
Parallel Processing of Massive EEG Data with
MapReduce

Lizhe Wang1,2†, Dan Chen2, Rajiv Ranjan3, Samee U. Khan4, Joanna Kołodziej5, and Jun Wang6†
1 Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, P.R. China

2 School of Computer, China University of Geosciences, P.R. China

3 Information engineering lab, CSIRO ICT Centre, Australia

4 Department of Electrical and Computer Engineering, North Dakota State University, USA

5 Institute of Computer Science, Cracow University of Technology, Poland

6 Department of Electrical Engineering & Computer Science, University of Central Florida, USA

† Corresponding author: Lizhe.Wang@gmail.com, jwang@eecs.ucf.edu

Abstract—Analysis of neural signals like electroencephalogram
(EEG) is one of the key technologies in detecting and diagnosing
various brain disorders. As neural signals are non-stationary and
non-linear in nature, it is almost impossible to understand their
true physical dynamics until the recent advent of the Ensemble
Empirical Mode Decomposition (EEMD) algorithm. The neural
signal processing with EEMD is highly compute-intensive due
to the high complexity of the EEMD algorithm. It is also data-
intensive because 1) EEG signals contain massive data sets 2)
EEMD has to introduce a large number of trials in processing
to ensure precision. The MapReduce programming mode is
a promising parallel computing paradigm for data intensive
computing. To increase the efficiency and performance of the
neural signal analysis, this research develops parallel EEMD
neural signal processing with MapReduce. In this paper, we
implement the parallel EEMD with Hadoop in a modern cy-
berinfrastructure. Test results and performance evaluation show
that parallel EEMD can significantly improve the performance
of neural signal processing.

I. INTRODUCTION

a) Neural signal processing and EEMD: Neural signal

analysis is a process of detection, diagnosis, and treatment

of brain disorders and the related diseases [21]. Typical neu-

ral signals include electroencephalogram (EEG), magnetoen-

cephalography (MEG), electrocorticographic (ECoG), magnet-

ic resonance imaging (MRI), and functional MRI (fMRI).

Neural signals are naturally nonlinear and non-stationary.

Researchers have intensively studied linear neural signal pro-

cessing algorithms, such as short-Fourier transform, Wigner-

Ville distribution and wavelet filtering, in spectral analysis

of EEG recordings. However, it has been examined that the

temporal patterns of neural signals, such as instantaneous

amplitude and phase/frequency, cannot be accurately estimated

with linear algorithms [20], [9].

The Ensemble Empirical Mode Decomposition (EEMD)

algorithm [28], in conjunction with Hilbert-Huang Transform

(HHT) [18], has been proposed as a revolutionary solution to

the neural signal processing. This method can break down

a complicated nonlinear and non-stationary signal into a

collection of oscillatory Intrinsic Mode Functions (IMFs).

The EEMD algorithm eliminates mode mixing in all cases

automatically and excels in resistance to noises, thus making

the EEMD algorithm much superior to its linear counterparts

in processing neural signals.
The EEMD algorithm demands repetitively processing

many trials of the noise-added signal in an ensemble, and the

precision of the outputs depends on the number of trials, which

should be large enough to neutralize the effect of added noises.

Furthermore, as experimental techniques for recording neural

activities have been advancing quickly, i.e., rapidly increasing

number of channels (electrodes) and sampling frequencies.

The density and the spatial scale of neural signals have been

increasing exponentially. Therefore the neural signal analysis

with EEMD manifests a problem, not only compute-intensive,

but also highly data-intensive. Thus it is a natural solution

to develop parallel EEMD neural signal processing with high

performance computing architectures.
b) Parallel Neural Signal Processing: There are mainly

two research directions for high performance neural process-

ing:

• Effective storage and management of complex and mas-

sive experimental data in a distributed environment:

[17] proposes a solution of management of massive

neuroimaging data by integrating database management

systems (DBMS) with Grid computing and cluster-based

computing. The approach centers on a DBMS, which first

facilitates storing and sharing fMRI data and eases the

analysis of these data. [16] proposes a high-performance

scheme for the EEG compression using a multichan-

nel model. SignalML, a meta-format for description of

biomedical time series storage, is discussed in [13].

