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Abstract—Cloud computing provides on-demand access to 
affordable hardware (e.g., multi-core CPUs, GPUs, disks, and 
networking equipment) and software (e.g., databases, 
application servers, data processing frameworks, etc.) 
platforms. Application services hosted on single/multiple cloud 
provider platforms have diverse characteristics that require 
extensive monitoring mechanisms to aid in controlling run-
time quality of service (e.g., access latency and number of 
requests being served per second, etc.). To provide essential 
real-time information for effective and efficient cloud 
application quality of service (QoS) monitoring, in this paper 
we propose, develop and validate CLAMS—Cross-Layer 
Multi-Cloud Application Monitoring-as-a-Service Framework. 
The proposed framework is capable of: (a) performing QoS 
monitoring of application components (e.g., database, web 
server, application server, etc.) that may be deployed across 
multiple cloud platforms (e.g., Amazon and Azure); and (b) 
giving visibility into the QoS of individual application 
component, which is something not supported by current 
monitoring services and techniques. We conduct experiments 
on real-world multi-cloud platforms such as Amazon and 
Azure to empirically evaluate our framework and the results 
validate that CLAMS efficiently monitors applications running 
across multiple clouds.   

Keywords- multi-clouds; cross-layer monitoring; QoS; cloud 
computing. 

I. INTRODUCTION 

     Cloud computing is an emerging ICT service paradigm, 
that offers a flexible access to huge pool of resources such as 
processing, storage and network bandwidth with practically 
no capital investment and with modest operating costs 
proportional to the actual use (pay-as-you use model) [19].  
A number of public cloud providers have emerged to be very 
successful in the recent past including Amazon Web Services 
(AWS), Microsoft Azure, Salesforce.com and Google App 
Engine. In cloud platforms, the infrastructure to deploy 
applications is enabled by virtualization technology also 
called Virtual Machine Monitor (VMM) [1]. Virtualization 
technologies are utilized in cloud platforms to run multiple 
instances of machines on the same physical machine and 
share its resources at the same time. Typically, these VMs 
are isolated and operate independently from each other. With 
virtualization, there is a host operating system and a guest 
operating system, the former runs on the physical machine 
whereas the latter runs on a virtual machine [2]. 

Virtualization isolates the VMs from each other, thereby 
making fault tolerant and isolated security context behavior 
possible. Most widely adopted virtualization technologies in 
the cloud computing paradigm include Xen, VMware, 
Hyper-V, KVM, and OpenVZ.  

The advent of virtualization has led to the transformation 
of traditional data centers into flexible cloud infrastructure. 
With the benefit of virtualization, data centers progressively 
provide flexible online application service hosting [18] such 
as: web hosting, search, e-mails, and gaming. Largely, 
virtualization provides the opportunity to achieve high 
availability of applications in datacenters at reduced costs. 
The cloud platform is usually composed of several layers 
namely, Software-as-a-Service (SaaS), Platform-as-a-Service 
(PaaS) and Infrastructure-as-a-Service (IaaS). For reliable 
and efficient management of application performance  hosted 
on the *aaS layers, system administrators have to be fully 
aware of the compute, storage, networking resources, 
application performance and their respective quality of 
service (QoS) across the layers. QoS parameters (e.g, 
latency, renting cost, throughput, etc.) play an important role 
in maintaining the grade of services delivered to the 
application consumer and administrator as specified and 
agreed upon in the Service Level Agreement (SLA) 
document. The SLA guarantees scope and nature of an 
agreed QoS performance objective (also referred to as the 
QoS targets) that the cloud application consumer and 
administrators can expect from cloud service provider(s). 

 It is essential to note that the QoS parameters such as 
availability, application load, and throughput can vary in 
unpredictable ways depending on several factors (e.g., 
number of end-users connecting to application, physical 
resource or VM failure, VM overload etc.), making QoS 
monitoring an important task in ensuring the fulfillment of 
QoS targets (as specified in the SLA documents). Being 
aware of system’s current software and hardware service 
status is vital to meeting QoS targets of cloud-hosted 
applications [9].  

