
A Simulation Study on Urban Water Threat
Detection in Modern Cyberinfrastructures

Lizhe Wang1,2, Dan Chen2, Ze Deng2, Rajiv Ranjan3

1 Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, P. R. China
2 School of Computer Science, China University of Geosciences, P. R. China

3 ICT Centre, CSIRO, Australia

Abstract—The computation of Contaminant Source Character-
ization (CSC) is a critical research issue in Water Distribution
System (WDS) management. We use a simulation framework to
identify optimized locations of sensors that lead to fast detection
of contamination sources. The optimization engine is based on
a Genetic Algorithm (GA) that interprets trial solutions as
individuals. During the optimization process many thousands of
these solutions are generated. For a large WDS, the calculation
of these solutions are non-trivial and time consuming. Hence, it is
a compute intensive application that requires significant compute
resources. Furthermore, we strive to generate solutions quickly
in order to respond to the urgency of a response.

To carry out the calculations we require user-level middleware
that can be supporting the workflow of the application and
manages the resource assignment in an efficient and fault
tolerant fashion. To do so we have prototyped the middleware
framework that provides a convenient command line and portal
layer of steering applications on Grids. Internally, we utilize a
sophisticated workflow engine that provides the ability to access
elementary fault tolerant mechanisms for job scheduling. This
includes the management of job replicas and the reaction on late
return of results.

We report the test results of CSC problem solving on a real
Grid test bed – the TeraGrid test bed. In addition, we contrast
this system architecture with a Hadoop-based implementation
that automatically includes fault tolerance. The later activity has
been conducted on FutureGrid.

I. INTRODUCTION

Urban Water Distribution Systems (WDSs) are vulnerable
to accidental and intentional contamination incidents that
could result in adverse human health and safety impacts [1].
When a contamination event is detected via sensor networks,
municipal authorities are faced with obtaining information
about the contamination. This includes critical information,
such as (a) the location of the contaminant, (b) the time
when the contamination started, (c) type of the contamination,
(d) concentrations of the contamination and its distribution
throughout the WDS. The real-time solution for identifying
this information is critical to improve the safety of the overall
system and its users. The process to identify this information is
referred to as the Contaminant Source Characterization (CSC).
CSC presents significant computational challenges: it requires
high-performance computing resources, a modern cyberin-
frastructure middleware that includes reliable simulation and
optimization software, and spatial-temporal data management
methods to deal with the size of the input network that for a
million person city is considerably large.

Hence, we present a solution that utilizes Grid and Cloud
concepts. The Grid portion of this work was enabled through
the development of the pioneering Java CoG Kit. The Cog
Kit has reached wide acceptance in the Grid community and
is distributed today also partially with the Globus toolkit. We
have enhanced the CoG Kit in regards to workflow manage-
ment and fault tolerance. This toolkit strives to provide a
number of significant enhancements such as a portal interface,
an easier workflow model, and a command shell that enables
a more convenient interface to use Grid and Clouds. We use
the middleware for solving the CSC, enabling the transparent
use of workflow models and parallel calculations in order to
achieve fast turnaround. These two concepts are used within
the CSC as follows:

• the optimization activities are controlled and implemented
with the help of the Grid workflow framework, and

• the simulation of the WDS is controlled through the coor-
dinated use of parallelized simulations that are executed
via multiple PEPANET [2] servers staged on the Grid
resources.

Our contributions in this paper are: (a) we solve the CSC
problem by parallelizing the GA with the Grid workflow
paradigm, (b) we prototyped a cyberinfrastructure middleware
to implement the CSC on a production Grid such as the
TeraGrid, (c) We developed a Hadoop based implementation
to contrast the algorithm design with a more traditional HPC
approach.

The rest of this paper is organized as follows. Section II
provides a brief overview of related work. Section III defines
a more formal definition of the Contamination Source Charac-
terization problem. Section IV describes briefly the EPANET
software that serves the main computational simulation engine
for the water distribution system.

