEE

DOI 10.1109/SCC.2014.45

283

affecting applications’ QoS. While there has been significant
interest in the area of cloud monitoring by academia and
industry, most of the existing approaches [7] [8] [9] [11]
[12][13][14][15][16][17] suffers from several problems, for
example, they are tightly coupled to a particular cloud
platform and can only perform monitoring at a particular
cloud layer (e.g., either IaaS or PaaS or SaaS). As with any
distributed application hosting environments, there is a need
for application deployment across multi-cloud environments
to improve application resilience and benefit from economies
of scale. Further, the QoS monitoring problem is cross-
cutting as it extends across the multiple cloud service layers.
For example, failure of VM (IaaS offering) affects the QoS
of web application container (PaaS offering) or database
application (PaaS offering) container hosted within that VM.
This ultimately affects the QoS of end-user of that web
application (SaaS offering). This exemplifies the need for
cloud monitoring techniques and software frameworks that
are capable of monitoring application components across
layers and across multiple cloud provider environments.
Hence, this renders the need for a uniform, extensive and
effective multi-cloud, cross-layer monitoring framework that
aid in controlling the application QoS based on real-time
monitoring of the status of application components and
underlying cloud platform (hardware and software).

We believe that a cloud provider can manage and
administer the cloud-resources/applications more efficiently
and effectively when he/she gains in-depth status
information of the system and application components across
layers individually as against a black box view. For example,
an application such as WordPress 1 will typically have a
MySQL database and an Apache Web Server as the
underlying components. Current cloud-application
monitoring frameworks like Amazon CloudWatch2 typically
monitor the entire virtual machine (hosting these
components) as a black box. This means that the actual
behavior of each application’s component is not monitored
separately. In this particular scenario, application monitoring
is limited in scope where not all components that might be
distributed across PaaS and IaaS layers are monitored. This
limiting factor reduces the ability for fine grained application
monitoring and QoS control across layers. Further, current
cloud monitoring frameworks are mostly incompatible across
multiple cloud providers. For example, Amazon CloudWatch
does not allow monitoring application components hosted on
non-AWS platforms. This defeats the distributed nature of
cloud application hosting. These drawbacks trigger the
significance of having interoperable and multi-layer enabled
monitoring techniques and frameworks.

This paper addresses the key challenge of cross-layer
multi-cloud monitoring. To this end, we propose Cross-
Layer Multi-Cloud Application Monitoring as a Service
(CLAMS) Framework. CLAMS framework enables
monitoring applications across cloud layers as well as across
heterogeneous cloud platforms. CLAMS allow efficient
collection and sharing of QoS information across cloud

1 https://wordpress.org/
2 http://aws.amazon.com/cloudwatch/

layers. It employs a manger-agent approach that is cloud
provider environments agnostic, i.e. making it compatible
with any cloud provider. We present a proof-of-concept
implementation of CLAMS monitoring application QoS
across layers deployed and tested in multi-cloud
environments such as Amazon AWS and Microsoft Azure.
Using experimental analysis, we validate that CLAMS can
efficiently monitor several cloud resources for multiple
applications scenarios.

The rest of the paper is organized as follows. Section II
presents the summary of current techniques and frameworks
that support cloud monitoring. Section III presents a
motivating scenario and overview of CLAMS framework.
Section IV proposes CLAMS system framework for cloud
applications monitoring. Section V presents implementation
details. Section VI presents outcomes of experimental
evaluation of CLAMS framework. Section VII concludes the
paper.

