
Using Traditional Data Analysis Algorithms to Detect Access Patterns for Big Data

Processing

Jiaqi Zhao1, Jie Tao2, Lizhe Wang3, Rajiv Ranjan4, and Joanna Kołodziej5

1School of Basic Science, Changchun University of Technology, P.R. China
2Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany

3Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China
4 ICT Centre, Commonwealth Scientific and Industrial Research Organisation, Australia

5 Institute of Computer Science, Cracow University of Technology, Poland

scorpiozhao@yahoo.com.cn, jie.tao@kit.edu, lizhe.wang@gmail.com, rranjans@gmail.com, jokoldziej@pk.edu.pl

Abstract—The data sets produced in our daily life is getting
larger and larger. How to manage and analyze such big data is
currently a grand challenge for scientists in various research
fields. MapReduce is regarded as an appropriate programming
model for processing such big data. However, the users or
developers still need to efficiently program appropriate data
processing actions related to their analytics requirements. In
other words analytics actions in MapReduce is not portable
across different big data types. In this paper we propose to
adopt traditional data clustering algorithms to automatically
analyze large data sets. We applied this approach to process
performance data on distributed shared memory machines for
detecting the application access patterns. The advantage is that
application developers need not write codes to understand the
runtime access behavior of their applications. We optimized
several benchmark applications based on the analysis results
and the experiments show a considerable improvement in terms
of execution time and speedup.

Keywords: Data Analysis, Memory Performance, Data

Locality, Distributed Shared Memory, Code Optimization

I. INTRODUCTION

The amount of data created in our daily life is growing

exponentially. Scientific instruments, the Web, and the sim-

ulation facilities are the major sources for this big data. The

Large Hadron Collider [10] in the European Organization

for Nuclear Research (CERN), for example, produces 15

Petabytes of scientific data every year. The Large Synop-

tic Survey Telescope (LSST) [11] generates 20 Terabytes

per night, which aggregates to a total data volume of 60

Petabytes in a year. Massive data sets are not only being gen-

erated by scientific applications but also by Web operators

including Google, Facebook, Twitter, and eBay. Today, data-

intensive computing is gaining significant momentum and it

is expected that data-based science will eventually bypass

the conventional computation-based simulation science as

the main driving force of HPC in the future [17].

As applications need to process larger and larger data

sets, the performance data or statistics, such as cache miss,

memory usage, processor throughput, and the like, which are

collected at the runtime for understanding the applications

execution behavior, are also growing up. It is a fact that

the analysis of performance data is necessary for optimizing

the placement of applications on the underlying computing

platform like physical servers and virtual machines. We have

been working with performance data in the last several years

and developed different tools for acquiring and visualizing

the performance data on both physical architectures [25] and

the virtualized machines [34]. The visualization with graph-

ical views makes it easy for programmers to understand

and analyse the performance data. However, such tools do

not work well for visualising the performance data related

to processing massive or big data sets. The main reason

behind this is the fact that a single view cannot highlight

the abnormal points over large time series. This problem

could be possibly eliminated by reducing the amount of

data using either lossy tracing [23], lower sampling rate

[9], or tracing of only global events [7]. However, for an

exact location of the problem and more importantly, for

detecting the reasons and potentially the solution, a full trace

is required. Therefore, we need more advanced solutions for

processing the large performance data.

Currently, MapReduce [12] is widely used for processing

large data sets. With a Map and a Reduce function, MapRe-

duce provides simple semantics for users to program data

analysis tasks. However, it can be burden for a programmer

to write specialized code for understanding and analysing

the runtime performance data of his application.

Therefore, we follow a traditional approach by apply-

ing data clustering algorithms, concretely the classification

and regression trees [6], to process the performance data.