Section V presents the optimization model that is based on a
GA and Section VI investigates the parallel implementation of
the GA while utilizing the Grid workflow framework. Section
VII evaluates our implementations on the TeraGrid. IN Section
VIII we describe our Hadoop-based solution and in Section IX
we summarize our conclusion.

II. RELATIONSHIP TO GRIDS, CLOUDS, AND PREVIOUS
WORK

In this section, we introduce briefly the concept of a
production Grid computing and Cloud computing.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.127

1034

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.127

1034

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.127

1040

A. Grids

A production Grid is a shared computing infrastructure of
hardware, software, and knowledge resources that allows the
coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations to enable sophisticated
international scientific and business oriented collaborations.
Most often Grids contain resources and services that allow
the user to conduct high-performance and/or high-end com-
putation. Recently Grids have been expanded to data Grids
serving data intensive scientific applications. Hence, elemen-
tary characteristics of Grids integrate a large-scale distributed
computing infrastructure across multiple administrative do-
mains. A production Grid can be accessed though a shared
security infrastructure defined by policies and rules between
the institutions.

Production Grids use Grid middleware to coordinate its
resources and services. The Globus Toolkit [3], and gLite[4]
are examples for popular Grid Middleware. TeraGrid [5]
includes the Globus Toolkit as one of its software and service
offerings. For data transfer it uses the Globus Toolkit GridFTP
[6] services.

Due to the nature of the applications that motivated Grid
computing, Grid toolkits employ services that allow uniform
job submissions to take place among the diverse set of com-
putational resources, hiding the intrinsic differences between
various site-specific batch queues. Hence, Grid users can focus
on staging scientific applications while only porting it once to a
job execution model rather than implementing a variety of non-
uniform scripts to address intrinsic differences between the
various batch queues deployed at different sites and worrying
about getting and managing accounts amongst them.

However, although such services are in place, they often
do require a significant investment of time and resources
to leverage from site-specific shortcomings to the original
goals of Grid computing. Hence, it is important to provide
lightweight user-level tools and middleware that is attractive
even for the non-Grid middleware developer to use and to
expand its use to less experienced users.

B. Cloud computing and MapReduce

A computing Cloud is a set of network enabled services,
providing scalable, QoS guaranteed, normally personalized,
inexpensive computing infrastructures on demand, which can
be accessed in a simple and pervasive way [7], [8], [9].
Conceptually, users acquire computing platforms, or IT in-
frastructures, from computing Clouds and execute their ap-
plications inside. Therefore, computing Clouds render users
with services to access hardware, software and data resources,
thereafter an integrated computing platform as a service. The
MapReduce paradigm and its open-sourced implementation –
Hadoop have recognized as representative enabling technique
for Cloud computing.

1) MapReduce paradigm: The MapReduce [10] program-
ming model is inspired by two main functions commonly
used in functional programming: Map and Reduce. The Map
function processes key/value pairs to generate a set of inter-
mediate key/value pairs and the Reduce function merges all

the same intermediate values. Many real-world applications
are expressed using this model.

The most popular implementation of the MapReduce model
is the Hadoop framework [11], which allows applications to
run on large clusters built from commodity hardware. The
Hadoop framework transparently provides both reliability and
data transfer.

Other MapReduce implementations are available for various
architectures, such as for CUDA [12], in a multicore archi-
tecture [13], in FPGA platforms [14], for a multiprocessor
architecture [15], in a large-scale shared-memory system [16],
in a large-scale cluster [17], in a streaming runtime environ-
ment [18], in a Grid environment [19], in an opportunistic
environment [20], and in a mobile computing environment
[21].

Master node

Slave node

NameNode

Task Instance

TaskTracker

Slave node

Task Instance

TaskTracker

User

Fig. 1. Hadoop MapReduce

2) Hadoop: The MapReduce programming model is de-
signed to process large volumes of data in parallel by dividing
the Job into a set of independent Tasks. The Job refers here as a
full MapReduce program, which is the execution of a Mapper
or Reducer across a set of data. A Task is an execution of
a Mapper or Reducer on a slice of data. So the MapReduce
Job usually splits the input data set into independent chunks,
which are processed by the map tasks in a completely parallel
manner.