II. RELATED WORK

In [20], Lattice monitoring framework is presented for
monitoring virtual and physical resources. In this paper, a
managed service is specified as a collection of Virtual
Execution Environment (VEEs). Hence, Lattice is
implemented to be able to collect information for CPU
usage, memory usage, and network usage of each VEE and
VEE host. Moreover, a dependable monitoring facility is
presented in [21], called Quality of Service MONitoring as a
Service (QoS-MONaaS). The focus of QoS-MONaaS
approach is to: (i) continuously monitor the QoS statistics at
the Business Process Level (SaaS); and (ii) enable trusted
communication between monitoring entities (cloud provider,
application administrator, etc.). Furthermore, a monitoring
framework known as (PCMONS) is developed by
incorporating previous frameworks and techniques [7].
PCMONS proves that cloud computing is viable way of
optimizing existing computing resources in datacenters.
Also, the paper notes that orchestrating monitoring solutions
on installed infrastructures is viable. In contrast to above
frameworks, CLAMS focuses on monitoring applications
components across cloud layers as well as across
heterogeneous cloud platforms.

In cloud platforms, recent efforts have been put into
improving VMs monitoring and controlling. A number of
frameworks have been proposed for VM management, which
includes Simple Network Management Protocol (SNMP) for
data retrieval. SBLOMARS [6] implements several sub-
agents called ResourceSubAgents for remote monitoring.
Each of SBLOMARS’s sub-agents is responsible for
monitoring a particular resource. Inside each of these sub-
agents, SNMP is implemented for management data
retrieval. In contrast to CLAMS which is focused on
monitoring applications QoS in virtualized cloud computing
environments, SBLOMAR focuses on enabling multi-
constrain resource scheduling in grid computing
environments.

In [3], CloudCop is a conceptual network monitoring
framework implemented using SNMP. Basically, CloudCop
adopts Service Oriented Enterprise (SOE) model. CloudCop

284

framework consists of three components: Backend Network
Monitoring Application, Agent with Web Service Clients,
and Web Service Oriented Enterprise. While CloudCop
focuses on network QoS monitoring, CLAMS is concerned
with application QoS monitoring.

In [4], the authors propose a Management Information
Base (MIB) called Virtual-Machines-MIB, to define a
standard interface for controlling and managing VM
lifecycle. It presents SNMP agents, which are developed
based on NET-SNMP3 public domain’s agent. Besides read-
only objects, Virtual-Machines-MIB provides read-write
objects that enable controlling managed instances. To obtain
the data of Virtual-Machines-MIB, mostly Libvirt4 API and
other resources such as VMM API are used [4]. While
Virtual-Machines-MIB is concerned with monitoring IaaS-
level (VM) QoS statistics, it does not cater for the QoS
statistics of PaaS level application components.

In [5], the authors stress the importance to have a
standardized interface for monitoring VMs on multiple
virtualization platforms and this interface should be based on
SNMP. The paper presents a framework for VMs monitoring
which is fundamentally based on SNMP. The proposed work
was built over three different VM hypervisors namely,
VMware, Xen, and KVM. These three hypervisor were
installed on two different OSs, which are MS Windows and
Linux. Similarly to Virtual-Machines-MIB, this framework
utilizes Libvirt API. Moreover, it implements an agent
extension AgentX using Java. Primarily, this AgentX is to
obtain VMs management data for the VMware, Xen, and
KVM VMs and eventually the data is presented via web-
based management. However, similar to [4], the approach
given in [5] focuses on VM-level QoS monitoring, while
completely ignoring application component level QoS
management and monitoring.

In addition to the mentioned works above, libvirit-snmp
is a subproject, which primarily provides SNMP
functionality for libvirt. Libvirt-snmp allows monitoring
virtual domains as well as it allows setting domain’s
attributes. Furthermore, Libvirt-snmp provides a simple table
containing monitored data about domains’ names, state,
number of CPUs, RAM, RAM limit, CPU time.

III. MOTIVATION AND OVERVIEW

A. Problem Discussion and Motivation
A typical cloud application, for example, a multimedia

content management system (CMS) as presented in Fig. 1
includes several components (that are deployed at PaaS
level) such as media streaming server, web server, indexing
server, database server, compute service, storage service and
the underlying network. To achieve an end-to-end
application monitoring for the CMS application, the
monitoring technique needs to monitor QoS parameters e
across cloud layers of CMS application stack including PaaS
(e.g., web server, streaming server, indexing server, etc.) and
IaaS (e.g., compute services, storage services, and network).

