
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Trusted Performance Analysis on Systems
With a Shared Memory

Jiaqi Zhao, Changlong Xue, Jie Tao, Rajiv Ranjan, Student Member, IEEE, Joanna Kołodziej, Member, IEEE,
Lizhe Wang, Senior Member, IEEE, and Dan Chen

Abstract—With the increasing complexity of both data struc-
tures and computer architectures, the performance of applica-
tions needs fine tuning in order to achieve the expected runtime
execution time. Performance tuning is traditionally based on the
analysis of performance data. The analysis results may not be
accurate, depending on the quality of the data and the applied
analysis approaches. Therefore, application developers may ask:
Can we trust the analysis results? This paper introduces our
research work in performance optimization of the memory system,
with a focus on the cache locality of a shared memory and the
memory locality of a distributed shared memory. The quality of
the data analysis is guaranteed by using both real performance
data acquired at the runtime while the application is running and
well-established data analysis algorithms in the field of bioinfor-
matics and data mining. We verified the quality of the proposed
approaches by optimizing a set of benchmark applications. The
experimental results show a significant performance gain.

Index Terms—Code optimization, data analysis, data locality,
distributed shared memory, performance tuning.

I. INTRODUCTION

MODERN computer systems are tending to exascale. As
the computational capacity is getting larger, the system

architecture is getting more complicated with not only hetero-
geneous devices but also a hierarchical organization. An exam-

Manuscript received July 16, 2014; revised September 11, 2014; accepted
October 8, 2014. The work of J. Zhao was supported by the Jilin Province
Science and Technology Development Supporting Program 20140101206JC.
The work of J. Tao was supported by the German Research Foundation
(DFG) through the Priority Program 1648 “Software for Exascale Computing”
(SPPEXA). The work of R. Ranjan was supported by the Department of
Industry, Australia, under Grant AISRF08140 titled “Innovative Solutions for
Deployment of BIgData and Disaster Management Applications on Clouds.”
(Corresponding author: Lizhe Wang.)

J. Zhao is with the School of Basic Science, Changchun University of
Technology, Changchun 130012, China.

C. Xue is with the Jilin Provincial High Class Highway Construction Bureau,
Changchun 130033, China.

J. Tao is with the Steinbuch Center for Computing, Karlsruhe Institute of
Technology, 76021 Karlsruhe, Germany.

R. Ranjan is with the ICT Centre, Commonwealth Scientific and Industrial
Research Organisation, Canberra, A.C.T. 2601, Australia.

J. Kołodziej is with the Institute of Computer Science, Cracow University of
Technology, 31-155 Cracow, Poland, and also with the Intelligent Information
Systems Group, AGH University of Science and Technology, 30-059 Cracow,
Poland.

L. Wang is with the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100094, China, and also with the School of
Computer Science, China University of Geosciences, Beijing 100083, China
(e-mail: lizhe.wang@gmail.com).

D. Chen is with the School of Computer Science, Wuhan University, Wuhan
430072, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2014.2365234

ple is Nvidia’s Echelon exascale computer [22] that envisions
processing nodes with a configurable memory hierarchy within
a chip and interconnects with different latency and through-
put characteristics on four levels: node, module, cabinet, and
system. Another example is the Gordon supercomputer [36]
at the San Diego Supercomputer Center, which is specifically
designed for data-intensive computing. Gordon has a five-level
memory hierarchy with a node-local shared memory, a dis-
tributed shared memory within a supernode, a distributed mem-
ory between supernodes, the Flash memory, and disk arrays.

At the same time, scientific applications are processing larger
data sets that were not seen ever before [13], [14], [20],
[41]–[43], [46]. The Large Hadron Collider (LHC) [10] in
the European Organization for Nuclear Research (CERN), for
instance, produces 15 PB of scientific data in a year. These
data are processed by LHC five major experiments for different
research purposes. The challenge for application developers lies
not only in the volume of data but also in the data structures
that are becoming more complicated. Today, it is even harder
for programmers to produce codes that run efficiently on a
target architecture. Performance tuning can be observed as an
essential task for application developers or users.

The performance of an application can be influenced by
different components of a system [25]. However, the memory
performance has been a key issue for the overall performance.
This issue becomes more important for today’s applications
that are processing very large data, the so-called big data. In
these data-intensive applications, the time for accessing the
data may dominate the entire execution time. Considering the
hierarchical memory organization of modern computers, it is
possible to significantly improve the applications’ performance
when the data are reasonably distributed in the memory system,
with a result that the processor can acquire the data from the
closer memory location.

In this work, we focus on the memory performance of shared-
memory systems with a goal of achieving data locality. In a
system with a physically shared memory, like the multicore ma-
chines, data locality means cache locality, where the research
focus is to bring into the caches only the working data that will
be used or reused, thus decreasing the cache miss rate. For sys-
tems with a distributed shared memory, where the memories are
distributed across the computing nodes but logically organized
as a shared memory, data locality within the main memory is
more important than the cache issues, because accessing a re-
mote memory can take up to orders of magnitude longer than a
local memory access. For example, the Gordon supercomputer
has an access latency of 100 cycles with local memories, but

1932-8184 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: lizhe.wang@gmail.com


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

10 000 cycles with a remote memory. In this case, the applica-
tions will not run efficiently or even cannot get speedup on such
nonuniform memory access systems if a processing node has to
access remote memories frequently. Hence, applications must
be optimized with respect to such data locality.

Data locality optimization can be done either automatically
at the compiling time/runtime or manually by the programmers
directly in the source code. The former frees the programmers
from the optimization tasks but often cannot achieve a high per-
formance gain. For example, the compiler-based optimization
usually applies heuristic analysis to predict the runtime behav-
ior and optimizes the code based on this kind of inaccurate anal-
ysis results. Hence, programmers often choose the latter, a more
trusted and straightforward approach, to optimize their codes.

The basis for any kind of performance optimization is the
performance data showing the memory access and execution
behavior of the applications. The performance data can be
acquired in different ways, such as simulation and modeling,
code instrumentation, code analysis, or special hardware. The
simulation approach can provide the performance data in acute
detail; however, the quality of the data depends on the accuracy
of the simulation. Code analysis is easy to implement, but
the performance data are statically created without involving
any runtime information. Code instrumentation collects the
performance data by inserting annotations in the source code
to explicitly trace interesting events or actions. The hardware
approach requires specific devices for monitoring the runtime
behavior. Nevertheless, this approach is capable of providing
precise performance data and specific runtime information. For
the quality of the performance data, we use a specific hard-
ware in this work to inspect the communications between the
computing nodes for data locality optimization on distributed-
shared-memory systems. For the cache access behavior, we
apply code instrumentation to acquire the performance data.