Based on the discussion above, it is obvious that cloud 
monitoring is an important task required for ensuring the 
QoS of applications hosted on the cloud platform [7] [8] [9]
[10]. Primarily, monitoring is vital  for: i) managing the QoS 
of software and hardware resources offered by the cloud;  ii) 
providing continuous information on the status of resources 
to cloud providers and application administrators; and (iii) 
detecting and debugging software and hardware problems 
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affecting applications’ QoS. While there has been significant 
interest in the area of cloud monitoring by academia and 
industry, most of the existing approaches [7] [8] [9] [11] 
[12][13][14][15][16][17] suffers from several problems, for 
example, they are tightly coupled to a particular cloud 
platform and can only perform monitoring at a particular 
cloud layer (e.g., either IaaS or PaaS or SaaS). As with any 
distributed application hosting environments, there is a need 
for application deployment across multi-cloud environments 
to improve application resilience and benefit from economies 
of scale. Further, the QoS monitoring problem is cross-
cutting as it extends across the multiple cloud service layers. 
For example, failure of VM (IaaS offering) affects the QoS 
of web application container (PaaS offering) or database 
application (PaaS offering) container hosted within that VM. 
This ultimately affects the QoS of end-user of that web 
application (SaaS offering).  This exemplifies the need for 
cloud monitoring techniques and software frameworks that 
are capable of monitoring application components across 
layers and across multiple cloud provider environments.
Hence, this renders the need for a uniform, extensive and 
effective multi-cloud, cross-layer monitoring framework that 
aid in controlling the application QoS based on real-time 
monitoring of the status of application components and 
underlying cloud platform (hardware and software). 

We believe that a cloud provider can manage and 
administer the cloud-resources/applications more efficiently 
and effectively when he/she gains in-depth status 
information of the system and application components across 
layers individually as against a black box view. For example, 
an application such as WordPress 1  will typically have a 
MySQL database and an Apache Web Server as the 
underlying components. Current cloud-application 
monitoring frameworks like Amazon CloudWatch2 typically 
monitor the entire virtual machine (hosting these 
components) as a black box. This means that the actual 
behavior of each application’s component is not monitored 
separately. In this particular scenario, application monitoring 
is limited in scope where not all components that might be 
distributed across PaaS and IaaS layers are monitored. This 
limiting factor reduces the ability for fine grained application 
monitoring and QoS control across layers.  Further, current 
cloud monitoring frameworks are mostly incompatible across 
multiple cloud providers. For example, Amazon CloudWatch 
does not allow monitoring application components hosted on 
non-AWS platforms. This defeats the distributed nature of 
cloud application hosting. These drawbacks trigger the 
significance of having interoperable and multi-layer enabled 
monitoring techniques and frameworks. 

This paper addresses the key challenge of cross-layer 
multi-cloud monitoring. To this end, we propose Cross-
Layer Multi-Cloud Application Monitoring as a Service 
(CLAMS) Framework. CLAMS framework enables
monitoring applications across cloud layers as well as across 
heterogeneous cloud platforms. CLAMS allow efficient 
collection and sharing of QoS information across cloud 

1 https://wordpress.org/ 
2 http://aws.amazon.com/cloudwatch/ 

layers. It employs a manger-agent approach that is cloud 
provider environments agnostic, i.e. making it compatible 
with any cloud provider. We present a proof-of-concept 
implementation of CLAMS monitoring application QoS 
across layers deployed and tested in multi-cloud 
environments such as Amazon AWS and Microsoft Azure. 
Using experimental analysis, we validate that CLAMS can 
efficiently monitor several cloud resources for multiple 
applications scenarios. 

The rest of the paper is organized as follows. Section II 
presents the summary of current techniques and frameworks 
that support cloud monitoring. Section III presents a 
motivating scenario and overview of CLAMS framework. 
Section IV proposes CLAMS system framework for cloud 
applications monitoring. Section V presents implementation 
details. Section VI presents outcomes of experimental 
evaluation of CLAMS framework. Section VII concludes the 
paper. 