3 http://www.net-snmp.org/
4 http://libvirt.org/

Fig. 1 presents the QoS parameters that need to be monitored
at each layer. The QoS parameters are presented and
classified in Table 1 for the aforementioned CMS and other
similar cloud applications (e.g., multi-tier web applications,
content delivery networks, etc.) in general.

Furthermore, if monitoring needs to be carried across
multiple cloud provider (typical of distributed mission
critical applications) platforms such as Amazon AWS and
Microsoft Azure, the cloud provider specific monitoring
frameworks such as CloudWatch and Fabric Controller have
limited functioning to work in multi-cloud environments e.g.,
CloudWatch on AWS cannot monitor application/resources
hosted on Azure and vice-versa.
 To achieve the above stated goal, there is a need for a
cross-layer monitoring framework that has the capability to
work across multiple cloud providers in a coordinated
manner to delivery QoS requirements of distributed cloud
applications.

Table 1: QoS Targets for Relative Cloud Layers.

Cloud
Layer

Layer Components Targeted QoS Parameters

SaaS User Applications
(Servers App. Web
App, Microsoft Word.
etc)

BytesRead,
BytesWrite,
Delay,
Loss, Availability, Utilization

PaaS Web Server, Streaming
Server, Indexing
Server, Apps Server,
etc

SystemUpTime,
SysDesc,
SystemProcesses,
SystemServices

IaaS Compute Services,
Storage Services,
Network, etc

CPU Parameters (Utilization,
ClockSpeed, CurrentStte).
Network Parameters (Capacity,
Bandwidth, Throughput,
ResponseTime, OneWayDelay,
RoundTripDelay, TcpConnState,
TcpMaxConn).

Figure 1: Multimedia Components and QoS Metrics Across the
Cloud Layers

285

B. Overview
Fig. 2 presents an overview of the philosophy driving the

proposed CLAMS framework. As depicted in the figure,
CLAMS employs an agent based approach for cross-layer,
multi-cloud resource/application monitoring. In this multi-
cloud approach, monitoring agents are deployed in various
cloud provider environments based on application
requirements. Each agent is responsible to monitor
resource/application information at various layers including
SaaS, PaaS and IaaS. A manager agent is responsible to
collect QoS data from each monitoring agent.

IV. CLAMS: CROSS-LAYER MULTI-CLOUD
APPLICATION MONITORING AS A SERVICE

FRAMEWORK
As mentioned in section I, in this paper we propose,

develop and validate CLAMS, a novel approach for
application(s) monitoring across layers on multi-cloud
environments. CLAMS include mechanisms for efficient
cloud monitoring at different *aaS layers. CLAMS provides
standard interfaces and communication protocols that enable
application/system administrator to gain awareness of the
whole application stack across different cloud layers in
heterogeneous, hybrid environments (monitor VMs hosted
on different cloud platforms). In this way, CLAMS also
satisfies the challenges related to interoperability between
heterogeneous cloud resources. Fig. 3 presents a detailed
architecture of the proposed CLAMS framework. The
CLAMS framework comprises two main components
namely, CLAMS Monitoring Manager and CLAMS
Monitoring Agent.