This solution is based on several considerations: 1) The

data clustering algorithms are capable of self-learning. This

guarantees the required accuracy of the analysis result and

thereby the efficiency of the runtime performance tuning; 2)

The same stream of performance data often contains several

interesting patterns. For example, a memory access trace

holds the access stride, access hotspots, chained references,

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.155

1097

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.155

1097

and so on. By combining different rules of data clustering,

all these patterns can be detected. This avoids the necessity

of implementing a single algorithm for each pattern; 3) Data

clustering algorithms not only detect the problem but also

can predict the trend. This allows the runtime adaptation

system to take actions before the problem occurs; and 4)

A complete system optimization is associated with different

optimization targets that interact with each other. For exam-

ple, optimization on the speedup can potentially enlarge the

power consumption. The generic data analysis approach al-

lows a combined analysis of different data streams and hence

is potentially capable of delivering appropriate solutions for

a balancing trade-off across all performance metrics.

For this concrete work we apply the proposed approach

to conduct data locality optimization on a distributed shared

memory system. Today shared memory models are in-

creasingly used to develop parallel programs due to its

simplicity. Traditionally, shared memory programs run on

systems with a physically shared memory. Such systems,

however, are limited to system scales. Therefore, architecture

vendors are producing machines with a distributed shared

memory. The memory hierarchy in such machines is usually

multi-levels with different access time at each level. An

example is the Gordon Supercomputer [14] at the San Diego

Supercomputer Center, which is specifically designed for

data-intensive computing. Gorden has a five-level memory

hierarchy with a node-local shared memory, a distributed

shared memory within a Supernode, a distributed memory

between Supernodes, the flash memory, and disk arrays. A

problem with such machines is the different latency between

a local memory access and a remote access. This latency

distinction can be several factors, as on some commercial

machines like SGI Origin and Altix, and even one hundred

folds such as on Gorden.

The main novel contributions of our paper include: (i)

optimization of data allocation of parallel application on

a shared memory cluster via intelligent analysis of run-

time performance data. We collected the performance data

using a monitor simulator; (ii) application of the data mining

techniques, i.e., the classification and regression trees, to the

performance data; (iii) detection of the bottlenecks with large

remote memory accesses; and (iv) conducting extensive

experimental evaluations, which show that our approach

changes 40% of the total memory accesses from remote

to local hence achieving an improvement in execution time

with a factor of two.

The remainder of the paper is organized as follows.

Section II gives a brief overview of the related work.

This is followed by introducing how the performance data

are analyzed with traditional data analysis algorithms in

Section III. In Section IV the experimental results with data

locality optimization are demonstrated. The paper concludes

in Section V with a short summary and future directions.

II. RELATED WORK

Performance optimization is an important research area

and has been intensively investigated. The basis for any

performance optimization is to first understand the appli-

cations runtime behavior. To help application developers in

this task, different visualization tools or analysis frameworks

have been implemented in the last years.

The Tuning and Analysis Utilities (TAU) [28] is a profil-

ing and tracing toolkit for performance analysis. It consists

of a visualization component providing graphical displays of

performance analysis results. This allows the user to identify

the source of performance hotspots in the programs. The

tool has been adopted by researchers to characterize the I/O

performance [27], measure the GPU performance [22] as

well as study the application behavior [15].

The Center for Information Services and High Perfor-

mance Computing at the University of Dresdnen developed

Vampir [8] for performance visualization. It was originally

developed to show the communication bottlenecks of MPI

applications, but extended to depict the cache performance.

It can show the number of cache misses in a time-line view

as well as in the source code, allowing the detection of cache

critical code regions.

The Intel VTune Performance Analyzer [18] is regarded

as a useful tool for performance analysis. It provides several

views, like “Sampling” and “Call Graph”, to help pro-

grammers identify bottlenecks. For memory performance it

shows the absolute number of cache miss in a code region

allowing the user to detect functions and even code lines

that introduce excessive cache misses.

In addition to the visualization tools described above,

analysis frameworks [32] and models [3] were also devel-

oped to support programmers with the task of analyzing

performance data. Scalasca [32], [16] is a trace-analysis

infrastructure supporting the performance optimization of

parallel programs by measuring and analyzing their run-

time behavior. The analysis identifies potential performance

bottlenecks, in particular those concerning communication

and synchronization, and offers guidance in exploring their

causes. Dinu, Pop and Cristea [13] developed a model for

representing the patterns in the parallel time series describing

the distributed system parameters and states. Based on the

model, an application architecture was implemented for

systems that adopt advanced machine learning techniques

for detecting and learning patterns. The application was

implemented as an add-on to the well-known MonALISA

monitoring framework for distributed systems.