Depending on the applications and their working loads, the
performance data can be huge. It is quite hard or even impossi-
ble for programmers to understand the runtime behavior of their
applications by studying the data lines in a trace file. To make
the performance data easier to understand, various visualiza-
tion tools have been developed to demonstrate the application
runtime actions in graphical views. An example is our cache
visualizer yet another cache-visualizer for optimization [32],
which aims to show the users the access patterns for optimizing
the spatial locality of caches.

The visualization tools work well with applications that
process a small data set. However, they will not be efficient for
large data sets, because a graphical view with a large amount of
information cannot highlight the abnormal behavior that needs
to be studied and corrected. This problem possibly could be
mitigated by reducing the volume of the performance data using
approaches like lossy tracing [27], lower sampling rate [9], or
tracing of only global events [7]. However, for an exact location
of the problem, and, more importantly, for detecting the reasons
and, potentially, the solution of the problems, a full trace is
needed.

Therefore, we apply well-established analysis algorithms
to process the performance data. For the cache optimization,
we adopt an algorithm in bioinformatics to analyze memory

access traces produced by a code instrumentor, with a result
of finding access patterns that guide the users to optimize their
applications in terms of the cache locality. By using the same
algorithms for detecting repeated patterns from a deoxyribonu-
cleic acid (DNA), a ribonucleic acid (RNA), or protein se-
quences in bioinformatics, we deliver accurate analysis results
to the users.

For distributed-shared-memory systems, we apply conven-
tional data mining algorithms, specifically the classification and
regression trees [6] to process the performance data. This brings
several advantages. First, the classification algorithm is self-
learning, which guarantees the required accuracy of the analysis
result and, thereby, the efficiency of the runtime dynamic per-
formance tuning. Second, the same stream of performance data
often contains several interesting patterns. For example, a mem-
ory access trace holds the access stride, access hot spots,
chained references, and so on. By combining different rules of
data clustering, all these patterns can be detected. This avoids
the necessity of implementing a single algorithm for each pat-
tern. Third, data mining algorithms can both detect the problem
and predict the trend. This allows the runtime adaptation system
to take actions before the problem occurs. Finally, a complete
system optimization is associated with different optimization
targets that interact with each other. For example, optimization
on speedup can potentially enlarge the power consumption.
Data mining algorithms allow a combined analysis of different
data streams, thus being capable of delivering appropriate so-
lutions for a balancing tradeoff between different performance
metrics. Therefore, we use the data mining approach to analyze
the internode communications acquired by a special monitor
device.

In summary, this work makes the following contributions to the
stand of research on performance analysis and optimization:

1) using mature data analysis algorithms in bioinformatics
and data mining to process performance data for effi-
ciency and accuracy;

2) acquiring the performance data at the runtime using hard-
ware for guaranteeing the quality of the data;

3) optimizing a set of benchmark applications based on the
analysis results;

4) validating the optimization as well as the analysis results
with experiments and discussing the achievement.

The remainder of this paper is organized as follows. Section II
introduces the related work in performance analysis and op-
timization. Section III describes the proposed data analysis
approach for detecting both memory access pattern and com-
munication bottlenecks. Section IV shows the experimental
results with discussions. This paper concludes in Section V with
a brief summary and several future directions.

II. RELATED WORK

Performance analysis and optimization have been hot topics
in the field of high-performance computing. With the increasing
complexity of applications and computer architectures, applica-
tions initially do not run efficiently on the target machines and
require performance tuning. Performance tuning is a recurring
process, where the application is first executed on the target



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: TRUSTED PERFORMANCE ANALYSIS ON SYSTEMS WITH A SHARED MEMORY 3

architecture, performance data are collected at the runtime and
then analyzed, applications are optimized based on the analysis
result, and the application is executed again for further tuning.

The prerequisite for any performance optimization is the
runtime performance data. The most straightforward way to
acquire the runtime performance data is to use the performance
counters integrated on the chips of modern processors. These
counters are registers specifically designed for monitoring
runtime events such as cache misses, context switches,
translation lookaside buffer misses, and so on. To access the
performance counters, a counter interface is required. Over
the last few years, different low-level libraries or high-level
interfaces have been implemented for programmers to access
the performance counters in the source codes. Perf [17] is a low-
level profiling tool delivered by the Linux kernel. It provides
a simple command-line interface for users to start profiling
a running application. Perf supports a number of measurable
events, including software events like context switches and
page faults, as well as hardware events such as the number of
CPU cycles and cache misses. Perf aggregates the occurrences
of the user-specified events and provides the profiling results
as perf reports at the end of application’s execution. The
Performance Application Programming Interface (PAPI) [7] is
a well-known and widely applied programming interface for
accessing the hardware counters within an application’s source
code. PAPI provides both simple high-level interface for the
acquisition of simple measurements and fully programmable
low-level interface to the underlying counter hardware. The
low-level PAPI interface deals with hardware events in groups,
while the high-level interface simply provides the ability to
start, stop, and read specific events. Aside from perf and
PAPI, there are other well-known programming interfaces for
hardware counters. OProfile [31] and Perfmon [39] are two
system-wide profilers for Linux systems.

The performance data delivered by the counter interface are
still at a low level even in the text format. To show the runtime
application behavior at a high level, different visualization tools
or analysis frameworks have been implemented in the research
area [12], [15], [18], [28], [34]. Nevertheless, the widely used
tools have been the well-known Tuning and Analysis Utilities
(TAU), Vampir and VTune.

The TAU [38] is a profiling and tracing toolkit for performance
analysis. It consists of a visualization component providing
graphical displays of performance analysis results. This allows
the user to identify the source of performance hot spots in the
programs. The tool has been adopted by different researchers
to characterize the I/O performance [37], to measure the GPU
performance [26], and to study the applications’ runtime be-
havior [19]. The Centre for Information Services and High Per-
formance Computing at the University of Dresden developed
Vampir [8] for performance visualization. It was originally de-
veloped to show the communication bottlenecks of the Message
Passing Interface (MPI) applications but was extended to depict
the cache performance. It can show the number of cache misses
in a time-line view as well as in the source code, allowing the
detection of cache critical code regions. The Intel VTune Per-
formance Analyzer [21] is regarded as a useful tool for perfor-
mance analysis. It provides several views, like “Sampling” and

“Call Graph,” to help programmers identify bottlenecks. For
memory performance, it shows the absolute number of cache
misses in a code region, allowing the user to detect functions
and even code lines that introduce excessive cache misses.