[6] presents a compressed sensing framework for EEG

compression.

• Parallel neural signal processing with HPC architectures

and paradigms:

Eichner et. al. [14] develop a neural simulation on multi-

core architectures. Chen et. al. [10] and Wilson et. al.

[27] use GPGPU to parallelize the neural processing

algorithms. A Beowulf cluster is employed in [29] for

parallel EEG processing. Laubach et. al. [19] develop a

parallel architecture of cluster of workstations for on-line

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.32

164

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.32

164

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.32

164

analyses of neurophysiological data. Muller et. al. [22]

present a client – server application for the distributed

multivariate analysis of time series using standard PCs.

Date et. al. [11] and Buyya et. al. [7] develop Grid

computing infrastructures for distributed EEG data pro-

cessing and visualization. [15] implements parallel EEG

processing with the Granules, a lightweight runtime for

orchestrating a large number of computations in a Cloud.

c) Why MapReduce and Hadoop?: Although there have

been significant progresses made in parallel neural signal

processing as discussed above, it is still hard to reach the

objective of reliable, high-throughput processing of massive

neural signals. For example, it is very likely that certain

computing elements, such as hard disk or processor, would

encounter failures during the neural signal processing. This is

especially unacceptable in a real-time neural signal processing

use case. Furthermore, the data processing ability of current

fine-grain parallel processing paradigms, such as GPGPU [3]

and OpenMP [4], are not satisfactory due to the limited

processing capacity and storage size on a single server. On the

other hand, the coarse-grain parallel processing paradigm, for

example, the distributed data-intensive workflow processing

lacks of the ability of “high throughput”. Therefore new

computing paradigms and platforms are of demand for parallel

neural signal processing.

MapReduce [12] is a new data parallel processing model

and Hadoop [1] is its open-source implementation on clusters

(Further technical information will be discussed in IV. Com-

pared with existing parallel processing paradigms, MapReduce

and Hadoop have two advantages: 1) fault-tolerant storage and

data processing by duplicating computing tasks on different

compute nodes; 2) high-throughput data processing via a batch

processing model and a highly efficient massive file system –

HDFS. Our research in this paper thus employ the MapReduce

paradigm for parallel neural signal processing.

d) Research Contribution: In our research, we develop a

parallel EEMD algorithm with the MapReduce programming

model and implement it with Hadoop in a modern Cyber-

infrastructure – the FutureGrid testbed. To the best of our

knowledge, this paper is the first attempt to parallelize the

EEMD processing with the MapReduce paradigm.

e) Paper Organization: The rest of this paper is or-

ganized as follows: Section II introduces the structure of

neural signal investigated in this research and Section III

discusses the Hilbert-Huang transform & Ensemble Empirical

Mode Decomposition (EEMD) method. The MapReduce and

Hadoop are investigated in Section IV. Section V presents the

design and implementation of parallel neural signal process-

ing with MapReduce and Section VI gives and performance

evaluation of our design and implementation. Finally Section

VII concludes the research and points out the future work.

II. STRUCTURES OF NEURAL SIGNALS FOR

PROCESSING

The EEG data sets are captured using multiple electrodes

simultaneously from an epilepsy patient continuously over a

period of several hours or days. As a result, the neural signals

under investigation are massive and are persisted in the form

of a multi-channel time series. The volume of the EEG dataset

prior to analysis scales in three dimensions: the time (T), the

number of channels (NC), and the sampling rate (SR). The

total number of variables in the multi-channel time series is

T ×NC × SR.

When processing the source EEG dataset with EEMD, we

apply a sliding time-window to each individual EEG time

series, corresponding to one channel, to generate numerous

short time series (epochs) covered by the windows. There

exists an overlap of a fixed length between two consecutive

epochs. We write the ratio of the overlaps length against an

epoch’s length as ro. Clearly, the size of data in the form

of epochs “swells” to 1/(1 − ro) of the source EEG dataset.