II. RELATED WORK

In [20], Lattice monitoring framework is presented for 
monitoring virtual and physical resources. In this paper, a 
managed service is specified as a collection of Virtual 
Execution Environment (VEEs). Hence, Lattice is 
implemented to be able to collect information for CPU 
usage, memory usage, and network usage of each VEE and 
VEE host. Moreover, a dependable monitoring facility is 
presented in [21], called Quality of Service MONitoring as a 
Service (QoS-MONaaS). The focus of QoS-MONaaS 
approach is to: (i) continuously monitor the QoS statistics at 
the Business Process Level (SaaS); and (ii) enable trusted 
communication between monitoring entities (cloud provider, 
application administrator, etc.). Furthermore, a monitoring 
framework known as (PCMONS) is developed by 
incorporating previous frameworks and techniques [7]. 
PCMONS proves that cloud computing is viable way of 
optimizing existing computing resources in datacenters. 
Also, the paper notes that orchestrating monitoring solutions 
on installed infrastructures is viable. In contrast to above 
frameworks, CLAMS focuses on monitoring applications 
components across cloud layers as well as across 
heterogeneous cloud platforms. 

In cloud platforms, recent efforts have been put into 
improving VMs monitoring and controlling. A number of 
frameworks have been proposed for VM management, which 
includes Simple Network Management Protocol (SNMP) for 
data retrieval. SBLOMARS [6] implements several sub-
agents called ResourceSubAgents for remote monitoring. 
Each of SBLOMARS’s sub-agents is responsible for 
monitoring a particular resource. Inside each of these sub-
agents, SNMP is implemented for management data 
retrieval. In contrast to CLAMS which is focused on 
monitoring applications QoS in virtualized cloud computing 
environments, SBLOMAR focuses on enabling multi-
constrain resource scheduling in grid computing 
environments.  

In [3], CloudCop is a conceptual network monitoring 
framework implemented using SNMP. Basically, CloudCop 
adopts Service Oriented Enterprise (SOE) model. CloudCop 
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framework consists of three components: Backend Network 
Monitoring Application, Agent with Web Service Clients, 
and Web Service Oriented Enterprise. While CloudCop 
focuses on network QoS monitoring, CLAMS is concerned 
with application QoS monitoring.  

In [4], the authors propose a Management Information 
Base (MIB) called Virtual-Machines-MIB, to define a 
standard interface for controlling and managing VM 
lifecycle. It presents SNMP agents, which are developed 
based on NET-SNMP3 public domain’s agent. Besides read-
only objects, Virtual-Machines-MIB provides read-write 
objects that enable controlling managed instances. To obtain 
the data of Virtual-Machines-MIB, mostly Libvirt4 API and 
other resources such as VMM API are used [4]. While 
Virtual-Machines-MIB is concerned with monitoring IaaS-
level (VM) QoS statistics, it does not cater for the QoS 
statistics of PaaS level application components.  

In [5], the authors stress the importance to have a 
standardized interface for monitoring VMs on multiple 
virtualization platforms and this interface should be based on 
SNMP. The paper presents a framework for VMs monitoring 
which is fundamentally based on SNMP. The proposed work 
was built over three different VM hypervisors namely, 
VMware, Xen, and KVM. These three hypervisor were 
installed on two different OSs, which are MS Windows and 
Linux. Similarly to Virtual-Machines-MIB, this framework 
utilizes Libvirt API. Moreover, it implements an agent 
extension AgentX using Java. Primarily, this AgentX is to 
obtain VMs management data for the VMware, Xen, and 
KVM VMs and eventually the data is presented via web-
based management. However, similar to [4], the approach 
given in [5] focuses on VM-level QoS monitoring, while 
completely ignoring application component level QoS 
management and monitoring. 