While the visualization approach can depict the runtime
bottlenecks and abnormal behavior for small applications, it
is not adequate for showing the runtime behavior of applica-
tions with a large data set. In this case, we propose to use
bioinformatics and data mining techniques to analyze the per-
formance data. Several researchers also applied this approach
for other purposes. Olaru et al. [30] investigated the application
of classification and regression techniques in power system
engineering. Athanasopoulou et al. [1] used classification to
predict control monitoring rules in order to optimize the effi-
ciency of electric power generation processes. In further fields,
Letourneau et al. [24] investigated the use of decision trees,
instance-based learning, and naive Bayes classifiers to opti-
mize aircraft component replacements. Kusiak and Song [23]
employed linear regression, neural networks, and decision trees
to optimize combustion efficiency of coal-fired boilers.

The concrete task in this work is to use the conventional
algorithms to process the memory performance data on shared-
memory systems. The goal is to detect the cases of data
access inefficiency for a further optimization with respect to
data locality. As the memory performance is critical for the
overall performance, researchers have been finding ways to
improve the performance of the memory system. An example
is the research work [16] conducted in the Unified Parallel C
Group that is developing software utilities for shared-memory
programming, as well as tools for analysis and tuning of shared-
memory access performance on distributed systems. For the
performance tuning, this research group developed a tool to
monitor the life cycles of shared variables and to track the
accesses to them. The collected performance data are analyzed
using a specific mechanism for finding a problem. Our work is
similar to this work, but we use more accurate detailed perfor-
mance data delivered by a hardware device, which enables the
detection of a correct location for the data sets. The efficiency
of this approach is proven by our experimental results that show
a significant performance gain with the locality optimization.

III. ANALYZING THE RUNTIME

MEMORY ACCESS BEHAVIOR

A memory hierarchy on a single-core processor is basically
composed of a main memory and several levels of caches. On a
multicore machine, the main memory is shared by the process-
ing cores. On a distributed system, however, the main memory
is distributed across the processing nodes. Therefore, the tra-
ditional way to program such architectures is to use the MPI.
For enabling the simple shared-memory programming models,
the memories on a distributed system may also be organized to
form a virtually shared memory and a memory hierarchy with
cache, local memory, and remote memory. The access time of a
memory location with this hierarchy gets longer as the distance
of the location to the processor gets larger. This means that the
access to the caches is much faster than the accesses in the main
memory, and the latency difference between a local memory



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

access and a remote memory access is even larger. Therefore,
both data locality in the cache and memory locality are critical
issues for the memory performance on a distributed-shared-
memory system.

A. Detecting Memory Access Patterns for Cache Optimization

Due to the limited size of a cache memory, it is not possible
to load the entire working set into the cache for fast accesses.
Therefore, any kind of cache optimization has a final goal, i.e.,
to enable the reuse of the data loaded in the cache. This can be
done by organizing the data with respect to the affinity between
the data sets. In this paper, we mainly address the repeated
address sequences. This information helps users order the data
with spatial locality in the same cache block so that all data in
the block are accessed by the processor.

1) Performance Data: The performance data for our cache
optimization are delivered by a code instrumentor called Doc-
tor, which was developed as a part of Augmint [29], a multi-
processor simulation toolkit for Intel x86 architectures. Doctor
is used to augment the assembly codes with instrumentation
instructions that generate memory access events. For every
memory reference, Doctor inserts code to pass its address and
the identification (ID) of the processor that performs the access.
For this work, we slightly modified Doctor to generate a trace
file that stores all memory accesses performed by an application
at the runtime.

2) Using Teiresias to Detect Repeated Access Sequences: A
repeated access sequence contains several memory addresses
that are repeatedly accessed in the same order. For example,
from this sample access address trace (100 200 300 400 · · · 100
200 301 400 · · · 100 200 302 400 · · · 100 200 303 400· · ·), we
can observe two repeated sequences: 100, 200 and 100, 200, –,
400, where “–” is a position holder representing any memory
address.

It can be seen that this access sequence is similar to a DNA,
RNA, or protein sequence in bioinformatics. Therefore, we
adopt the Teiresias [35] algorithm, which is often applied for
pattern reorganization in bioinformatics. Teiresias works with a
long sequence. It first finds small patterns in the sequence and
then constructs them into larger ones. For small patterns, users
have to specify a maximal length of the pattern (L) and the
number of letters (N ) in the pattern. The position holders are
not counted as letters. For example, both of the patterns “ABC”
and “A−B−C” have three letters, so that N = 3.

For generating small patterns with user-specified L and N ,
Teiresias first builds patterns of length one and then extends
them to patterns of length L starting and ending with a letter.
For each detected pattern, the Prefixes and Suffixes are com-
puted. A Prefix is a prefix of a pattern that needs to end with
a letter and contains at least two letters. A Suffix is a suffix of
a pattern with a letter at the starting position. For instance, the
possible Prefixes of the two aforementioned patterns are AB
and A−B, while their Suffixes are BC and B−C. Based on
the Prefixes and Suffixes, Teiresias then performs a convolution
phase to those pairs of small patterns, where the Prefix of one
pattern and the Suffix of the other are the same. Such pairs
are combined to form larger patterns. For example, from the

pattern DF−A−T and A−TSE, Teiresias generates a pattern
DF−A−TSE. We use the Teiresias algorithm to process the
memory trace generated by the code instrumentor. To shorten
the processing time for large performance data, we introduce a
parameter K to specify the minimal occurrence of an address
sequence, which reduces the number of small patterns and,
thereby, the time for generating larger patterns in the convo-
lution phase.

The algorithm was verified with a number of shared-memory
applications from the SPLASH-II benchmark suite [44]. A
common feature observed for all applications is that the number
of patterns detected by the algorithm decreases with enlarging
the length of the pattern L or the minimal occurrence K.
However, for large groups, our algorithm is still capable of
finding the repeated patterns. For example, with the RADIX
application, Teiresias reported that more than 20 address groups
of length 15 repeated at least 10 000 times. If the program
is optimized by allocating the related data in the same cache
block, cache misses will be significantly reduced.

B. Using Decision Trees to Predict Data Location

As mentioned, a distributed shared memory is comprised of a
set of main memories that are distributed across the computing
nodes. How to organize the working set of an application in
these memories is a critical issue for the memory performance
and, furthermore, the overall performance. The goal of our
performance analysis in this case is to find the best location
for the entire working set toward a minimal communication
between the processing nodes. In our context, the decision
tree mechanism in data mining is particularly useful; when
analyzing internode communication, we try to find the access
character of a certain memory address or access region and the
optimal processor node for it. Here, an optimal processor is the
one that has performed the most accesses on the data item. It is
clear that the data item shall be placed on this processor for less
remote accesses. Hence, we reduce the problem of internode
communication into the problem of predicting an optimal node
with a set of given attributes. At this point, we use the decision
tree as a predictive model to conclude the target node of a
data item.