Obviously the number of epochs that may be extracted from

a source time series is proportional to T .

On the initial stage of an EEMD method, each epoch is

added with white noise repeatedly to generate an ensemble of

trials, where each trial represents an instance of the original

epoch mixed with noise. A trial is the elementary data chunk

computed by the EEMD algorithm. The number of trials (NT)

in an ensemble should typically be in hundreds. As shown in

Figure 1, after initialization, and immediately before being fed

to the EEMD algorithm, the size of the data, in the form of

trials, explodes by hundreds of times from the source EEG

dataset.

0 2 4 6 8 10 12 14 16

x 10
4

30

40

50

Time(s)

C
h
a
n
n
e
l

0 10 20 30 40 50 60
30

40

50

60

70

80

90

Time(s)

C
ha

nn
el

0 2 4 6 8 10 12 14 16

x 10
4

30

40

50

Time(s)

C
ha

nn
el

���������	
���
��������
�����������

�����������������������
�����������

���������������

���������������

Fig. 1. The Multi-level of EEG dataset

The formation of the initialized EEG data set can be viewed

as a three-level hierarchy. Each EEG data channel (time series)

can be singled out from the whole multi-channel dataset at

the top level. At the middle level, a number of epochs can be

generated from an EEG time series by applying a sliding time

window. At the bottom level, an epoch spawns off numerous

trials by adding white noise to itself.

The order of processing different trials has no influence on

the final results as long as those trials rooted from the same

source epoch are properly bundled. There exist a temporal

parallelism along the X dimension (time T , normally in hours)

and a spatial parallelism along Y dimension (data channels,

NC, in hundreds) and Z dimension (trials, NT , higher than

1kHz) in the initialized dataset in the form of trials. From

the top level to the bottom level (see Figure 2), the grain of

parallelism becomes exponentially finer. Given a fixed number

of data channels, the very fine-grained parallelism in the other

165165165

two dimensions is focused.

Fig. 2. The Multi-dimension of EEG dataset

III. ENSEMBLE EMPIRICAL MODE

DECOMPOSITION

A. Overview of EEMD

The EEMD algorithm is an improvement of EMD. Hilbert-

Huang Transform (HHT) introduces the concept of Intrinsic

Mode Function (IMF) and Empirical-Mode Decomposition

(EMD). As shown in Figure 3, for a non-stationary signal x(t)
the EEMD method can decompose the signal into a series of

Intrinsic Mode Functions (IMF): imf i, i = 1, 2, . . . , I , I is

the number of IMFs [18].

The signal x(t) can be express as follows:

x(t) =

p∑
i=1

imf i(t) + rp(t) (1)

where, rp(t) is the pth residual signal after p IMFs have been

decomposed from x(t).
Applying the Hilbert transform and the concept of Shannon

entropy, the Hilbert-Huang Spectral Entropy (HHSE) can

be constructed, which denotes a more accurate and nearly

continuous distribution of the signals energy. IMFs and HHSE

precisely characterize the true physical nature of the signal

x(t) [18], [28].

B. EEMD Algorithm

Given the size of a time window and the overlap of two

consecutive windows, the whole procedure for processing an

epoch of signal in a time window, x(t), is portrayed as the

following steps. Steps 1 – 7 decompose a signal to obtain its

true IMFs then Step 8 calculates its HHSE :

1) Calculate the number of IMFs in x(t):

I = log2{length[x(t)]} − 1 (2)

Set the amplitude of white noise to be added to x(t);
Set the number of trials in the ensemble: K. k is the

variable that represents the kth trial, initialize k = 1.