We go beyond of the traditional approach of using visual-

ization to show the performance data by using classification

and regression techniques that are usually used for data

mining. Actually, these algorithms have been applied in

other research fields.

Olaru et al. [24] investigated the application of classi-

fication and regression techniques in power system engi-

10981098

neering. Athanasopoulou et al. [1] used classification to

predict control monitoring rules in order to optimize the

efficiency of electric power generation processes. In further

fields, Létourneau et al. [20] investigated the use of decision

trees, instance based learning and naı̈ve Bayes classifiers

to optimize aircraft component replacements. Kusiak and

Song [19] employed linear regression, neural networks and

decision trees to optimize combustion efficiency of coal-fired

boilers.

Due to the fact that performance data are becoming larger

and the data clustering algorithms can analyze large data

with low overhead, we propose the approach of using these

algorithms to process the performance data with a case study

on distributed shared memory systems. The idea is to apply

statistical methods to a given data set in order to discover

potentially new and useful knowledge.

III. DETECTING THE ACCESS PATTERN

The prerequisite for any performance optimization is the

runtime performance data. Modern processors are equipped

with a performance monitoring unit that contains several

registers for tracing the runtime events such as cache miss,

context switches, TLB miss and so on. Most of the per-

formance analysis tools, including those introduced in the

previous section, rely on the performance counters to collect

the runtime data. However, for this work the hardware

counters cannot fully help us because they are not able to

trace the communications between computing nodes in a

distributed system.

We specifically designed a hardware monitor for this

purpose. The hardware device is composed of three com-

ponents: a B-Link interface to the network for extracting

information from the packets transferred on the network; a

counter array for temporally storing the acquired informa-

tion; and a PCI interface that allows the users to deliver

the monitoring data to the user space. The monitor can be

configured into a static and a dynamic working mode. In

the former case, an integrated filter in the counter array

allows the monitor to only trigger user specified events.

With the dynamic mode, the complete inter-node traffic is

captured and recorded. For this work, we use the dynamic

monitoring to inspect all packets delivered on the network,

thus to acquire a complete histogram of the communications

between the processor nodes on the system. Each record in

the histogram contains four attributes: source, destination,

access type and access address. Here, source and destination

specify the sender and receiver of a packet, i.e., a remote

memory reference on a distributed shared memory architec-

ture.

The next step is to apply data clustering approach to find

useful information in large sets of data, concretely the access

pattern for this work. The data clustering process describes a

common approach to identify certain patterns in given data

sets. The acquired data are first transformed to a specific

Figure 1. A sample decision tree for predicting a processor node

format required by the applied algorithm and then mined to

create results for computing predictions.

Depending on the input data and the expected patterns

to identify, several different algorithms exist. While the

clustering helps to identify several data tuples with similar

properties, association rules find combinations of attributes

frequently occurring together in the whole data set. Classi-

fication and regression are methods to predict one attribute-

value based on a set of input attributes.

With respect to performance data, classification algo-

rithms are especially useful. When analyzing inter-node

communications, we try to find the access characteristics of

a certain memory address or access region and the optimal

processor node for it. Here, an optimal processor is the one

that has performed the most accesses on the data item. It

is clear that the data item shall be placed on this processor

for less remote accesses. Hence, we reduce the problem of

inter-node communication into the problem of predicting an

optimal node with a set of given attributes.

One approach to do classification is to learn a decision

tree. Such a tree consists of one root node and several

subsequent nodes, which represent the decision rules. The

leaf nodes finally represent the class of a tuple satisfying

all the conditions denoted by parent nodes. Figure 1 depicts

a simple example. An unknown attribute of a data tuple

is predicted by traversing through the tree until reaching

a leaf node containing a classification. For our case, the

leaves are the processors contained in the system and the

goal is to search the decision tree to achieve a leaf for the

given address. Figure 1 demonstrates a search process for

the location of a data block containing the memory address

441 that is accessed by the program prog.2. According to the

decision tree, this block shall be allocated to CPU 3 because

for all addresses bigger than 123 the best destination is this

processor.