A. CLAMS Monitoring Manager
The CLAMS Monitoring Manager is a software

component that collects QoS information from CLAMS
Monitoring Agents running on several virtual machines
(VMs) across multi-cloud environments. In particular, the
monitoring manager collects the QoS values from the agents

running at the SaaS, PaaS and IaaS layers. The
communication between the Monitoring Manager and the
Agent can employ a push or pull technique. In case of pull
technique, the manager polls the CLAMS agents at different
frequencies, collects and stores the QoS statistics in a
relational database (DB). When a push strategy is employed,
the agents obtain the relevant QoS statistics and push the
data to the Monitoring manager. As soon as the monitoring
system is initialized on the cloud(s), the VMs running the
CLAMS manager(s) and the agents boot up. Using discovery
mechanisms like broadcasting, selective broadcasting or
decentralized discovery mechanisms [24], the agents and
manager discover each other. After discovering the address
of each agent and manager, depending on the available
strategy (push/pull) QoS statistics is collected by the
manager from the agents. To illustrate further, consider a
multimedia application running on the cloud where we have
a media streaming server and an indexing server at the PaaS
layer and storage server at IaaS layer.

Each component of the multimedia application is running
and hosted on different VMs. Streaming server has an IP
address say, 192.168.1.1, indexing server has an IP address
192.168.1.2, and the storage server has IP 192.168.1.3. Each
VM also runs CLAMS monitoring agents that monitor
applications and VM parameters. In this case, the manager
can send first request to the agent on the streaming server
VM specifying the IP address 192.168.1.1:8000 and stating
the QoS target e.g., CPU utilization. Similarly, a second
request is sent to the agent on the indexing server VM
specifying the IP address (192.168.1.2:8000) and stating the
QoS target e.g., Packets In. In the same way, a third request
is sent to the agent on the storage server VM specifying the
IP address (192.168.1.3:8000) and stating the QoS target e.g.
actual used memory.

The CLAMS monitoring manager employs a QoS data
collection schema to store QoS statistics into the local
database and an agent schema to maintain the list of
discovered agents. The CLAMS monitoring manager also

Figure 2: Overview of CLAMS Framework

286

incorporates an API that is used by other monitoring
manager or external service to share the QoS statistics.

B. CLAMS Monitoring Agent
Another major component of the CLAMS framework is

the monitoring agent. The monitoring agent resides on VM
running on the cloud and collects and sends QoS parameter
values as requested by the manager. After the monitoring
system initialization, the agent waits for the incoming
requests from the manager or starts to push QoS data to the
manager. Upon arrival of the request, the agent retrieves the
stated QoS values belonging to a given process and/or a
system resource and sends them back as a response to the
Manager.

The monitoring agent has the capability to work in multi-
cloud environments. Agent manager communication can be
established using any approach that fits the application
requirement e.g., publish- subscribe, client- server or Web
services. It can also employ standardized protocols for
communicating system management information like SNMP.
The proposed blueprint does not restrict future developers
from extending CLAMS to their purposes. In our proof-of-
concept implementation explained in the next section, we
have employed a combination of SNMP and RESTful Web
services. The CLAMS monitoring agent also uses operating
system dependent code to fetch corresponding application
QoS statistics, for example, use of OS specific commands to
get CPU usage in Linux and Windows systems.

C. CLAMS Hierarchical Support for Multi-Cloud
Environments
As mentioned previously, the CLAMS monitoring

framework is aimed to be agnostic of the underlying cloud
platform i.e., the manager/agent may run on heterogeneous
cloud platforms. In case the monitored framework is
distributed across different cloud platforms e.g., between
Amazon cloud platform and Windows Azure platform, then
one manager and multiple agents will be residing on each of
these cloud platforms. To achieve heterogeneity and multi-
cloud functionality, a hierarchical approach can be applied

using Super Managers as depicted in Fig. 4. The function of
a Super Manager is marginally different from a monitoring
manager. The Super Manager is responsible for coordinating
between multiple monitoring managers using the monitoring
manger’s API. The monitoring managers (depicted as
manager) as illustrated earlier will retrieve the monitored
data from agents, and then they will re-send the data to the
SuperManager. In a wider scope, a hierarchy of super
manager can be formed where a SuperManager instance can
collect data from multiple SuperManager instances, as shown
in Fig. 4.