The Hadoop MapReduce framework consists of a single
Master node that runs a Jobtracker instance which accepts
Job requests from a client node and Slave nodes running
each a TaskTracker instance. The Jobtracker assumes the
responsibility of distributing the software configuration to the
Slave nodes, scheduling the job’s component tasks on the
Tasktrackers, monitoring them and re-assigning tasks to the
TaskTrackers when they failed. It is also responsible for pro-
viding the status and diagnostic information to the client. The
TaskTrackers execute the tasks as directed by the JobTracker.
The TaskTracker executes tasks in separate java process so
that several task instances can be performed in parallel at the
same time. Figure 1 depicts the different components of the
MapReduce framework.

Figure 2 illustrates the high-level pipeline of the Hadoop

103510351041

......

Mapper

......

DataNode

......

Mapper

......

DataNode

......

Mapper

......

DataNode

......

......

Reducer

DataNode

......

DataNode

......

DataNode

......Reducer Reducer

input
data

intermediate
data

shuffle
process

output
data

Legend:

Fig. 2. Hadoop high level data flow

MapReduce. The MapReduce input data typically come from
the input files loaded into the HDFS. These files are evenly
distributed across all the nodes in the cluster. In Hadoop,
computer nodes and data nodes are all the same meaning that
the MapReduce and HDFS run on the same set of nodes. At
the mapping phase, the input file is divided into independent
InputSplits and each split of these Splits describes a unit of
work that comprises a single map task in the MapReduce
job. The map tasks are then assigned to the nodes in the
system based on the physically residence of the input file
splits. Several map tasks can be assigned to an individual
node, which attempts to perform tasks as many in parallel as it
can. When the mapping phase has completed, the intermediate
outputs of the map tasks are exchanged between all nodes; and
they are also the input of the reduction tasks. This process
of exchanging the map intermediate outputs is known as the
shuffling. The reduce tasks are spread across the same nodes
in the cluster as the mappers. The output of the reduce tasks
are stored locally on the slave node.

III. CONTAMINATION SOURCE CHARACTERIZATION IN
URBAN WATER DISTRIBUTION SYSTEMS

A. Problem definition

As mentioned earlier, CSC [22] in a Water Distribution
System (WDS) is to find the contaminant source locations
and their temporal mass loading history. The temporal mass
history is defined through values such as as the start time of the
contaminant release, duration of release, and the contaminant
mass loading during this time. An essential problem is to
identify appropriate locations for the sensors to minimize
the time needed to detect a contamination. A few nodes are
selected as the sensor locations in the Water Distribution

System. During a contamination event, concentration readings
are obtained at these locations at specified time intervals.
Contamination sources are assumed to be present at arbitrary
locations in the WDS for a predetermined period of time.

To identify the true contaminant sources, an estimate is
generated for the contamination source locations and their
release histories i.e. start time of the contaminant, duration and
the amount of contaminant present. For every such estimate,
the water quality simulation is run to obtain the resulting
concentration readings for all the sensor locations for every
time step.

The problem of CSC in a WDS is to locate optimized
estimated contaminant source locations by minimizing the
differences between concentration readings of estimations and
those of real measurement from sensors.

The problem of CSC in a WDS is to find a characterization
of contaminant sources S = (X,H(X, t), t0),

min
I∑

i=1

tend∑
t=t0

|O(i, t)− C(i, t, S)| (1)

where,
• i: ith sensor,
• I is the number of sensors,
• t: time of simulation,
• t0: estimated start time of a contaminant sources,
• tend: end time of simulation,
• X: contamination source locations, for CSC with multiple

contaminant sources, X is a set of contaminant source
locations: X = (x1, x2, ..., xk)

T , where k is number of
contaminant sources

• H(X, t): contaminant mass loading, which is contam-
inant concentration of sources at time t: H(X, t) =
(h1(t), h2(t), ..., hk(t))

T

• O(i, t): observed concentration of sensor i at time t,
• S: characterization of contaminant sources with contami-

nant sources of X , contaminant mass loading of H(X, t),
and starting time of t0, and

• C(i, t, S): calculated concentration of sensor i at time t
via a WDS simulation with an estimated characterization
of contaminant sources S.