In addition to the mentioned works above, libvirit-snmp 
is a subproject, which primarily provides SNMP 
functionality for libvirt. Libvirt-snmp allows monitoring 
virtual domains as well as it allows setting domain’s 
attributes. Furthermore, Libvirt-snmp provides a simple table 
containing monitored data about domains’ names, state, 
number of CPUs, RAM, RAM limit, CPU time. 

III. MOTIVATION AND OVERVIEW

A. Problem Discussion and Motivation 
A typical cloud application, for example, a multimedia 

content management system (CMS) as presented in Fig. 1 
includes several components (that are deployed at PaaS 
level) such as media streaming server, web server, indexing 
server, database server, compute service, storage service and 
the underlying network. To achieve an end-to-end 
application monitoring for the CMS application, the 
monitoring technique needs to monitor QoS parameters e 
across cloud layers of CMS application stack including PaaS 
(e.g., web server, streaming server, indexing server, etc.) and 
IaaS (e.g., compute services, storage services, and network). 

3 http://www.net-snmp.org/ 
4 http://libvirt.org/ 

Fig. 1 presents the QoS parameters that need to be monitored 
at each layer. The QoS parameters are presented and 
classified in Table 1 for the aforementioned CMS and other 
similar cloud applications (e.g., multi-tier web applications, 
content delivery networks, etc.) in general.  

Furthermore, if monitoring needs to be carried across 
multiple cloud provider (typical of distributed mission 
critical applications) platforms such as Amazon AWS and 
Microsoft Azure, the cloud provider specific monitoring 
frameworks such as CloudWatch and Fabric Controller have 
limited functioning to work in multi-cloud environments e.g.,
CloudWatch on AWS cannot monitor application/resources 
hosted on Azure and vice-versa. 
     To achieve the above stated goal, there is a need for a 
cross-layer monitoring framework that has the capability to 
work across multiple cloud providers in a coordinated 
manner to delivery QoS requirements of distributed cloud 
applications. 

Table 1: QoS Targets for Relative Cloud Layers. 

Cloud 
Layer

Layer Components Targeted QoS Parameters

SaaS User Applications 
(Servers App. Web 
App, Microsoft Word. 
etc)

BytesRead, 
BytesWrite, 
Delay, 
Loss, Availability, Utilization

PaaS Web Server, Streaming 
Server, Indexing 
Server, Apps Server, 
etc

SystemUpTime, 
SysDesc, 
SystemProcesses, 
SystemServices

IaaS Compute Services,
Storage Services,
Network, etc

CPU Parameters (Utilization, 
ClockSpeed, CurrentStte).
Network Parameters (Capacity, 
Bandwidth, Throughput, 
ResponseTime, OneWayDelay, 
RoundTripDelay, TcpConnState, 
TcpMaxConn).

Figure 1: Multimedia Components and QoS Metrics Across the 
Cloud Layers
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B. Overview 
Fig. 2 presents an overview of the philosophy driving the 

proposed CLAMS framework. As depicted in the figure, 
CLAMS employs an agent based approach for cross-layer, 
multi-cloud resource/application monitoring. In this multi-
cloud approach, monitoring agents are deployed in various 
cloud provider environments based on application 
requirements. Each agent is responsible to monitor 
resource/application information at various layers including 
SaaS, PaaS and IaaS. A manager agent is responsible to 
collect QoS data from each monitoring agent. 

IV. CLAMS: CROSS-LAYER MULTI-CLOUD
APPLICATION MONITORING AS A SERVICE

FRAMEWORK 
As mentioned in section I, in this paper we propose, 

develop and validate CLAMS, a novel approach for 
application(s) monitoring across layers on multi-cloud 
environments. CLAMS include mechanisms for efficient 
cloud monitoring at different *aaS layers. CLAMS provides 
standard interfaces and communication protocols that enable 
application/system administrator to gain awareness of the 
whole application stack across different cloud layers in 
heterogeneous, hybrid environments (monitor VMs hosted 
on different cloud platforms). In this way, CLAMS also 
satisfies the challenges related to interoperability between 
heterogeneous cloud resources. Fig. 3 presents a detailed 
architecture of the proposed CLAMS framework. The 
CLAMS framework comprises two main components 
namely, CLAMS Monitoring Manager and CLAMS 
Monitoring Agent. 