Figure 4: CLAMS Multi-Cloud Support

V. SYSTEM IMPLEMENTATION

The proof-of-concept implementation of the proposed
CLAMS framework has been developed using Java and is
completely cross-platform interoperable i.e., it works on both
Windows and/or Linux operating systems. Fig. 5 presents
proof-of-concept implementation screenshots.

Monitoring Agent Implementation: The process of
retrieving QoS targets is done by utilizing functionalities
provided by SNMP, SIGAR5 and other custom built APIs.
For instance, SNMP is used to retrieve the QoS values
related to networking, number of packets in and out, route
information and, number of network interfaces. SIGAR is
used to obtain access to low-level system information such
as CPU usage, actual used memory, actual free memory,
total memory and process specific information (e.g. CPU and
memory consumed by a process). Moreover, network
information such as routing tables can also be obtained using
SIGAR. Both SIGAR and SNMP packages have their own
operating system specific implementations to retrieve system
information e.g. system resources, and user processes. To
enable SNMP monitoring, we define new SNMP Objects

5 http://www.hyperic.com/products/sigar

Figure 3: CLAMS Framework Architecture

287

Identifiers (OIDs) in a sequence. For example function to get
the CPU usage of a specific process (tomcat) is assigned an
OID .1.3.6.1.9.1.1.0.0. Similarly, function to get process
memory is assigned an OID .1.3.6.1.9.1.1.0.1.

Monitoring Manager Implementation: The monitoring
manager uses a MySQL database to store the QoS statistics
collected from the agents. For the proof-of-concept
implementation, we used a pull approach where the Manager
is responsible to poll for QoS data from agents distributed
across multiple cloud provider VMs. The manager uses a
simple broadcasting mechanism for agent discovery. On
booting, a discovery message is broadcasted to known
network. Agents that are available respond to the manager’s
request. The manager then records agent information to the
agent database. The manager then starts off threads to query
each agent in the agent database to obtain QoS parameters.
The polling interval is a pre-defined constant and can be
changed using the manager configuration files.

Agent Manager Communication: For the proof-of-
concept implementation, the communication between the
agent and the manager has been implemented using two
techniques namely RESTful Web services and (SNMP).
Having a RESTful approach enables easy lightweight
communication between CLAMS agents and manager/super
manager. Using a standardized SNMP interface makes
CLAMS completely compatible with existing SNMP-based
applications, tools and system and reduces the effort
involved in collecting QoS statistics.

Figure 5: CLAMS proof-of-concept Implementation

VI. EXPERIMENTS AND RESULTS

A. Hardware and Software Configuration
 To evaluate the proposed CLAMS framework,
experiments were conducted on Amazon AWS and
Microsoft Azure platforms. We used standard small
instances on each platform. The AWS instance has the
following configurations: 619 MB main memory, 1 EC
compute unit e.g. 1 virtual core with 1 EC2 compute unit,
160 GB of local instance storage, and a 64-bit platform. The
Azure instance has the following configurations: 768 MB
main memory, 1GHz CPU (Shared virtual core) and a 64 bit
platform. During the execution of the experiment, we
increased the number of AWS instances from 1 to 3

instances. Each virtual machine instance was running
multiple CLAMS monitoring agents, each monitoring one or
more processes at different *aaS layers. Further, VM’s in the
experiments were running Microsoft Windows Operating
System. For persistent storage of monitoring agent and
manager data, we use off storage volumes such as Elastic
Block Store (EBS) in Amazon EC2 and XDrive in Windows
Azure. Major advantages of architecting applications to
adopt off instance storage are: i) each storage volume is
automatically replicated, and this prevents data loss in case
of failure of any single hardware component, ii) storage
volumes offer the ability to create point in time snapshots,
which could be persisted to the cloud specific data
repositories.