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

100

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

100

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

100

0 100 200 300 400 500 600 700 800 900 1000
-40

-20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000
-40

-20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000
-20

-10

0

10

20

0 100 200 300 400 500 600 700 800 900 1000
-20

-10

0

10

0 100 200 300 400 500 600 700 800 900 1000
-200

-100

0

100

0 100 200 300 400 500 600 700 800 900 1000
400

600

800

1000

Fig. 3. Decomposition of an EEG epoch into averaged Intrinsic Mode
Functions

2) In the kth trial, set

xk(t) = x(t) + nk(t) (3)

where nk(t) denotes the write noise;

i is the variable that represents the ith IMF decomposi-

tion. Initialize i = 1, set the residual signal,

rik(t) = xk(t) (4)

3) When extracting the ith (in the kth trial) IMF, set

hj−1(t) = rik(t) (5)

Initialize j = 1 and calculate local maxima hmax(t) and

minima hmin(t) of hj−1(t).
4) Interpolate hmax(t) and hmin(t) using Cubic Spline

Interpolation lines, thus to extract the upper and lower

envelopes of hj−1(t);
Eventually mj−1(t), the mean of the upper and lower

envelopes, can be calculated;

hj(t) = hj−1(t)−mj−1(t) (6)

5) Check whether hj(t) is an IMF. When the termination

requirement is satisfied, then goto Step 3 with j = j+1;

Otherwise, the ith IMF in the kth trial is obtained,

imf i
k(t) = hj(t) (7)

Set

ri+1
k (t) = rik(t)− imf i

k(t) (8)

as the new residual signal for sifting the (i+1)th possible

IMF;

6) If ri+1
k (t) still has at least 2 extrema, then step 3 will be

returned with i = i + 1; Otherwise, the decomposition

166166166

procedure in the kth trial stops. Thus the noise-added

signal xk(t) can be decomposed in the following form:

xk(t) =
I∑

i=1

imf i
k(t) + rI(t) (9)

where rI(t) is the residual signal of the xk(t) after I
IMFs are decomposed.

7) If k < K, go to Step 2 with k = k + 1; Otherwise, the

present trials have been completed; The ith IMF of the

average of the results in all the trials is:

imf i(t) =

K∑
k=1

imf i
k(t)

K
(10)

where i = 1, 2, . . . , I .

8) Based on imfi(t), i = 1, 2, . . . , I , we can eventually

obtain the HHSE of x(t) as follows:

• Apply the Hilbert transform on IMF, we then have:

Z(t) = imf(t) + iH[imf(t)] (11)

= a(t)ei
∫
ω(t)dt (12)

where,

a(t) =
√
imf2(t) +H2[imf(t)] (13)

ω(t) =
d

dt

(
atg

(H[imf(t)]

imf(t)

))
(14)

h(ω) =

∫
H(ω, t)dt (15)

• Then we can calculate the HHSE as follows:

HHSE =
H

log(I)
(16)

where, I is the number of frequencies,

H = −
∑
j

ĥ(f)log(ĥ(f)) (17)

ĥ(f) =
h(f)∑
h(f)

(18)

From the presentation of above algorithms, we can find that:

• The EEMD calculation is very data intensive due to a

number of additional trials introduced in the epoch level

signal processing.

• The data set processed by EEMD is massive as the real-

time neural signal data contains sources from multiple

channels, epochs and trials.

• The EEMD algorithm has multiple levels of parallelism

in the epoch level and in the trial level.

Therefore in this research we present our work of the massive

neural signal processing with MapReduce on Hadoop, which

allows to distribute the massive EEG data on various nodes and

analyze it in parallel with a batch mode. The next section we

will introduce the technical details of MapReduce and Hadoop.

IV. MAPREDUCE PROGRAMMING MODEL

The MapReduce [12] programming model is inspired by

two main functions commonly used in functional program-

ming: Map and Reduce. The Map function processes key/value

pairs to generate a set of intermediate key/value pairs and

the Reduce function merges all the same intermediate values.

Many real-world applications are expressed using this model.

One framework that implements MapReduce is Hadoop [1],

which allows applications to run on large clusters built from

commodity hardware. The Hadoop framework transparently

provides both reliability and data transfer.

Our work of parallel neural signal processing is implement-

ed in the Hadoop common framework. Therefore this section

discusses the background of the Hadoop common framework,

which includes two parts: the Hadoop MapReduce framework

and the Hadoop Distributed File System (HDFS).