A. CLAMS Monitoring Manager 
The CLAMS Monitoring Manager is a software 

component that collects QoS information from CLAMS 
Monitoring Agents running on several virtual machines 
(VMs) across multi-cloud environments. In particular, the 
monitoring manager collects the QoS values from the agents 

running at the SaaS, PaaS and IaaS layers. The 
communication between the Monitoring Manager and the 
Agent can employ a push or pull technique. In case of pull 
technique, the manager polls the CLAMS agents at different 
frequencies, collects and stores the QoS statistics in a 
relational database (DB). When a push strategy is employed, 
the agents obtain the relevant QoS statistics and push the 
data to the Monitoring manager. As soon as the monitoring 
system is initialized on the cloud(s), the VMs running the 
CLAMS manager(s) and the agents boot up. Using discovery 
mechanisms like broadcasting, selective broadcasting or 
decentralized discovery mechanisms [24], the agents and 
manager discover each other. After discovering the address 
of each agent and manager, depending on the available 
strategy (push/pull) QoS statistics is collected by the 
manager from the agents. To illustrate further, consider a 
multimedia application running on the cloud where we have 
a media streaming server and an indexing server at the PaaS 
layer and storage server at IaaS layer.  

Each component of the multimedia application is running 
and hosted on different VMs. Streaming server has an IP 
address say, 192.168.1.1, indexing server has an IP address 
192.168.1.2, and the storage server has IP 192.168.1.3. Each 
VM also runs CLAMS monitoring agents that monitor 
applications and VM parameters. In this case, the manager 
can send first request to the agent on the streaming server 
VM specifying the IP address 192.168.1.1:8000 and stating 
the QoS target e.g., CPU utilization. Similarly, a second 
request is sent to the agent on the indexing server VM 
specifying the IP address (192.168.1.2:8000) and stating the 
QoS target e.g., Packets In. In the same way, a third request 
is sent to the agent on the storage server VM specifying the 
IP address (192.168.1.3:8000) and stating the QoS target e.g. 
actual used memory. 

The CLAMS monitoring manager employs a QoS data 
collection schema to store QoS statistics into the local 
database and an agent schema to maintain the list of 
discovered agents. The CLAMS monitoring manager also 

Figure 2: Overview of CLAMS Framework
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incorporates an API that is used by other monitoring 
manager or external service to share the QoS statistics. 

B. CLAMS Monitoring Agent 
Another major component of the CLAMS framework is 

the monitoring agent. The monitoring agent resides on VM 
running on the cloud and collects and sends QoS parameter 
values as requested by the manager. After the monitoring 
system initialization, the agent waits for the incoming 
requests from the manager or starts to push QoS data to the 
manager. Upon arrival of the request, the agent retrieves the 
stated QoS values belonging to a given process and/or a 
system resource and sends them back as a response to the 
Manager. 

The monitoring agent has the capability to work in multi-
cloud environments. Agent manager communication can be 
established using any approach that fits the application 
requirement e.g., publish- subscribe, client- server or Web 
services.  It can also employ standardized protocols for 
communicating system management information like SNMP. 
The proposed blueprint does not restrict future developers 
from extending CLAMS to their purposes. In our proof-of-
concept implementation explained in the next section, we 
have employed a combination of SNMP and RESTful Web 
services. The CLAMS monitoring agent also uses operating 
system dependent code to fetch corresponding application
QoS statistics, for example, use of OS specific commands to 
get CPU usage in Linux and Windows systems.  