B. Experimental Setup
The CLAMS system has two main components namely

the Monitoring Manager and Monitoring Agent. Each agent
comprises the corresponding SNMP and SIGAR package
dependencies to accomplish the monitoring task. In the
experiment, the monitoring manager triggers a request to
monitoring agents, which in turn retrieve the requested QoS
parameters from the hosted VM. Each agents running on the
VM listens on a unique port e.g. VM1-IP:8000, VM1-
IP:8001, enabling them to respond to queries from the
monitoring manager independently. The agents send
responses to the monitoring manager concurrently.

For experimental purposes and to demonstrate and
validate CLAMS’s cross-layer monitoring capability, each
agent monitors several resources including system resources
and user processes Table 2 presents the list of monitored
processes/resources. On retrieving QoS data from the agents,
the monitoring manager saves the data into the local database
by classifying them as system performance or user
applications QoS performance parameters.

Table 2: Monitoring across different layers

Process/Resource Description Owner
Tomcat7w.exe Apache Tomcat 7 User
MySqld.exe MySQL Workbench 6.0 User
Javaw.exe Monitoring Manager User
Lsass.exe Local Security Authority Process System
Winlogon.exe Windows Logon App. System
Services.exe Services and Controller App. System
VM CPU Usage CPU usage of the entire VM System
VM Memory Usage Memory usage of the entire VM System

Runtime Configuration: Monitoring agents as well as

manager are packaged into jar files with corresponding
dependencies and configured to run during VM boot process.
The agents use a configuration file that specifies processes to
monitor. Based on this information, at run-time, the agent
determines the process id of the respective process. After
finding the process id, the agent starts to retrieve specific
QoS parameters for that process e.g. memory usage and CPU
consumption.

Fig. 6 provides a detailed workflow of communication
between the monitoring manager and agent. The monitoring
manager instantiates parallel threads for each group of

288

Agents in one VM i.e., each thread is dedicated to only one
VM to communicate with Agents running on that VM.
Manager thread sends request to Agents addressed by IP
address and port number. The request is for a list of QoS
parameters monitored by the agent. After receiving the
request, agents compute the QoS parameter values from the
hosting VM. The agents then respond to the manager with
corresponding QoS parameters.

To evaluate the proposed CLAMS framework, we
deployed the agents and managers on four virtual machine
instances (3 VM’s on AWS and 1 on Microsoft Azure). On
VM’s that hosted the agent, depending on number of agents,
the agents were bound to unique ports. E.g., if VM-3 hosted
30 Agents, it was bound to ports 8000-8030. Similarly if
VM-4 hosted 10 agents, it was bound to ports 8000-8010.

Figure 6: Manager/Agents run-time workflow

C. Experimental Results and Discussion
To validate CLAMS does not introduce significant

overheads while monitoring QoS parameters across layers in
multi-cloud environments, we ran experiments in 4 typical
multi-cloud workload scenarios.

Scenario I: VM-1 hosts the Manager, VM-2 hosts 25
Agents, VM-3 hosts 30 Agents, and VM-4 hosts 30 Agents.
In total, the manager communicates with 85 Agents deployed
in multi-cloud environment (3 AWS instances and 1 Azure
instance).

Scenario II: VM-1 hosts the manager, VM-2 hosts 10
agents, VM-3 hosts 20 agents, and VM-4 hosts 20 agents. In
total, the manager communicates with 50 Agents.

Scenario III: VM-1 hosts the manager, VM-2 hosts 10
Agents, VM-3 hosts 10 Agents, and VM-4 hosts 10 Agents.
In total the manager communicates with 30 Agents.

Scenario IV: VM-1 hosts the manager, VM-2 hosts 1
agent, VM-3 hosts 1 agent, and VM-4 hosts 3 agents. In total
the manager communicates with 5 Agents.

For each scenario, we monitored the CPU and memory
consumption of the monitoring manager. The result of the
experiments is presented in Fig. 7 and 8. We computed the
average CPU and memory utilization by the Manager for

each scenario. Each evaluation scenario involving
communication between agents and manager was run for
duration of 30 minutes. The frequency of querying the agents
for QoS parameters was set to 1 second.