V. DESIGN AND IMPLEMENTATION OF PARALLEL

EED PROCESSING WITH MAPREDUCE

A. Design of Parallel EEG Processing with MapReduce

The parallelism of an EEMD processing with the EEMD

algorithm can be characterized in at least two levels (Figure

1):

• Epoch level

The EEMD procedure for an epoch of time series is

treated as a whole at this level. The data in an epoch

are input to the same EEMD procedure individually, and

the outputs from any instance of EEMD procedure will

not be consumed by another. The degree of parallelism is

the number of epochs, which increases linearly with the

size of the EEG dataset.

• Trial level

A trial (a noise-added epoch) is treated as whole at

this level. Given a number of trials per EEMD instance,

the decomposition of each trial is always performed

independently from the others. The IMFs of an original

epoch are only inferred after computing the ensemble of

trials. The degree of parallelism is the number of trials

per ensemble times the number of epochs. A task at trial

level only handles a short time series.

Therefore we design the parallel EEG processing with a

hierarchical MapReduce as follows (Figure 4):

• Each epoch is processed by one MapReduce job executed

by a Hadoop cluster (shown in Figure 4 (1)).

• For one MapReduce job, we have K trials processed

by one Map tasks: kth mapper, k = 1, . . . ,K. The

kth mapper decomposes all imf i
k(t) for the kth trials,

i = 1, . . . , I . Then we have one reducer , which calculates

imf i(t) for all K trials and HHSE (shown in Figure 4

(2)).

B. A Cyberinfrastructure for Parallel EEG Processing with
Hadoop

A cyberinfrastructure [24], [26] is developed to handle

parallel EEG processing with Hadoop. It incorporates a mid-

dleware for Cloud computing [8], [23], [25] – a dynamic

167167167

1st epoch

��

...

��

mth epoch

��

...

��MapReduce
Job

... MapReduce
Job

..

(1) Epoch level parallelism

mth epoch

��
MapReduce

Job

��
��

��
��

��
1st

mapper

��

...

��

kth

mapper

��

...

��

Kth

mapper

��
imf i

1(t)
i = 1, . . . , I

��

...

��

imf i
k(t)

i = 1, . . . , I

��

...

		

imf i
K(t)

i = 1, . . . , I

Reducer

��
imf i(t)

i = 1, . . . , I

��
HHSE

(2) Trial level parallelism

Fig. 4. Parallel EEG data processing with Hadoop

User

Hadoop cluster

Dynamic Hadoop
client shell

Computing Cloud

job submission
require a Hadoop cluster

H
adoop cluster
 deploym

ent

Storage

EEG data collecction

Fig. 5. Cyberinfrastructure for parallel EEG processing

Hadoop cluster client shell, a Hadoop cluster, parallel EEG

calculation, and sensor networks which provide the real-time

EEG signal retrieval. Figure 5 overviews the process for the

parallel EEG processing in the cyberinfrastructure:

1) EEG data are retrieved by a user and stored in user’s

storage device.

2) The user requires a dynamic Hadoop cluster from a

computing cloud test bed (e.g., the “India” cluster in

our context) based on the input EEG data set.

3) A Hadoop cluster is dynamically deployed and returned

to the user. A shell script is developed for dynamically

deployment of a Hadoop cluster with the following

steps:

a) based on user’s requirement, it demands a number

of cluster nodes from the cluster job manager, such

as Torque [5] in our implementation;

b) distribute Hadoop packages to the master node and

slave nodes in the Hadoop cluster;

c) configure Hadoop configuration files with the avail-

able node IP addresses achieved in step 3(a).

d) start Hadoop master/slave daemons on the Hadoop

cluster;

e) return the Hadoop the IP address and the port

number of the Hadoop master node to the user.

4) The user then uploads the EEG data to the HDFS

and submits parallel EEG processing application to the

Hadoop cluster for the job execution.