C. CLAMS Hierarchical Support for Multi-Cloud 
Environments 
As mentioned previously, the CLAMS monitoring 

framework is aimed to be agnostic of the underlying cloud 
platform i.e., the manager/agent may run on heterogeneous 
cloud platforms. In case the monitored framework is 
distributed across different cloud platforms e.g., between 
Amazon cloud platform and Windows Azure platform, then 
one manager and multiple agents will be residing on each of 
these cloud platforms.  To achieve heterogeneity and multi-
cloud functionality, a hierarchical approach can be applied 

using Super Managers as depicted in Fig. 4. The function of 
a Super Manager is marginally different from a monitoring 
manager. The Super Manager is responsible for coordinating 
between multiple monitoring managers using the monitoring 
manger’s API. The monitoring managers (depicted as 
manager) as illustrated earlier will retrieve the monitored 
data from agents, and then they will re-send the data to the 
SuperManager. In a wider scope, a hierarchy of super 
manager can be formed where a SuperManager instance can 
collect data from multiple SuperManager instances, as shown 
in Fig. 4. 

Figure 4: CLAMS Multi-Cloud Support 

V. SYSTEM IMPLEMENTATION

The proof-of-concept implementation of the proposed 
CLAMS framework has been developed using Java and is 
completely cross-platform interoperable i.e., it works on both 
Windows and/or Linux operating systems. Fig. 5 presents 
proof-of-concept implementation screenshots. 

Monitoring Agent Implementation: The process of 
retrieving QoS targets is done by utilizing functionalities 
provided by SNMP, SIGAR5 and other custom built APIs. 
For instance, SNMP is used to retrieve the QoS values 
related to networking, number of packets in and out, route 
information and, number of network interfaces. SIGAR is 
used to obtain access to low-level system information such 
as CPU usage, actual used memory, actual free memory, 
total memory and process specific information (e.g. CPU and 
memory consumed by a process). Moreover, network 
information such as routing tables can also be obtained using 
SIGAR. Both SIGAR and SNMP packages have their own 
operating system specific implementations to retrieve system 
information e.g. system resources, and user processes. To 
enable SNMP monitoring, we define new SNMP Objects 

5 http://www.hyperic.com/products/sigar

Figure 3: CLAMS Framework Architecture
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Identifiers (OIDs) in a sequence. For example function to get 
the CPU usage of a specific process (tomcat) is assigned an
OID .1.3.6.1.9.1.1.0.0. Similarly, function to get process 
memory is assigned an OID .1.3.6.1.9.1.1.0.1. 

Monitoring Manager Implementation: The monitoring 
manager uses a MySQL database to store the QoS statistics 
collected from the agents. For the proof-of-concept 
implementation, we used a pull approach where the Manager 
is responsible to poll for QoS data from agents distributed 
across multiple cloud provider VMs. The manager uses a 
simple broadcasting mechanism for agent discovery. On 
booting, a discovery message is broadcasted to known 
network. Agents that are available respond to the manager’s 
request. The manager then records agent information to the 
agent database. The manager then starts off threads to query 
each agent in the agent database to obtain QoS parameters. 
The polling interval is a pre-defined constant and can be 
changed using the manager configuration files. 

Agent Manager Communication: For the proof-of-
concept implementation, the communication between the 
agent and the manager has been implemented using two 
techniques namely RESTful Web services and (SNMP). 
Having a RESTful approach enables easy lightweight 
communication between CLAMS agents and manager/super 
manager. Using a standardized SNMP interface makes 
CLAMS completely compatible with existing SNMP-based 
applications, tools and system and reduces the effort 
involved in collecting QoS statistics. 

Figure 5: CLAMS proof-of-concept Implementation 

VI. EXPERIMENTS AND RESULTS

A. Hardware and Software Configuration 
     To evaluate the proposed CLAMS framework, 
experiments were conducted on Amazon AWS and 
Microsoft Azure platforms. We used standard small 
instances on each platform. The AWS instance has the 
following configurations: 619 MB main memory, 1 EC 
compute unit e.g. 1 virtual core with 1 EC2 compute unit, 
160 GB of local instance storage, and a 64-bit platform. The 
Azure instance has the following configurations: 768 MB 
main memory, 1GHz CPU (Shared virtual core) and a 64 bit 
platform. During the execution of the experiment, we 
increased the number of AWS instances from 1 to 3 