The outcomes clearly indicate that the manager
performance is stable with increase in the number of active
agents. The CPU utilization grows up from 6.25% when
manager is communicating with 5 Agents to 10.92% when
the number of agents is 85. Likewise, memory consumed by
the manager increased marginally from 177.5 MB with 5
agents to 177.85 MB with 85 agents. Moreover, we note, the
manager or the agents during the experiment did not
encounter any crash or malfunction. These outcomes clearly
validate the resource efficient operation of the CLAMS
framework and its ability and suitability to scale across
multi-cloud environments.

Figure 7: Manager Memory Utilization in MB

Figure 8: Manager CPU Utilization in Percentage.

In essence, we are motivated by the fact that there is a
need for monitoring specific processes across cloud layers in
multi-cloud environments. The proposed framework namely
CLAMS demonstrates its capability to achieve this goal by
enabling cross-layer monitoring in multi-cloud
environments. Experimental evaluations of the CLAMS
framework show a steady scalability of the monitoring
manger while handling data from 5, 30, 50 and 85 agents

289

simultaneously. Additionally, we note that the resource
requirements of the CLAMS agent did not increase
significantly when testing in environments with 5 and 85
agents. This further validates the CLAMS framework’s
ability to be a reliable, resource efficient cross-layer
monitoring system that can scale across multiple cloud
provider environments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented CLAMS—Cross-Layer
Multi-Cloud Application Monitoring-as-a-Service
Framework. The novel features of CLAMS includes: (i)
ability to monitor and profile QoS of applications, whose
parts or components are distributed across multiple public or
private clouds and (ii) ability to provide visibility into QoS
of individual components of application stack (e.g., web
server, database server). Our experimental evaluation study
shows that proposed approach is feasible and does not have
significant overheads.

Our future work will focus on extending the CLAMS in
following aspects [22]: (i) we will develop Distributed Hash
Tables (DHT) based decentralized messaging and indexing
system for interconnecting Agents and Managers within
CLAMS. For supporting scalable monitoring data query
interface over DHT infrastructure, will implement additional
data distribution and indexing techniques such as logical
multi-dimensional or spatial indices. This decentralized
approach will lead to better scalability and system
performance as compared to the existing centralized
architecture. The performance of the resulting decentralized
CLAMS will be evaluated by measuring messaging latency,
network traffic density, and additional message routing
overheads and (ii) we will novel application workload
behaviors and cloud resource QoS prediction models based
on data collected from CLAMS. The prediction model will
be based on the recent advances in computational statistical
techniques [23] (e.g., time series clustering, decision tree
learning, quadratic response surface models and Kernel
Canonical Correlation Analysis.). The prediction models
will capture that behavior of applications and its impact on
overall QoS delivered by the underlying cloud services.

REFERENCES

[1] S. N. T.-c. Chiueh and S. Brook, "A survey on virtualization
technologies," RPE Report, pp. 1-42, 2005.

[2] M. Bolte, M. Sievers, G. Birkenheuer, O. Nieh√∂rster, and A.
Brinkmann, "Non-intrusive virtualization management using libvirt,"
in Proceedings of the Conference on Design, Automation and Test in
Europe, 2010, pp. 574-579.

[3] M. K. Nair and V. Gopalakrishna, "‚CloudCop: Putting network-
admin on cloud nine towards Cloud Computing for Network
Monitoring," in Internet Multimedia Services Architecture and
Applications (IMSAA), 2009 IEEE International Conference on,
2009, pp. 1-6.

[4] R. Hillbrecht and L. C. E. d. Bona, "A SNMP-Based Virtual
Machines Management Interface," in Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility and Cloud
Computing, 2012, pp. 279-286.