Since the decision trees have a simple structure and forms

10991099

Figure 2. The analysis procedure for processing performance data

an easy way for classifying data tuples, it is more complex

to automatically learn the decision trees from a database of

sample records. The usual technique is a top-down induction

of such trees, which starts at the root node and applies the

same algorithm to all subsequent children. At every node

it has to be decided which attribute has to be selected and

at which threshold value the attribute should be split. This

is done in a greedy manner using entropy or information

gain measures [26], [5]. If only the records from the same

class remain in one node or no further conditions offer any

improvement, the majority class is decided to be the final

classification of the corresponding data tuples.

Actually, the monitoring data provides the access address

for each single communication. This allows us to acquire

the best position of individual data addresses. However, such

fine granularity is generally not necessary for data locality

optimization. Therefore, we transferred the data into a format

in which the access frequency per processor is associated

with each memory block in size of a virtual page. With

this transformation, each data tuple consists of the desired

memory block and one column for each processor in the

system.

Figure 2 depicts the whole procedure of analyzing the

monitoring data. In the first step, the monitoring data is

transformed. This is followed by data clustering. The results

are then delivered to the programmers with three different

granularities, i.e., data set level, page level and single

address.

IV. OPTIMIZATION AND EXPERIMENTAL RESULTS

In order to examine the feasibility of the discovered

knowledge, we performed data locality optimization on

several standard big data applications.

A. Experimental Setup

In order to conduct repeatable experiments under con-

trolled settings we decided to develop a monitor simulator

instead of using the real hardware monitor. We integrated

the monitor simulator into a multiprocessor simulator [30]

that focuses on modeling the memory system of Non-

Uniform Memory Access (NUMA) architectures and the

execution of shared memory applications parallelized with

m4 macros used by, e.g., the SPLASH-II benchmark suite

[33]. This simulator allows us to specify various memory

configurations, including the cache associated parameters

and the access latency for different memory locations. More

specifically, it is possible to explicitly specify the location

of the complete working set or an individual virtual page.

We use this feature to realize both the coarse-grained and

fine-grained memory locality optimization. In addition, the

simulator delivers as output the execution time of a program

and the number of accesses at each memory location. This

allows us to study the impact of optimizations in the code

in terms of the memory performance.

The applications for the experiments are chosen from the

SPLASH-II benchmark. The benchmark consists of several

programs. The LU program factors a dense matrix into the

product of a lower triangular matrix and an upper triangular

one. The primary data structure in LU is the matrix being

decomposed. For this experiment we use a matrix of size

128 × 128. FFT is a complex, one-dimensional version of

the ”Six-Step” FFT algorithm described in [2]. The data

set consists of n complex data points to be transformed

and another n complex data points referred to as the roots

of unity. For this experiment FFT is simulated using 2
14

data points. RADIX implements an integer radix sort based

on the method described in [4]. We performed this sort on

65,536 elements. WATER is a N-body molecular dynamics

application that evaluates the forces and potentials in a

system of water molecules in the liquid state. For this

experiment a data size of 216 molecules was specified. The

OCEAN program uses a restricted Red-Black Gauss-Seidel

Multigrid solver to simulate the role of eddy and boundary

currents on large-scale ocean movements. The simulation is

performed for many time-steps until the eddies and mean

ocean flow attain a mutual balance. We use a grid of 130

× 130 to model the ocean basin. BARNES implements the

Barnes-Hut method to simulate the interaction of a system

of bodies (N-body problem). We performed this simulation

using a N-body size of 1,024.

11001100

B. Locality Optimization

As mentioned and shown in Figure 2, data clustering

provides us three results with different granularities, i.e.,

single memory address, individual virtual page and the

complete data set. The first result enables extremely fine-

grained optimization, i.e. to allocate each data item to the

corresponding processor node. However, such a granularity

introduces high overhead, especially for the case of run-

time optimization. Therefore, we performed the fine-grained

page-level optimization using single pages as an allocation

unit and the coarse-grained optimization of allocating the

whole data set on a single node.