VI. TESTS AND PERFORMANCE EVALUATION

A. Test organization

We test the parallel EEG processing application in Hadoop

clusters for performance evaluation. The Hadoop clusters are

dynamically allocated in a HPC cluster – “India”, hosted

by an academic Cloud computing test infrastructure – the

FugureGrid test bed [2].

TABLE I
TEST BED

Resource India

Site Indiana University

CPU number 256

Performance (Teraflop) 11

Total RAM (GB) 3072

Secondary storage (TB) 335

We set up an 8-node Hadoop cluster from “India” as

described in V-B. On the Hadoop cluster, we executed the

parallel EEG processing in the following conditions:

• various input EEG data set with different size: 4KB, 8KB,

. . . , 40KB;

• various MapReduce task configurations: 1, 2 and 3 map-

per tasks per node.

B. Test results

The EEG data for test were recorded from scalp surface (F3,

F4, C3, C4, O1 and O2 by the International 10-20 System)

168168168

using six electrodes. A segment of 6-channel EEG recordings

(length of 80s) covering the period of an absence seizure (onset

at 63s) is shown in Figure 6.

Fig. 6. A segment of 6-channel EEG recordings

The parameter settings for the test are Epoch = 1000,

Overlap = 750 The amplitude of white noise for an EEMD trial

= 0.1× (standard deviation of an epoch), and 100 trials per

ensemble. The HilbertHuang spectrum of the first channel is

illustrated in Figure 7 – 9: Figure 7 shows the EEG segments,

Figure 8 and Figure 9 present the corresponding Hilbert –

Huang spectrum and the marginal spectrum respectively.

Fig. 7. EEG epochs of the second channel

Fig. 8. The corresponding Hilbert-Huang spectrum

Then we calculate the HHSE within the band of 2-30Hz.

Figure 10 and Figure 11 display the time courses of HHSE of

all six channels of the EEG recordings.

Lines represent the mean values of entropy for 6 channels

and bars represent the standard deviation

C. Performance evaluation

Firstly we examined the overhead to setup a Hadoop cluster

dynamically and import data to HDFS. As shown in Table

Fig. 9. The marginal spectrum

Fig. 10. Time courses of Hilbert-Huang spectral entropy of 6 channels EEG
recordings

Fig. 11. Lines represent the mean values of entropy for 6 channels and bars
represent the standard deviation

II, the setup of a Hadoop cluster with 8 nodes is less than 5

seconds. This is acceptable as once the cluster is setup it can be

used for multiple executions until it is shutdown. The import

of test EEG data to HDFS is less 1 second. This overhead is

also acceptable and it is invoked every time a user executes a

MapReduce task in the cluster.

TABLE II
OVERHEAD OF MAPREDUCE EXECUTION ENVIRONMENT SETUP

Step Overhead

Setup a Hadoop cluster (8 nodes) < 5 seconds

Import EEG test data to HDFS < 1 second

169169169

Secondly we examined the task execution time of parallel

EEG data processing with MapReduce. Table III and Figure

12 show the test results. We have two fundings form the test

results:

• The job execution time is in direct proportion to the

input EEG data size. This funding verifies the scalability

of MapReduce parallel processing paradigm, which is

declared as one of the Hadoop’s merits.

• The optimal value of mapper number per node is 2. This

value is determined by the application and compute re-

source (e.g. memory, processor) per node. As the overall

resource per node is limited and constant, therefore too

many or two small mapper number may decrease the

performance of parallel processing.

TABLE III
JOB EXECUTION TIME OF PARALLEL EEG PROCESSING WITH HADOOP

EEG data mapper(s)/node

size (KB) 1 2 3

4 139.417 86.062 103.038

8 243.758 136.484 184.257

12 347.691 198.313 245.429

16 474.293 242.628 314.672

20 567.431 305.858 384.134

24 671.96 362.254 449.223

28 786.107 417.992 527.438

32 882.656 477.141 600.601

36 1005.863 543.588 663.078

40 1113.151 584.594 733.973

5 10 15 20 25 30 35 40

20
0

40
0

60
0

80
0

10
00

Input EEG Data Size (KB)

E
xe

cu
tio

n
T

im
e(

se
co

nd
)

1 mapper/node
2 mappers/node
3 mappers/node

Fig. 12. Execution time of parallel EEG processing with Hadoop

VII. CONCLUSION AND FUTURE WORK

Recently Ensemble Empirical Mode Decomposition

(EEMD) has become a revolutionary solution to neural signal

processing. As presented in the paper, neural signal processing

with EEMD is both compute-intensive and data-intensive.