instances. Each virtual machine instance was running 
multiple CLAMS monitoring agents, each monitoring one or 
more processes at different *aaS layers. Further, VM’s in the 
experiments were running Microsoft Windows Operating 
System. For persistent storage of monitoring agent and 
manager data, we use off storage volumes such as Elastic 
Block Store (EBS) in Amazon EC2 and XDrive in Windows 
Azure. Major advantages of architecting applications to 
adopt off instance storage are: i) each storage volume is 
automatically replicated, and this prevents data loss in case 
of failure of any single hardware component, ii) storage 
volumes offer the ability to create point in time snapshots, 
which could be persisted to the cloud specific data 
repositories. 

B.  Experimental Setup 
The CLAMS system has two main components namely 

the Monitoring Manager and Monitoring Agent. Each agent 
comprises the corresponding SNMP and SIGAR package 
dependencies to accomplish the monitoring task.  In the 
experiment, the monitoring manager triggers a request to 
monitoring agents, which in turn retrieve the requested QoS 
parameters from the hosted VM. Each agents running on the 
VM listens on a unique port e.g. VM1-IP:8000, VM1-
IP:8001, enabling them to respond to queries from the 
monitoring manager independently. The agents send 
responses to the monitoring manager concurrently. 

For experimental purposes and to demonstrate and 
validate CLAMS’s cross-layer monitoring capability, each 
agent monitors several resources including system resources 
and user processes Table 2 presents the list of monitored 
processes/resources. On retrieving QoS data from the agents, 
the monitoring manager saves the data into the local database 
by classifying them as system performance or user
applications QoS performance parameters.  

Table 2: Monitoring across different layers 

Process/Resource Description Owner
Tomcat7w.exe Apache Tomcat 7 User
MySqld.exe MySQL Workbench 6.0 User
Javaw.exe Monitoring Manager User
Lsass.exe Local Security Authority Process System
Winlogon.exe Windows Logon App. System
Services.exe Services and Controller App. System
VM CPU Usage CPU usage of the entire VM System
VM Memory Usage Memory usage of the entire VM System

             
Runtime Configuration: Monitoring agents as well as 

manager are packaged into jar files with corresponding 
dependencies and configured to run during VM boot process.
The agents use a configuration file that specifies processes to 
monitor. Based on this information, at run-time, the agent 
determines the process id of the respective process. After 
finding the process id, the agent starts to retrieve specific 
QoS parameters for that process e.g. memory usage and CPU 
consumption. 

Fig. 6 provides a detailed workflow of communication 
between the monitoring manager and agent. The monitoring 
manager instantiates parallel threads for each group of 
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Agents in one VM i.e., each thread is dedicated to only one 
VM to communicate with Agents running on that VM. 
Manager thread sends request to Agents addressed by IP 
address and port number. The request is for a list of QoS 
parameters monitored by the agent. After receiving the 
request, agents compute the QoS parameter values from the 
hosting VM. The agents then respond to the manager with 
corresponding QoS parameters.  

To evaluate the proposed CLAMS framework, we 
deployed the agents and managers on four virtual machine 
instances (3 VM’s on AWS and 1 on Microsoft Azure). On 
VM’s that hosted the agent, depending on number of agents, 
the agents were bound to unique ports. E.g., if VM-3 hosted 
30 Agents, it was bound to ports 8000-8030. Similarly if 
VM-4 hosted 10 agents, it was bound to ports 8000-8010. 

Figure 6: Manager/Agents run-time workflow 

C. Experimental Results and Discussion 
To validate CLAMS does not introduce significant 

overheads while monitoring QoS parameters across layers in 
multi-cloud environments, we ran experiments in 4 typical 
multi-cloud workload scenarios. 

Scenario I: VM-1 hosts the Manager, VM-2 hosts 25 
Agents, VM-3 hosts 30 Agents, and VM-4 hosts 30 Agents. 
In total, the manager communicates with 85 Agents deployed 
in multi-cloud environment (3 AWS instances and 1 Azure 
instance).