The optimization was enabled by using the annotations,

provided by the simulation platform, to explicitly specify the

best location in the source code. In the case of page-level

optimization, each virtual page is specifically allocated on its

dominating node, while with the coarse-grained optimization

a single node is specified for the entire working load. A

dominating node is the computing node that performs the

most accesses on the virtual page.

The baseline for both optimization versions is the trans-

parent data placement, i.e., all data are placed on the host

node on which the job is submitted. We also addressed the

first-touch scheme [29], which is usually applied to evaluate

the memory optimization on systems with a distributed

shared memory [21], [31]. First-touch allocates data on the

node that first accesses it. This scheme tends to behave better

than other data distribution policies, because the node that

first accesses a page is usually the node that mostly accesses

it.

C. Optimization with Exclusive Data Access

Our first experiment aims at studying the direct impact

of the optimizations. For this, we simulated all applications

with first-touch, node-level optimization (opt-coarse), page-

level optimization (opt-fine), and the conventional host-node

data placement. We also executed the application using

different numbers of processors in order to examine the

scalability of our locality optimization approach. According

to the requirement of some applications, the number of

processors is specifically chosen as a power of two. For

each test the execution time of all applications was measured

and the speedup was calculated by dividing the time needed

for running the code with the conventional data placement

policy via the execution time of an optimized version, i.e.,

S = Toriginal/Toptimized.

The L1 cache is specified as a two-way associative cache

with a size of 16 KB, while the L2 cache is four-way

associative with a size of 512 KB. The local memory access

latency is specified as 100 CPU cycles and remote access

latency 1,000 cycles, based on the configuration of modern

commodity processors. For the following tests, we use the

most strict communication policy, which allows only one

node to access one remote memory at the same time. During

this delay no other nodes can perform remote accesses.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2 4 8 16 32

Number of processors

S
p

ee
d

u
p

 (
o

p
t

vs
. b

as
is

)

first-touch

opt-coarse

opt-fine

Figure 3. Improvement in execution time with the LU application

Figure 3 to 7 depict the experimental results with different

applications. The x-axis of these figures shows the number

of processors we used for the experiments, while the y-axis

depicts the speedup of the optimized code version against the

transparent version in absolute execution time. The figures

show the data with the two optimization schemes and the

allocation policy first-touch.

Observing the result with LU, as illustrated in Figure 3,

it can be seen that the first-touch scheme has no speedup

to the basic policy, where the y-axis shows a value of 1

in speedup for all tests meaning that this scheme results

in the same execution time as the default version. This also

indicates that first-touch brings the same runtime data layout

as the host-node scheme that allocates all data sets on the

same node, i.e., the host node. The reason may lie on the

data initialization, which is usually done by the host and the

first-touch scheme hence puts all shared data on the host

node that first accesses the data. The figure also depicts

that the node-level optimization has a similar behavior,

where only on two-processor systems a slight speedup in

execution time is observed. Page-level optimization, on the

other hand, introduces a speedup with the LU application

and the speedup arises with the number of processors. For

example, a speedup of factor 1.04 is achieved with two-

processor systems, while on 32 processors a factor of 1.23

is obtained. This renders that the page-level optimization

achieves a good scalability with LU.

FFT shows a different behavior. As illustrated in Figure 4,

all three data allocation policies perform better than the

conventional data placement. Nevertheless, both first-touch

scheme and coarse-grained optimization present a poor scal-

ability because the improvement goes down as the number

of processors increases. The same behavior can also be

seen with the fine-grained page-level optimization on small

systems. However, using page-level optimization the perfor-

mance achievement arises and goes up starting with 16-node

11011101

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2 4 8 16 32

Number of processors

S
p

ee
d

u
p

 (
o

p
t

vs
. b

as
is

)
first-touch

opt-coarse

opt-fine

Figure 4. Improvement in execution time with the FFT application

systems. The speedup on a 32-node system, for example, is

still lower than that on the two-node system but higher than

the case with four-node systems. Further observation of the

trend on larger systems would be interesting. Unfortunately,

the simulation platform is limited to 32 processors.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

2 4 8 16 32

Number of processors

R
ed

u
ct

io
n

 r
at

e
o

f
re

m
o

te
 a

cc
es

se
s lu

fft

radix

water

ocean

barnes

Figure 5. Reduction rate of remote accesses on different system scales

The improved runtime behavior with page-level optimiza-

tion directly contributes to the better data locality. For

a deeper insight into this issue we have measured the

number of remote accesses for both page-level optimization

and the transparent data placement. We then computed the

reduction rate which is defined as the percentage of reduced

remote accesses achieved by the optimized version to the

total remote accesses introduced by the transparent version.