[5] Y.-S. Peng and Y.-C. Chen, "SNMP-based monitoring of
heterogeneous virtual infrastructure in clouds," in Network
Operations and Management Symposium (APNOMS), 2011 13th
Asia-Pacific, 2011, pp. 1-6.

[6] E. Magana, A. Astorga, J. Serrat, and R. Valle, "Monitoring of a
virtual infrastructure testbed," in Communications, 2009.
LATINCOM'09. IEEE Latin-American Conference on, 2009, pp. 1-6.

[7] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, "Toward an
architecture for monitoring private clouds," Communications
Magazine, IEEE, vol. 49, pp. 130-137, 2011.

[8] B. Grobauer, T. Walloschek, and E. Stˆcker, "Understanding cloud-
computing vulnerabilities," IEEE Security and Privacy, 2010.

[9] I. Brandic, D. Music, P. Leitner, and S. Dustdar, "Vieslaf framework:
Enabling adaptive and versatile sla-management," Grid Economics
and Business Models, pp. 60-73, 2009.

[10] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos, "Shared
Resource Monitoring and Throughput Optimization in Cloud-
Computing Datacenters," 2011, pp. 1024-1033.

[11] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M.
Wolf, "Monalytics: online monitoring and analytics for managing
large scale data centers," in Proceedings of the 7th international
conference on Autonomic computing, 2010, pp. 141-150.

[12] P. Mell and T. Grance, "The NIST definition of cloud computing
(draft)," NIST special publication, vol. 800, p. 145, 2011.

[13] A. Letaifa, A. Haji, M. Jebalia, and S. Tabbane, "State of the Art and
Research Challenges of new services architecture technologies:
Virtualization, SOA and Cloud Computing," International Journal of
Grid and Distributed Computing, vol. 3, 2010.

[14] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, "The
characteristics of cloud computing," in Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on, 2010,
pp. 275-279.

[15] S. Zhang, S. Zhang, X. Chen, and X. Huo, "Cloud computing
research and development trend," in Future Networks, 2010.
ICFN'10. Second International Conference on, 2010, pp. 93-97.

[16] M. Ahmed, A. S. M. R. Chowdhury, M. Ahmed, and M. M. H. Rafee,
"An Advanced Survey on Cloud Computing and State-of-the-art
Research Issues," International Journal of Computer Science
Issues(IJCSI), vol. 9, 2012.

[17] L. Atzori, F. Granelli, and A. Pescap√®, "A network-oriented survey
and open issues in cloud computing," 2011.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, "Dcell: a
scalable and fault-tolerant network structure for data centers," in ACM
SIGCOMM Computer Communication Review, 2008, pp. 75-86.

[19] R. Ranjan, K. Mitra, D. Georgakopoulos, “MediaWise Cloud Content
Orchestrator”, Journal of Internet Services and Applications,
Springer, vol. 4, Jan 2013.

[20] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L.
M. Vaquero, K. Nagin, and B. Rochwerger, "Monitoring service
clouds in the future internet," Towards the Future Internet-Emerging
Trends from European Research, pp. 1-12, 2010.

[21] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, "A Novel Approach
to QoS Monitoring in the Cloud," 2011, pp. 45-51.

[22] K. Alhamazani, R. Ranjan, F. Rabhi, L. Wang and K. Mitra, "Cloud
monitoring for optimizing the QoS of hosted applications," Cloud
Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on , vol., no., pp.765,770, 3-6 Dec. 2012.

[23] A. Ganapathi et al., “Statistics-driven Workload Modeling for the
Cloud,” ICDE Workshops 2010, pp. 87-92, IEEE Computer Society.

[24] R. Ranjan; L. Chan; A. Harwood.; S. Karunasekera; R. Buyya.,
"Decentralised Resource Discovery Service for Large Scale Federated
Grids," e-Science and Grid Computing, IEEE International
Conference on , vol., no., pp.379,387, 10-13 Dec. 2007.

290