Scenario II: VM-1 hosts the manager, VM-2 hosts 10 
agents, VM-3 hosts 20 agents, and VM-4 hosts 20 agents. In 
total, the manager communicates with 50 Agents.  

Scenario III: VM-1 hosts the manager, VM-2 hosts 10 
Agents, VM-3 hosts 10 Agents, and VM-4 hosts 10 Agents. 
In total the manager communicates with 30 Agents.  

Scenario IV: VM-1 hosts the manager, VM-2 hosts 1 
agent, VM-3 hosts 1 agent, and VM-4 hosts 3 agents. In total 
the manager communicates with 5 Agents.  

For each scenario, we monitored the CPU and memory 
consumption of the monitoring manager. The result of the 
experiments is presented in Fig. 7 and 8. We computed the 
average CPU and memory utilization by the Manager for 

each scenario. Each evaluation scenario involving 
communication between agents and manager was run for 
duration of 30 minutes. The frequency of querying the agents 
for QoS parameters was set to 1 second. 

The outcomes clearly indicate that the manager 
performance is stable with increase in the number of active 
agents. The CPU utilization grows up from 6.25% when 
manager is communicating with 5 Agents to 10.92% when 
the number of agents is 85. Likewise, memory consumed by 
the manager increased marginally from 177.5 MB with 5 
agents to 177.85 MB with 85 agents. Moreover, we note, the 
manager or the agents during the experiment did not 
encounter any crash or malfunction. These outcomes clearly 
validate the resource efficient operation of the CLAMS 
framework and its ability and suitability to scale across 
multi-cloud environments. 

Figure 7: Manager Memory Utilization in MB 

Figure 8: Manager CPU Utilization in Percentage. 

In essence, we are motivated by the fact that there is a 
need for monitoring specific processes across cloud layers in 
multi-cloud environments. The proposed framework namely 
CLAMS demonstrates its capability to achieve this goal by 
enabling cross-layer monitoring in multi-cloud 
environments. Experimental evaluations of the CLAMS 
framework show a steady scalability of the monitoring 
manger while handling data from 5, 30, 50 and 85 agents 
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simultaneously. Additionally, we note that the resource 
requirements of the CLAMS agent did not increase 
significantly when testing in environments with 5 and 85 
agents.  This further validates the CLAMS framework’s 
ability to be a reliable, resource efficient cross-layer 
monitoring system that can scale across multiple cloud 
provider environments.  

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented CLAMS—Cross-Layer 
Multi-Cloud Application Monitoring-as-a-Service 
Framework. The novel features of CLAMS includes: (i) 
ability to monitor and profile QoS of applications, whose 
parts or components are distributed across multiple public or 
private clouds and (ii) ability to provide visibility into QoS 
of individual components of application stack (e.g., web 
server, database server). Our experimental evaluation study
shows that proposed approach is feasible and does not have 
significant overheads.  

Our future work will focus on extending the CLAMS in 
following aspects [22]: (i) we will develop Distributed Hash 
Tables (DHT) based decentralized messaging and indexing 
system for interconnecting Agents and Managers within 
CLAMS. For supporting scalable monitoring data query 
interface over DHT infrastructure, will implement additional 
data distribution and indexing techniques such as logical 
multi-dimensional or spatial indices. This decentralized 
approach will lead to better scalability and system 
performance as compared to the existing centralized 
architecture. The performance of the resulting decentralized 
CLAMS will be evaluated by measuring messaging latency, 
network traffic density, and additional message routing 
overheads and (ii) we will novel application workload 
behaviors and cloud resource QoS prediction models based 
on data collected from CLAMS. The prediction model will 
be based on the recent advances in computational statistical 
techniques [23] (e.g., time series clustering, decision tree 
learning, quadratic response surface models and Kernel 
Canonical Correlation Analysis.). The prediction models 
will capture that behavior of applications and its impact on 
overall QoS delivered by the underlying cloud services.  
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