Figure 5 presents the results with all tested applications

running on systems with 2 to 32 processing nodes.

Observing the curves in Figure 5, it can be seen that for

most applications the reduction rate is higher on smaller

systems than on larger ones, for example, LU, WATER,

OCEAN, and BARNES. This is not surprising because on

smaller systems a data page is requested by few processor

nodes. However, on large systems the references to a single

page are distributed across a set of nodes which possibly all

require the page frequently. This means that the optimization

of exclusively putting the data on the dominating node

can only remove the remote accesses from this node but

not of the others. Nevertheless, if an application has a

lower shared degree, a data page would be potentially only

dominantly accessed by a single processor. In this case, the

reduction rate of remote accesses can still be high on larger

systems. FFT and RADIX are such examples. With the FFT

application, we achieved a reduction of as high as 47% in

remote memory accesses on 32-processor systems, while

RADIX shows a constant reduction rate of 40% from 4 to

32 processors.

0

0,5

1

1,5

2

2,5

2 4 8 16 32

Number of processors
S

p
ee

d
u

p
 (

o
p

t
vs

. b
as

is
)

first-touch

opt-coarse

opt-fine

Figure 6. Improvement in execution time with the RADIX application

The high reduction rate of RADIX directly results in the

performance gain in terms of execution time. As demon-

strated in Figure 6, page-level locality optimization in-

troduces an exciting speedup in execution time and this

improvement increases drastically with the number of pro-

cessors. On a 32-node system, for instance, we achieved

a speedup of as high as a factor of two. The scalability

achieved with RADIX has to be contributed by the reduction

in remote memory accesses. As shown in the previous figure,

the reduction rate with RADIX is similar with systems of

different scales, which also means a similar reduction in the

remote access penalty. In this case, the speedup on larger

systems is higher because the execution time is smaller.

The application WATER, however, does not present good

results with the optimization. As shown in Figure 7, even

the page-level locality tuning is not effective. This is caused

by its specific access pattern which will be explained later.

In summary, the applications demonstrate different be-

havior with our locality optimization. This distinction lies

directly on the access pattern of each individual program.

Using the proposed approach, we found that for the LU

application nearly half of the total data pages is accessed

equally by many processors, while the other half has several

dominating nodes. Only 6% of the pages is accessed mainly

by a single processor. We have placed each page to its

best position suggested by our data classifier. However, for

most pages other nodes also require them. Hence, still many

11021102

0

0,2

0,4

0,6

0,8

1

1,2

2 4 8 16 32

Number of processors

S
p

ee
d

u
p

 (
o

p
t

vs
. b

as
is

)
first-touch

opt-coarse

opt-fine

Figure 7. Improvement in execution time with the WATER application

remote accesses exist after the location tuning. Similarly

for WATER, although 36% of the data pages is dominantly

accessed by a single node, the number of accesses by

this node is only 2% of the total remote accesses. The

others are shared by all or almost all processors and these

processors perform equally accesses to an individual page.

For BARNES the whole shared data is accessed by all nodes.

Even though some nodes do not frequently request a page,

there exists no dominating node for any data page. This

means that at least two processors equally access the same

page. Therefore, it is difficult to optimize this code.

With FFT, nevertheless, 96% of the data pages has a

dominating node and 33% of them are exclusively accessed

by this node. RADIX is even better, with more than a half of

the data pages accessed by a single node. For OCEAN nearly

70% of the pages are exclusively used by one node and

2/3 of the rest has a clear dominating processor. Therefore,

the optimization with these three applications leads to a

considerable performance gain.