1) Performance Data: This task requires knowledge about
the runtime data transfers among computing nodes of a dis-
tributed system. This information cannot be delivered by per-
formance counters that cover only the events within a single
processing node. For inspecting the internode communications,
we specifically designed and implemented a hardware monitor
with the following three components:

1) a B-Link interface to the network for extracting informa-
tion from the packets transferred on the network;

2) a counter module for temporally storing the acquired
information;

3) a peripheral component interconnect interface that allows
the users to deliver the monitoring data to the user space.

These components interact in the following way. The B-Link
interface snoops the B-Link over which all incoming and out-
going packets to and from the network interface are transferred.
It extracts information from the communication packets. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: TRUSTED PERFORMANCE ANALYSIS ON SYSTEMS WITH A SHARED MEMORY 5

information contains transaction commands (read, write, and
lock), source and destination IDs, memory addresses (page
number and offset), and packet descriptions (incoming, out-
going, response, and request). The acquired data are handed
from the B-Link interface on to the counter module. As the
primary part of the hardware monitor, the counter module is
responsible for the recording of the monitoring events. It is
organized with an event filter, a static counter array, and an
associative counter array. The event filter is available for users
to define events of interest. Such an event is actually a memory
transaction performed on a special memory region specified
by a page number and the top and bottom addresses. The two
counter arrays are registers used to store the monitoring data.

In order to accommodate both analysis of specific events
and performance overview, the hardware monitor offers two
working modes: a static and a dynamic mode. In the former
case, the integrated filter in the counter module allows the
monitor to only trigger user-specified events. With the dynamic
mode, the complete internode traffic is captured and recorded.
For this work, we use dynamic monitoring to trace all packets
delivered on the network, thus acquiring a full histogram of the
communications between the processing nodes on the system.
Each record in the histogram contains four attributes: source,
destination, access type, and access address. Here, source and
destination specify the sender and receiver of a packet, i.e.,
a remote memory reference on a distributed-shared-memory
architecture.

2) Location Detection With Data Clustering: Data mining
currently is an important approach to find information in large
sets of data. The idea of data mining is to apply statistical
methods to a given data set in order to discover potentially new
and useful knowledge.

The data mining process describes a commonly accepted
approach to identify certain patterns in given data sets. First, the
data to be analyzed need to be identified and made accessible.
This is done by our hardware monitor. Second, the acquired
data are transformed so that they can be used as an input for a
certain data mining algorithm. Here, we rely on a mining tool
to perform the data transformation. Finally, the data are mined,
and the result is used to compute predictions.

Depending on the data and the pattern to identify, several
different data mining algorithms exist. While clustering helps
to identify several data tuples with similar properties, associa-
tion rules find combinations of attributes frequently occurring
together in the whole data set. Classification and regression
are methods to predict one attribute value based on a set of
input attributes. Our goal in this work is to predict the location
of a data set based on the communication records with the
information about source and destination. This is the task of the
classification and regression rules. Hence, we use these rules to
analyze the monitoring data for finding the access character of
a memory address and the optimal node for it.

One approach to do classification is to learn a decision tree
[11], [45]. Such a tree consists of one root node and several
subsequent nodes, which represent decision rules. The leaf
nodes finally represent the class of a tuple satisfying all preced-
ing conditions. Fig. 1 depicts a simple example. An unknown
attribute of a data tuple is then predicted by traversing through

Fig. 1. Example of building a decision tree for memory locations.

the tree until reaching a leaf node containing a classification.
For our case, the leaves are the processors contained in the
system, and the goal is to search the decision tree to achieve
a leaf for the given address. Fig. 1 demonstrates a case for
predicting the optimal location for the memory address 100 that
is accessed by program 2. According to the decision tree, this
block shall be allocated to processor 3 because, for all addresses
bigger than 100, the best destination is this processor.

Compared to the simple structure of decision trees and the
easy way to classify data tuples, it is more complex to automat-
ically learn decision trees from a database of sample records.
The usual technique is a top-down induction of such trees,
which starts at the root node and applies the same algorithm to
all subsequent children. At every node, it has to decide which
attribute to select and at which threshold value the attribute
should be split. This is done in a greedy manner using entropy
or information gain measures [4], [33]. If only records from the
same class remain in one node or no further condition offers
any improvement, the majority class is decided to be the final
classification of the corresponding data tuples.

The monitoring data provide the access address for each sin-
gle communication. This allows us to acquire the best position
for individual data addresses. However, such fine granularity is
generally not necessary for data locality optimization. There-
fore, we transferred the data into a form in which the access
frequency per processor is associated with each memory block
the size of a virtual page. With this transformation, each data
tuple consists of the desired memory block and one column for
each processor in the system.

Fig. 2 depicts the whole procedure of analyzing the monitor-
ing data. In the first step, the monitoring data are transformed.
This is followed by the step of data clustering. The results
are then delivered to the programmers with three different
granularities: data set level, page level, and single address. The
figure demonstrates a process of postprocessing the monitoring
data. The approach can also be applied for runtime analysis of
the monitoring data. However, the decision tree is built based
on partial performance data and may not accurately predict the
optimal nodes for applications with irregular access patterns.

IV. VALIDATION AND RESULTS

We have applied the proposed approach to study the data
affinities in standard benchmark applications and found inter-
esting access sequences for cache optimization. However, since



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 2. Work flow of analyzing the monitoring data.

the memory locality problem on a distributed system is more
challenging, we only performed optimizations in terms of the
memory locality rather than the cache locality. This section
shows our experimental results.

A. Experimental Applications

The applications for the experiment are chosen from the
SPLASH-II benchmark suite [44]. The benchmark consists of
several programs parallelized with m4 macros. The lower upper
(LU) program factors a dense matrix into the product of a lower
triangular matrix and an upper triangular one. The primary
data structure in LU is the matrix being decomposed. For this
experiment, we use a matrix of size 128× 128. The fast Fourier
transform (FFT) is a complex 1-D version of the “six-step” FFT
algorithm described in [2]. The data set consists of n complex
data points to be transformed and another n complex data points
referred to as the roots of unity. For this experiment, FFT is
computed using 214 data points. RADIX implements an integer
radix sort based on the method described in [3]. We perform
this sort on 65 536 elements. WATER is an N -body molecular
dynamics application that evaluates forces and potentials in a
system of water molecules in the liquid state. For this experi-
ment, a data size of 216 molecules is specified. The OCEAN
program uses a restricted red–black Gauss–Seidel multigrid
solver [5] to simulate the role of eddy and boundary currents on
large-scale ocean movements. The simulation is performed for
many time steps until the eddies and mean ocean flow attain a
mutual balance. We use a grid of 130× 130 to model the ocean
basin. BARNES implements the Barnes–Hut method to simu-
late the interaction of a system of bodies (N -body problem).
We perform this simulation using an N -body size of 1024.