The MapReduce computing paradigm and its Hadoop

implementation emerge as a widely-accepted programming

model and solution for data intensive computing. This

research has proposed a parallel neural signal processing

with EEMD with the MapReduce paradigm. We develop

multiple parallelism in the EEMD neural signal processing:

the epoch-level parallelism and the trial-level parallelism. We

implement the parallel EEMD processing with an advanced

cyberinfrastructure – a dynamic Hadoop cluster on the

FutureGrid test bed. Test results and performance evaluation

justify our design and implementation. In our future work,

we continue developing the EEMD on large Hadoop clusters

to exploit multiple level parallelisms. Also we will implement

highly efficient runtime support for uploading large EEG data

set to the HDFS.

ACKNOWLEDGEMENT

Dr. Lizhe Wang’s work is supported by “One Hundred

Talents Programme” of Chinese Academy of Sciences.

Dr. Dan Chen’s work is supported in part by National

Science Fund for Distinguished Young Scholars (grant No.

61025019), the National Natural Science Foundation of China

(grants No. 90820016, 60804036), the Hundred University

Talent of Creative Research Excellence Programme (Hebei,

China), the Programme of High-Resolution Earth Observing

System (China), and the Fundamental Research Funds for the

Central Universities (CUGL100608, CUG, Wuhan).

Dr. Jun Wang’s work is supported in part by the US National

Science Foundation Grant CCF-0811413, CNS-1115665, and

National Science Foundation Early Career Award 0953946.

Dr. Samee U. Khan’s work is partly supported by the Young

International Scientist Fellowship of the Chinese Academy of

Sciences, (Grant No. 2011Y2GA01).

The test bed used in the research is supported by the

FutureGrid project supported in part by the National Science

Foundation under Grant No. 0910812 to Indiana University for

“FutureGrid: An Experimental, High-Performance Grid Test-

bed.”

REFERENCES

[1] Apache hadoop project. Web Page. http://hadoop.apache.org/.
[2] Futuregrid project. Web Page. http://www.futuregrid.org/.
[3] Gpgpu. Website. http://gpgpu.org/.
[4] Openmp. Website. http://openmp.org/.
[5] Torque resource manager. Website.
[6] Selin Aviyente. Compressed sensing framework for eeg compression.

In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical
Signal Processing, pages 181–184, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] Rajkumar Buyya, Susumu Date, Yuko Mizuno-Matsumoto, Srikumar
Venugopal, and David Abramson. Neuroscience instrumentation and
distributed analysis of brain activity data: a case for escience on
global grids. Concurrency and Computation: Practice and Experience,
17(15):1783–1798, 2005.

[8] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De
Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw., Pract. Exper., 41(1):23–50, 2011.

[9] Dan Chen, Duan Li, Muzhou Xiong, Hong Bao, and Xiaoli Li. GPGPU-
aided ensemble empirical-mode decomposition for EEG analysis during
anesthesia. IEEE Trans. Info. Tech. Biomed., 14:1417–1427, November
2010.

170170170

[10] Dan Chen, Lizhe Wang, Gaoxiang Ouyang, and Xiaoli Li. Massively
parallel neural signal processing on a many-core platform. Computing
in Science and Engineering, 2011.

[11] Susumu Date, Shinji Shimo jo, Mizuno-Matsumoto Yuko, Bu Sung Lee,
Wentong Cai, and Lizhe Wang. Distributed processing and visualization
of meg data. In Proceedings of International Conference on Scientic and
Engineering Computation (IC-SEC’02), pages 850 – 855, Singapore,
Dec. 2002.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51:107–113, January 2008.