As observed in the figures the coarse-grained optimization

generally does not work well. The reason is as following.

The global dominating node for the whole data set is

discovered based on the total remote accesses each node

performed at the runtime. Actually, most pages are shared

by many processors. The page-level optimization improves

the performance because of the existence of a dominating

node for each individual page. However, we note that in

most cases this dominating node varies from page to page.

Therefore, node-level optimization could improve the data

locality in smaller systems. For example, on a two-node

machine, there are only two candidates for a page; hence,

placing all data on the global dominating node can achieve

speedup. However, on larger systems the best position for a

virtual page can be any of the processors; therefore, only a

fine tuning with the ability of placing each page on a specific

node is able to improve the memory access behavior.

V. CONCLUSIONS

This paper describes our research work of applying

generic data analysis techniques for memory locality op-

timization on systems with a distributed memory. The goal

of this work is to validate the feasibility of the data clas-

sification algorithms in the task of detecting performance

bottlenecks and proposing an efficient solution. This is

actually the first step towards our final target of establishing

self-optimizing parallel systems with respect to different

interacting performance metrics. For this research goal we

deploy data clustering to evaluate the runtime performance

data because this technique provides the required properties

such as analysis accuracy, overhead, and association of

multiple optimization targets. The proposed approach has

shown its ability in finding access patterns and bottlenecks.

The data analysis results have guided us to achieve signifi-

cant improvement in both execution time and scalability of

parallel programs.

With this initial experience, we will further address other

performance metrics, like the cache performance, processor

utility, energy consumption, etc. A more exciting future work

is to optimize the system with all these metrics taken into

account.

ACKNOWLEDGEMENTS

Dr. Lizhe Wang’s work is supported by the National

Natural Science Foundation of China (61361120098).

REFERENCES

[1] C. Athanasopoulou, V. Chatziathanasiou, M. Komninou, and
Z. Petkani. Applying Knowledge Engineering and Data Min-
ing for Optimization of Control Monitoring of Power Plants.
In Proceedings of the 6th IASTED International Conference
on European Power and Energy Systems (EuroPES), 2006.

[2] D. H. Bailey. FFTs in External or Hierarchical Memory.
Journal of Supercomputing, 4(1):23–35, March 1990.

[3] N. Bessis, S. Sotiriadis V., Cristea, and F. Pop. Modelling
Requirements for Enabling Meta-scheduling in Inter-Clouds
and Inter-Enterprises. In Proceedings of the International
Conference on Intelligent Networking and Collaborative Sys-
tems (INCoS), pages 149–156, 2011.

[4] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha. A Comparison of Sorting Algo-
rithms for the Connection Machine CM-2. In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 3–16, July 1991.

[5] Christian Borgelt. A Decision Tree Plug-In for DataEngine.
In Proceedings of the 6th European Congress on Intelligent
Techniques and Soft Computing (EUFIT), volume 2, pages
1299–1303, Aachen, Germany, 1998. Verlag Mainz.

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Chapman & Hall, 1993.

11031103

[7] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci.
Portable Programming Interface for Performance Evaluation
on Modern Processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

[8] H. Brunst, D. Hackenberg, G. Juckeland, and H. Rohling.
Comprehensive Performance Tracking with Vampir 7. In M.S.
Mller, M.M. Resch, A. Schulz, and W.E. Nagel, editors, Tools
for High Performance Computing, pages 17–29. Springer,
2009.

[9] B. R. Buck and J. K. Hollingsworth. Data Centric Cache
Measurement on the Intel Itanium 2 Processor. In Proceedings
of SuperComputing, November 2004.

[10] CERN. LHC – The Large Hadron Collider. Web Page.
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

[11] The LSST Corporation. Large Synoptic Survey Telescope.
Web Page. http://www.lsst.org/lsst/.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[13] C. M. Dinu, F. Pop, and V. Cristea. Pattern Detection
Model for Monitoring Distributed Systems. In Proceedings
of the International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), pages 268–
275, 2011.

[14] Gordon at san diego supercomputing center.
http://www.sdsc.edu/us/resources/gordon/.