B. Memory Locality Optimization

As mentioned and shown in Fig. 2, data mining provides
us three results with different granularities: single memory
address, individual virtual page, and complete data set. The first
result enables very fine-grained optimization that allocates each
data item to the corresponding processor node. However, such
a granularity introduces high overhead, particularly for the case
of runtime optimization. Therefore, we performed page-level
optimization using single pages as an allocation unit and the
coarse-grained optimization of allocating the whole data set on
a single node, rather than the optimization with single memory
addresses.

The optimization was performed by using annotations to
explicitly specify the best location in the source code. In the
case of page-level optimization, each virtual page is specifically
allocated on its dominating node, while with the coarse-grained
optimization, a single node is specified for the entire working
load. A dominating node is the computing node that performs
the most accesses on the virtual page.

The baseline for both optimization versions is the conven-
tional data placement, i.e., all data are placed on the host node
on which the job is submitted. We also addressed the first-
touch scheme [40], which is usually applied to evaluate memory
optimization on systems with a distributed shared memory.
The first-touch scheme allocates data on the node that first
accesses it. This scheme tends to behave better than other data
distribution policies, because the node that first accesses a page
is usually the node that mostly accesses it.

C. Optimization Results With a Strict Access Policy

The first experiment studies the direct impact of the memory
locality optimization. For this, we ran all applications with
different code versions, including the first-touch scheme, node-
level optimization (opt-coarse), page-level optimization (opt-
fine), and the conventional host-node data placement. We also
executed the applications using different numbers of processing
nodes in order to study the scalability of our locality optimiza-
tion approach. According to the requirement of some applica-
tions, the number of processors is specifically chosen as a power
of two. For each test, the execution time of all applications
was measured, and the speedup was calculated by dividing the
execution time of an optimized version via the time needed for
running the code with the conventional data placement policy.

For the following tests, we use the most strict communication
policy, which allows only one node to access a remote memory
at the same time. During this delay, no other nodes can perform
remote accesses.

Fig. 3 shows the experimental results of the coarse-grained
optimization using two processing nodes. For each application,
the figure demonstrates two results, with one showing the
speedup of the first-touch version against the transparent ver-
sion in absolute execution time and the other for the optimized
version with a coarse granularity.

Observing the second bars with each application in the
figure, it can be seen that all applications achieve performance
improvement with the optimized version in contrast to the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: TRUSTED PERFORMANCE ANALYSIS ON SYSTEMS WITH A SHARED MEMORY 7

Fig. 3. Improvement of coarse-grained optimization on two nodes.

Fig. 4. Improvement of fine-grained optimization on two nodes.

default data allocation policy. For individual applications, FFT
depicts the best performance gain with a speedup of 1.3 to the
original code version. Other applications, however, show only a
slight speedup. Nevertheless, most of the applications depict an
improvement with the coarse-grained optimization in contrast
to the first-touch scheme. This is demonstrated in the figure by
the fact that the right bar for each application is higher than the
left one, except the application RADIX and OCEAN.

Studying the results with fine-grained optimizations, we
found different behaviors with some applications. Observing
Fig. 4 that shows the speedup of both first-touch scheme and
fine-grained optimization against the default data allocation
policy, it can be seen that OCEAN achieves a speedup of 1.2
with our optimization and the optimized version performs now
better than the first-touch scheme. RADIX also shows a better
performance with this optimization in contrast to the first-touch
scheme. For FFT, the speedup of our optimization is as high
as 1.74.

To observe the applications’ behavior on a larger system, we
ran all applications using 32 processing nodes. Fig. 5 shows the
experimental results, where each application has three bars cor-
responding to the speedup with the first-touch scheme, coarse-
grained optimization, and fine-grained optimization. It can be
clearly seen that the fine-grained optimization performs better
than the other two cases for most of the applications. With the
application RADIX, for example, a speedup of two has been
achieved. Similarly, OCEAN also shows a high performance
gain. This indicates that, on larger systems, coarse-grained opti-
mization may not help significantly reduce the remote memory
accesses, and in this case, fine-grained tuning at the page level
rather than the whole working set is necessary.

Fig. 5. Speedup of optimizations on 32 nodes.

Combining all three figures, it can be seen that, for all
applications, except FFT, the first-touch scheme has no speedup
to the basic policy, meaning that this scheme results in the same
execution time as the default version. This also indicates that
the first-touch scheme brings the same runtime data layout as
the host-node scheme that allocates all data sets on the same
node, namely, the host node. The reason may lie in the data
initialization, which is usually done by the host and the first-
touch scheme that puts all shared data on the host node that
first accesses the data. Similarly, coarse-grained optimization
allocates the entire data on a single node and therefore cannot
introduce large performance achievement. This is because the
global dominating node for the whole data set is discovered
based on the total remote accesses each node performed at the
runtime. Most pages are shared by many processors. The page-
level optimization improves performance because of the exis-
tence of a dominating node for each individual page. However,
we note that, in most cases, this dominating node varies from
page to page. Therefore, node-level optimization could only
improve the data locality in smaller systems. For example, on
a two-node machine, there are only two candidates for a page;
therefore, placing all data on the global dominating node can
achieve speedup. However, on larger systems, the best position
of a virtual page can be any of the processors. In this case, only a
locality optimization with individual data sets can help improve
the data locality.

The good performance with the page-level optimization is
directly attributed to the reduction of remote accesses. For a
deeper insight into this issue, we measured the number of re-
mote accesses for both page-level optimization and transparent
data placement. We then computed the reduction rate as the per-
centage of reduced remote accesses achieved by the optimized
version to the total remote accesses introduced by the transpar-
ent version. Fig. 6 depicts the results with all applications.

Observing the curves in the figure, it can be seen that,
for most applications, including LU, WATER, OCEAN, and
BARNES, the reduction rate is higher on smaller systems than
on larger ones. This is not surprising because, on smaller
systems, a data page is requested by few processor nodes.
However, on large systems, the references to a single page are
distributed across a set of nodes that possibly all require the
page frequently. This means that the optimization of exclusively
putting the data on the dominating node can only remove the
remote accesses from this node but not that of the others.
Nevertheless, if an application has a lower shared degree, a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 6. Reduction rate of remote accesses.

data page would be potentially only dominantly accessed by
a single processor. In this case, the reduction rate of remote
accesses can still be high on larger systems. FFT and RADIX
are such examples. With the FFT application, we achieved a
reduction of as much as 47% in remote memory accesses on
32-processor systems, while RADIX shows a constant reduc-
tion rate of 40% from 4 to 32 processors. Therefore, we
observed a high performance gain with these two applications.