[13] Piotr J. Durka and Dobies Ircha. Signalml: metaformat for description of
biomedical time series. Comput. Methods Prog. Biomed., 76:253–259,
December 2004.

[14] Hubert Eichner, Tobias Klug, and Alexander Borst. Neural simulations
on multi-core architectures. Frontiers in neuroinformatics, 3(July), 2009.

[15] Kathleen Ericson, Shrideep Pallickara, and Charles W. Anderson. An-
alyzing electroencephalograms using cloud computing techniques. In
Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pages 185 – 192, Dec. 2010.

[16] D. Gopikrishna and Anamitra Makur. A high performance scheme for
eeg compression using a multichannel model. In Proceedings of the 9th
International Conference on High Performance Computing, HiPC ’02,
pages 443–451, London, UK, UK, 2002. Springer-Verlag.

[17] Uri Hasson, Jeremy I Skipper, Michael J Wilde, Howard C Nusbaum,
and Steven L Small. Improving the analysis, storage and sharing of
neuroimaging data using relational databases and distributed computing.
NeuroImage, 39(2):693–706, 2008.

[18] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H.
Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H.
Liu. The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1971):903–995, March 1998.

[19] M. Laubach, Y. Arieh, A. Luczak, J. Oh, and Y. Xu. A cluster
of workstations for on-line analyses of neurophysiological data. In
Bioengineering Conference, 2003 IEEE 29th Annual, Proceedings of,
pages 17 – 18, march 2003.

[20] Xiaoli Li, Duan Li, Zhenhu Liang, Logan J. Voss, and Jamie W. Sleigh.
Analysis of depth of anesthesia with hilbert-huang spectral entropy.
Clinical Neurophysiology, 119(11):2465 – 2475, 2008.

[21] Dennis McFarland, A. Lefkowicz, and Jonathan Wolpaw. Design and
operation of an eeg-based brain-computer interface with digital signal
processing technology. Behavior Research Methods, 29:337 – 345, 1997.

[22] Andy Muller, Hannes Osterhage, Robert Sowa, Ralph G. Andrzejak,
Florian Mormann, and Klaus Lehnertz. A distributed computing system
for multivariate time series analyses of multichannel neurophysiological
data. Journal of Neuroscience Methods, 152:190 – 201, 2006.

[23] Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz, and
Manish Parashar. Peer-to-peer cloud provisioning: Service discovery and
load-balancing. In Nick Antonopoulos and Lee Gillam, editors, Cloud
Computing, volume 0 of Computer Communications and Networks,
pages 195–217. Springer London, 2010.

[24] Lizhe Wang and Cheng Fu. Research advances in modern cyberinfras-
tructure. New Generation Comput., 28(2):111–112, 2010.

[25] Lizhe Wang, Marcel Kunze, Jie Tao, and Gregor von Laszewski. Toward-
s building a cloud for scientific applications. Advances in Engineering
Software, 42(9):714–722, 2011.

[26] Lizhe Wang, Gregor von Laszewski, Andrew J. Younge, Xi He, Marcel
Kunze, Jie Tao, and Cheng Fu. Cloud computing: a perspective study.
New Generation Comput., 28(2):137–146, 2010.

[27] Adam J Wilson and Justin C Williams. Massively parallel signal pro-
cessing using the graphics processing unit for real-time braincomputer
interface feature extraction. Frontiers in neuroengineering, 2:11, 2009.

[28] Zhaohua Wu and Norden E. Huang. Ensemble Empirical Mode
Decomposition: a Noise-Assisted Data Analysis Method. Advances in
Adaptive Data Analysis, 1(1):1–41, 2009.

[29] Yufeng Yao, Jinyi Chang, and Kaijian Xia. A case of parallel eeg data
processing upon a beowulf cluster. In Proceedings of the 2009 15th
International Conference on Parallel and Distributed Systems, ICPADS
’09, pages 799–803, Washington, DC, USA, 2009. IEEE Computer
Society.

171171171