[15] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A.
Romero, and A. D. Malony. Performance Characterization
of Global Address Space Applications: A Case Study with
NWChem. Concurrency and Computation: Practice and
Experience, 24(2):135–154, 2012.

[16] M. Hermanns, S. Krishnamoorthy, and F. Wolf. A scalable
infrastructure for the performance analysis of passive target
synchronization. Parallel Computing, 39(3):132–145, March
2013.

[17] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The
Fourth Paradigm: Data-Intensive Scientific Discovery. Mi-
crosoft Research, Redmond, Washington, 2009.

[18] Intel. Intel VTune Amplifier XE 2013: Performance and
Thread Profiler. http://software.intel.com/en-us/intel-vtune-
amplifier-xe.

[19] A. Kusiak and Z. Song. Combustion Efficiency Optimization
and Virtual Testing: A Data-Mining Approach. IEEE Transac-
tions on Industrial Informatics, 2(3):167–184, August 2006.

[20] Sylvain Letourneau, Fazel Famili, and Stan Matwin. Data
Mining to Predict Aircraft Component Replacement. IEEE
Intelligent Systems, 14(6):59–66, 1999.

[21] H. Löf, M. Nordén, and S. Holmgren. Improving Geograph-
ical Locality of Data for Shared Memory Implementations
of PDE Solvers. In Computational Science - ICCS 2004,
volume 3037 of Lecture Notes in Computer Science, pages
9–16, 2004.

[22] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov,
G. Juckeland, R. Dietrich, D. Poole, and C. Lamb. Parallel
Performance Measurement of Heterogeneous Parallel Sys-
tems with GPUs. In Proceedings of International Conference
on Parallel Processing, pages 176–185, September 2011.

[23] J. Marathe, F. Mueller, and B. de Supinski. ”A Hybrid
Hardware/Software Approach to Efficiently Determine Cache
Coherence Bottlenecks. In Proceedings of the International
Conference on Supercomputing, pages 21–30, June 2005.

[24] C. Olaru, P. Geurts, and L. Wehenkel. Data mining tools and
applications in power system engineering. In Proceedings of
the Power Systems Computation Conference (PSCC), 1999.

[25] B. Quaing, J. Tao, and W. Karl. YACO: A User Conducted
Visualization Tool for Supporting Cache Optimization. In
High Performance Computing and Communcations: First
International Conference, HPCC 2005. Proceedings, volume
3726 of Lecture Notes in Computer Science, pages 694–703,
Sorrento, Italy, September 2005.

[26] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, USA,
1993.

[27] S. Shende, A. Malony, W. Spear, and K. Schuchardt. Charac-
terizing I/O Performance Using the TAU Performance Sys-
tem. In Proceedings of the ICPP Parco 2011 conference
Exascale Mini-symposium.

[28] S. Shende and A. D. Malony. The TAU Parallel Performance
System. International Journal of High Performance Comput-
ing Applications, 20(2):287–311, 2006.

[29] H. Takashi, O. Hiroshi, I. Takayoshi, and D. Henry. Auto-
matic Data Distribution Method Using First Touch Control for
Distributed Shared Memory Multiprocessors. In Languages
and compilers for parallel computing. International work-
shop, volume 2624 of Lecture Notes in Computer Science,
pages 147–161, 2001.

[30] J. Tao, M. Schulz, and W. Karl. A Simulation Tool for
Evaluating Shared Memory Systems. In Proceedings of the
36th Annual Simulation Symposium, pages 335–342, Orlando,
Florida, April 2003.

[31] M. M. Tikir and J. K. Hollingsworth. Using Hardware
Counters to Automatically Improve Memory Performance. In
Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, 2004.

[32] F. Wolf. Scalasca. In Encyclopedia of Parallel Computing,
pages 1775–1785. Springer, October 2011.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

[34] J. Zhao, J. Tao, L. Wang, and A. Wirooks. A Toolchain
For Profiling Virtual Machines. In Proceedings of the 27th
European Conference on Modelling and Simulation (ECMS
2013), pages 497–503, Aalesund, Norway, May 2013.

11041104