In summary, the applications demonstrate different behaviors
with our locality optimization. This distinction lies on the
access pattern of each individual program. Using the proposed
approach, we found that, for the LU application, nearly half of
the total data pages are accessed equally by many processors,
while the other half have several dominating nodes. Only 6%
of the pages are accessed mainly by a single processor. We
have placed each page to its best position suggested by our
data classifier. However, for most pages, other nodes also
require them. Hence, still many remote accesses exist after
the location tuning. Similarly for WATER, although 36% of
the data pages are dominantly accessed by a single node, the
number of accesses by this node is only 2% of the total remote
accesses. The others are shared by all or almost all processors,
and these processors equally perform accesses to an individual
page. For BARNES, the whole shared data are accessed by all
nodes. Even though some nodes do not frequently request a
page, there exists no dominating node for any data page. This
means that at least two processors equally access the same page.
Therefore, it is difficult to optimize this code. With FFT, 96%
of the data pages have a dominating node, and 33% of them are
exclusively accessed by this node. RADIX is even better with
more than a half of the data pages accessed by a single node.
For OCEAN, nearly 70% of the pages are exclusively used by
one node, and 2/3 of the rest have a clear dominating processor.
Therefore, the optimization with these three applications leads
to a considerable performance gain.

D. Optimization With Concurrent Internode Communication

The results described previously are achieved with the as-
sumption that only one remote access can be performed at the
same time on the network. Many interconnection technologies
allow concurrent communication between several processor
pairs. In order to measure the maximal potential of perfor-
mance gain with the memory optimization, we executed all

Fig. 7. Maximal improvement in execution time with both optimizations
[(upper) coarse-grained optimization; (lower) page-level optimization].

applications with the condition that remote accesses from each
processor can be handled immediately without waiting for a
free connection.

Fig. 7 depicts the speedup of both node-level (upper figure)
and page-level (lower figure) optimizations versus the host-
node allocation policy. In comparison with the speedup shown
in the previous section, the overall behavior with individual
applications does not change, but a higher speedup can be
clearly seen, as well as with the node-level optimization. The
best case is the RADIX program on 32 processors, where a
speedup of factor four has been acquired.

E. Improvement in Scalability

The last experiment aims at studying the scalability, an
important performance metric for evaluating parallel systems.
A system is scalable when the speedup of a parallel execution to
the sequential execution increases linearly with the number of
processors. We computed the speedup with all applications and
different system scales, by dividing the time of the sequential
execution with the time of a parallel run.

Fig. 8 shows the experimental results. The top diagram
presents the speedup curves with the transparent version, i.e.,
using the host-node-based data allocation. These curves give us
a first image that only one (the program BARNES) out of all six
speedup lines goes linearly, indicating a good scalability. The
curves with RADIX and WATER are lineal by eight processors,
indicating a scalability on smaller systems. However, on large
systems, they do not perform well. It can be seen that, with
both codes, the parallel execution using 32 processors is longer
than that with 16 nodes. LU and FFT show poor parallel
performances, where speedup values of 3.20 and 4.65 were
achieved on a 32-node system individually. The speedup line of
OCEAN increases continuously but slightly. With this program,
only a speedup of ten is achieved on 32-node systems.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: TRUSTED PERFORMANCE ANALYSIS ON SYSTEMS WITH A SHARED MEMORY 9

Fig. 8. Scalability comparison between transparent and optimized versions
[(upper) parallel speedup with unoptimized version; (lower) parallel speedup
with page-level optimization].

Switching to the other diagram in Fig. 8, we first see that
RADIX and OCEAN are now scalable due to the page-level
memory locality tuning. The speedup on 32-node systems, for
instance, is more than 20 for both applications. WATER, how-
ever, still shows a slowdown with 32 processors in contrast to 16
processors, but this slowdown is much smaller than the unopti-
mized case. With LU, we did not get a significant improvement.
For FFT, the optimization is quite efficient, particularly in the
case of 32 processors where the speedup after the optimization
is 100% more than that acquired with the unoptimized version.

In summary, the experimental results show that our data
locality optimization approach can improve both single execu-
tion and scalability of parallel performance. Depending on the
access pattern of applications and their individual performance
problems, the improvement varies between applications.

V. CONCLUSION

Computing architectures and data structures are getting more
complicated. This makes it hard for programmers to develop
efficient applications. Performance tuning is nearly a necessary
task for application developers.

We have proposed a code optimization approach of applying
conventional algorithms to analyze the runtime performance
data and further optimizing the applications manually based on
the analysis results. Since both performance data and analysis
mechanisms have high accuracies, we achieved a significant
performance gain with the tested applications.

In the next step of this research work, we will study per-
formance co-optimization, which involves several performance
metrics combined into a single optimization process. For this,
the data mining algorithms will help find the best tradeoff

between these metrics. In addition, we plan to use real appli-
cations to validate the optimization results.

REFERENCES

[1] C. Athanasopoulou, V. Chatziathanasiou, M. Komninou, and Z. Petkani,
“Applying knowledge engineering and data mining for optimization of
control monitoring of power plants,” in Proc. 6th IASTED Int. Conf.
EuroPES, 2006, pp. 190–195.

[2] D. H. Bailey, “FFTs in external or hierarchical memory,” J. Supercomput.,
vol. 4, no. 1, pp. 23–35, Mar. 1990.

[3] G. E. Blelloch et al., “A comparison of sorting algorithms for the connec-
tion machine CM-2,” in Proc. 8th Annu. ACM Symp. Parallel Algorithms
Architectures, Jul. 1991, pp. 3–16.

[4] C. Borgelt, “A decision tree plug-in for data engine,” in Proc. 6th EUFIT ,
Aachen, Germany, 1998, vol. 2, pp. 1299–1303, Verlag Mainz.

[5] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”
Math. Comput., vol. 31, no. 138, pp. 333–390, Apr. 1977.

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. London, U.K.: Chapman & Hall, 1993.

[7] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “Portable pro-
gramming interface for performance evaluation on modern processors,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 3, pp. 189–204, Aug. 2000.

[8] H. Brunst et al., “Comprehensive Performance Tracking With Vampir
7,” in Tools for High Performance Computing. New York, NY, USA:
Springer-Verlag, 2009, pp. 17–29.

[9] B. R. Buck and J. K. Hollingsworth, “Data centric cache measurement on
the Intel Itanium 2 processor,” in Proc. SuperComput., Nov. 2004, p. 58.

[10] CERN, LHC—The Large Hadron Collider, Meyrin, Switzerland, 2013.
[Online]. Available: http://lhc-new-homepage.web.cern.ch/lhc-new-
homepage/

[11] A. Chaddad, P. O. Zinn, and R. R. Colen, “Brain tumor identification using
Gaussian mixture model features and decision trees classifier,” in Proc.
Annu. Conf. Inf. Sci. Syst., Mar. 2014, pp. 1–4.

[12] D. Chen, D. Li, M. Xiong, H. Bao, and X. Li, “GPGPU-aided ensemble em-
pirical mode decomposition for EEG analysis during anaesthesia,” IEEE
Trans. Inf. Technol. BioMed., vol. 14, no. 6, pp. 1417–1427, Nov. 2010.

[13] D. Chen et al., “Natural disaster monitoring with wireless sensor net-
works: A case study of data-intensive applications upon low-cost scalable
systems,” MONET , vol. 18, no. 5, pp. 651–663, Oct. 2013.

[14] D. Chen, L. Wang, G. Ouyang, and X. Li, “Massively parallel neural
signal processing on a many-core platform,” Comput. Sci. Eng., vol. 13,
no. 6, pp. 42–51, Nov./Dec. 2011.

[15] D. Chen et al., “Massively parallel modelling & simulation of large crowd
with GPGPU,” J. Supercomput., vol. 63, no. 3, pp. 675–690, Mar. 2013.

[16] G. Cong, H. Wen, H. Murata, and Y. Negishi, “Tool-assisted optimiza-
tion of shared-memory accesses in UPC applications,” in Proc. 14th Int.
Conf. High Perform. Comput. Commun., Liverpool, UK, Jun. 2012,
pp. 104–111.

[17] A. C. de Melo, “The new linux “perf” tools,” in Proc. 17 Int. Linux Syst.
Technol. Conf., Sep. 2010, pp. 1–42.

[18] P. Guo, L. Wang, and P. Chen, “A performance modeling and optimization
analysis tool for sparse matrix-vector multiplication on GPUs,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1112–1123, May 2014.

[19] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero, and
A. D. Malony, “Performance characterization of global address space ap-
plications: A case study with NWChem,” Concurrency Comput., Practice
Experience, vol. 24, no. 2, pp. 135–154, Feb. 2012.

[20] F. Huang, D. Liu, X. Li, L. Wang, and W. Xu, “Preliminary study of a
cluster-based open-source parallel GIS based on the GRASS GIS,” Int. J.
Digital Earth, vol. 4, no. 5, pp. 402–420, 2011.

[21] Intel, Intel VTune amplifier XE 2013: Performance and thread profiler,
Mountain View, CA, USA, 2013. [Online]. Available: http://software.
intel.com/en-us/intel-vtune-amplifier-xe

[22] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
pp. 7–17, Sep./Oct. 2011.

[23] A. Kusiak and Z. Song, “Combustion efficiency optimization and virtual
testing: A data-mining approach,” IEEE Trans. Ind. Informat., vol. 2,
no. 3, pp. 167–184, Aug. 2006.

[24] S. Letourneau, F. Famili, and S. Matwin, “Data mining to predict aircraft
component replacement,” IEEE Intell. Syst. Appl., vol. 14, no. 6, pp. 59–
66, Nov./Dec. 1999.

[25] Y. Ma et al., “Distributed data structure templates for data-intensive re-
mote sensing applications,” Concurrency Comput., Practice Experience,
vol. 25, no. 12, pp. 1784–1797, Aug. 2013.

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

[26] A. D. Malony et al., “Parallel performance measurement of heteroge-
neous parallel systems with GPUs,” in Proc. Int. Conf. Parallel Process.,
Sep. 2011, pp. 176–185.

[27] J. Marathe, F. Mueller, and B. de Supinski, “A hybrid hardware/software
approach to efficiently determine cache coherence bottlenecks,” in Proc.
Int. Conf. Supercomput., Jun. 2005, pp. 21–30.

[28] S. Merchant and G. Prabhakar, “Tool for performance tuning and regres-
sion analyses of HPC systems and applications,” in Proc. 19th Int. Conf.
High Perform. Comput., Pune, India, Dec. 2012, pp. 1–6.

[29] A.-T. Nguyen, M. Michael, A. Sharma, and J. Torrellas, “The Augmint
multiprocessor simulation toolkit for Intel x86 architectures,” in Proc.
IEEE Int. Conf. Comput. Des., VLSI Comput. Processors, Oct. 1996,
pp. 486–490.

[30] C. Olaru, P. Geurts, and L. Wehenkel, “Data mining tools and applications
in power system engineering,” in Proc. 13th PSCC, 1999, pp. 324–330.

[31] OProfile, A System Profiler for Linux, 2013. [Online]. Available: http://
oprofile.sourceforge.net/

[32] B. Quaing, J. Tao, and W. Karl, “YACO: A user conducted visualization
tool for supporting cache optimization,” in Proc. 1st Int. Conf., HPCC,
vol. 3726, Lecture Notes in Computer Science, Sorrento, Italy, Sep. 2005,
pp. 694–703.

[33] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann, 1993.

[34] R. Ranjan, R. Buyya, and A. Harwood, “A case for cooperative and
incentive based coupling of distributed clusters,” in Proc. 7th IEEE Int.
Conf. Cluster, Boston, MA, USA, Sep. 2005, pp. 1–11.

[35] I. Rigoutsos and A. Floratos, “Combinatorial pattern discovery in biologi-
cal sequences: The TEIRESIAS algorithm,” Bioinformatics, vol. 14, no. 1,
pp. 55–67, Jan. 1998.

[36] SDSC, Gordon at the San Diego Supercomputing Center, La Jolla, CA,
USA, 2013. [Online]. Available: http://www.sdsc.edu/us/resources/gordon/

[37] S. Shende, A. Malony, W. Spear, and K. Schuchardt, “Characterizing I/O
performance using the TAU performance system,” in Proc. ICPP Parco
Conf. Exascale Mini-Symp., 2011, pp. 1–10.

[38] S. Shende and A. D. Malony, “The TAU parallel performance system,” Int.
J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, May 2006.

[39] Sourceforge, Perfmon2—Improving Performance Monitoring on Linux,
2013. [Online]. Available: http://perfmon2.sourceforge.net/

[40] H. Takashi, O. Hiroshi, I. Takayoshi, and D. Henry, “Automatic data
distribution method using first touch control for distributed shared mem-
ory multiprocessors,” in Proc. Languages Compilers Parallel Comput.
Int. Workshop, vol. 2624, Lecture Notes in Computer Science, 2001,
pp. 147–161.

[41] L. Wang, D. Chen, Z. Deng, and F. Huang, “Virtual workflow system for
distributed collaborative scientific applications on grids,” Comput. Electr.
Eng., vol. 37, no. 3, pp. 300–310, May 2011.

[42] L. Wang, D. Chen, Y. Hu, Y. Ma, and J. Wang, “Towards enabling cyber-
infrastructure as a service in clouds,” Comput. Electr. Eng., vol. 39, no. 1,
pp. 3–14, Jan. 2013.

[43] L. Wang, D. Chen, and F. Huang, “Large scale distributed visualization
on computational grids: A review,” Comput. Electr. Eng., vol. 37, no. 4,
pp. 403–416, Jul. 2011.

[44] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in Proc.
22nd Annu. Int. Symp. Comput. Architecture, Jun. 1995, pp. 24–36.

[45] J. Wyffels et al., “Using a decision tree for real-time distributed indoor
localization in healthcare environments,” in Proc. Int. Conf. Develop.
Appl. Syst., May 2014, pp. 103–109.

[46] W. Zhang et al., “Towards building a multi-datacenter infrastructure
for massive remote sensing image processing,” Concurrency Comput.,
Practice Experience, vol. 25, no. 12, pp. 1798–1812, Aug. 2013.

Jiaqi Zhao received the Master’s degree from North-
east Normal University of China, Changchun, China,
in 2006.

She is currently a Lecturer with Changchun Uni-
versity of Technology, Changchun. Her major re-
search areas are vision cognitive algorithms and
cloud computing. She has participated in the devel-
opment of several research projects, and her research
results have been published in several international
conferences and journals.

Changlong Xue, photograph and biography not available at the time of
publication.

Jie Tao received the Ph.D. degree from Munich
University of Technology, Munich, Germany.

She has been a Lecturer and a Research Asso-
ciate with Munich University of Technology. She
is currently with Karlsruhe Institute of Technology,
Karlsruhe, Germany. She is a Principal Investigator
of several research projects. She has authored or
coauthored 130 articles. Her earlier research focus
was mainly on parallel programming models and
performance tools. In the last years, she worked
intensively on grid, cloud and data-intensive comput-

ing, and the virtualization technologies.
Dr. Tao has served as a Cochair or a Program Committee Member of

international conferences/workshops and a Guest Editor of several journals.

Rajiv Ranjan (S’06) received the Bachelor’s de-
gree in computer engineering from North Gujarat
University, Gujarat, India, in 2002 and the Ph.D.
degree in computer science and software engineering
from The University of Melbourne, Melbourne, Vic.,
Australia, in 2009.

He is currently a Senior Research Scientist,
a Julius Fellow, and a Project Leader with the
Computational Informatics, Commonwealth Scien-
tific and Industrial Research Organisation (CSIRO),
Canberra, ACT, Australia, where he is working on

projects related to cloud and service computing. Previously, he was a Senior
Research Associate (Lecturer Level B) with the School of Computer Science
and Engineering, University of New South Wales, Sydney, N.S.W., Australia.
He has authored or coauthored 84 (37 journal papers, 31 conference papers,
nine book chapters, and seven books) scientific publications; approximately
70% of his journal papers and 60% of his conference papers have been A*/A
ranked publication, according to the Australian Research Council’s Excellence
in Research for Australia (ERA). His papers have appeared at selective highly
reputed venues, including the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS (ERA A*), the IEEE TRANSACTIONS ON COM-
PUTERS (ERA A*), the IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING, the Journal of Computer and System Sciences (ERA A*), the
World Wide Web Conference (Core/ERA A*), the IEEE Intelligent Systems,
Future Generation Computer Systems (ERA A), the IEEE Communications
Surveys and Tutorials (#1 Computer Science Journal 2011), the IEEE Systems
Journal, the Journal of Software Practice and Experience (ERA A), Springer
Journal of Computing (ERA A), and the Journal of Concurrency and Com-
putation: Practice and Experience (ERA A). He is broadly interested in the
emerging areas of cloud, grid, and service computing. The main goal of his
current research is to advance the fundamental understanding and state of the
art of provisioning and delivery of application services in large, heterogeneous,
uncertain, and evolving distributed systems (cloud, grids, data center, and web
services).

Dr. Ranjan was a recipient of the following recognitions for his excellent
research: 1) Best Paper Award from the IEEE HPCC 2013 Conference;
2) Outstanding Journal Paper on New Communications Topics Award (2009)
from the IEEE Communications Society; 3) Goldstar Award (for excellence in
research and having a near miss at ARC Discovery Project Grant) from the
University of New South Wales; and 4) Julius Career Award (for excellence
in research) from CSIRO. Recently (April 2014), he has been shortlisted as
one of the finalists for the 2014 ICT Young Professional of the Year Award
(administered by the Australian Government).

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://www.sdsc.edu/us/resources/gordon/
http://perfmon2.sourceforge.net/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: TRUSTED PERFORMANCE ANALYSIS ON SYSTEMS WITH A SHARED MEMORY 11

Joanna Kołodziej (M’11) received the MSD degree
in theoretical mathematics and the Ph.D. in theoret-
ical computer science from Jagiellonian University,
Cracow, Poland.

Since September 1, 2012, she has been an As-
sociate Professor with the Institute of Computer
Science, Cracow University of Technology, Cracow.
Previously, she was the Department of Mathematics
and Computer Science, University of Bielsko-Biala,
Bielsko-Biala, Poland. She is also a Research Collab-
orator of the Intelligent Information Systems Group

with AGH University of Science and Technology, Cracow. The current topics of
her research include grid and cloud computing, energy effectiveness and secure
awareness in large-scale distributed systems, data intensive computing, and text
mining.

Lizhe Wang (M’09–SM’12) received the B.E. and
M.E. degrees from Tsinghua University, Beijing,
China, and the D.Eng. degree from the University of
Karlsruhe, Karlsruhe, Germany.

He is currently a Professor with the Institute of Re-
mote Sensing and Digital Earth, Chinese Academy
of Sciences (CAS), Beijing, China, and a Chutian
Chair Professor with the School of Computer Sci-
ence, China University of Geosciences (CUG),
Beijing. He leads the high geo-performance com-
puting group at CAS and the High Performance

Computing Lab at CUG. His main research interests include high-performance
computing, e-Science, and spatial data processing.

Prof. Wang is a Fellow of The Institution of Engineering and Technology and
the British Computer Society.

Dan Chen received the B.Sc. degree in physics from
Wuhan University, Wuhan, China, the M.Eng. degree
from Huazhong University of Science and Technol-
ogy, Wuhan, and the M.Eng. and Ph.D. degrees from
Nanyang Technological University, Singapore.

He is currently a Professor with the School of
Computer, Wuhan University. His research interests
include computer modeling and simulation, high-
performance computing, and neuroinformatics.