Running such experiments multiple times and obtaining
variations on the locations for sensors with the goal to min-
imize the time for feedback can significantly reduce the cost
of the sensor placement.

B. Simulation and optimization framework

To solve the aforementioned problem, an optimization
framework is introduced that uses simulations to obtain the
result (see Figure 3) [23]. An optimization model is coupled
with the simulation model by providing various input trial
variables and retrieving simulated results. The optimization
model generates optimized trials for the characterization of
the contaminant sources S = (X,H(X, t), t0) as part of the
CSC problem. These optimized trials are then sent to the
simulation model. Together with other input data such as the
network model of a WDS, the simulation model computes

103610361042

the output determining the contaminant concentrations at the
locations of sensors. The simulation outputs are compared
with the observational sensor data to be integrated into a self-
correction. If however the error between the simulation and
the observed values is below a threshold, the optimization and
simulation approach is terminated.

Optimization
model

Simulation
model

trial decision
input

simulated output observed output

known input

Calculate error

optimized
decision input

N

Y

Fig. 3. The simulation and optimization approach

IV. PEPANET AS A SIMULATION ENGINE FOR CSC

The EPANET software [24] models water distribution pip-
ing systems and performs the simulation of the hydraulic
and water quality behavior within a pressurized network of
water pipes. The EPANET computer program [25], developed
by the U.S. EPA (Environmental Protection Agency), solves
the nonlinear energy equations and linear mass equations
for pressures at nodes and flowrates in pipes. The EPANET
reads the data file that defines the characteristics of the pipes,
the nodes (connection points of the pipe), and the control
components (such as pumps and valves) in the pipe network.
The calculation of flowrates involves several iterations because
the mass and energy equations are nonlinear. The number of
iterations depends on the system of network equations and the
user-specified accuracy. A satisfactory solution of the flowrates
must meet the specified accuracy, the law of conservation of
mass and energy in the Water Distribution System, and any
other requirements imposed by the user. The calculation of
HGL requires no iteration because the network equations are
linear. Once the flowrate analysis is complete, the water quality
computations are then performed.

A parallelized version of EPANET called PEPANET was
developed by our partners at NCSU. This MPI based software
is available to simulate the water flow in a WDS and a Parallel
Genetic Algorithm is used as the optimization model.

V. GENETIC ALGORITHM AS AN OPTIMIZATION ENGINE
FOR CSC

The genetic algorithm (GA) is a search heuristic that mimics
the process of natural evolution to generate useful solutions
to optimization and search problems. We use a PGA in the
optimization model to find optimized Contamination Sources
S in the CSC problem. Algorithm 1 shows the GA skeleton

for the CSC in a WDS. In the GA, a trial Contamination
Source S is encoded as individuals within a population. The
simulation time is discretized into multiple time steps. In each
time step, a GA is applied with multiple generations to reach
an optimized S. The evaluation process of individuals includes
the following steps:

1) Calculated the simulated output via the simulation model
implemented by the PEPANET software

2) Calculated the fitness, which is the prediction error as
follows:

f =
I∑
i

|O(i, t)− C(i, t, S)| (2)

The GA optimization is done in all time steps until the
simulation time reaches the end time tend.

Algorithm 1 WTM application skeleton
1) t← t0
2) g ← 0
3) Randomly encodes individuals and generate a set of N

sub-populations
4) REPEAT
5) t← t+ 1
6) REPEAT
7) g ← g + 1
8) In each sub-population, apply GA operations such

as selection, replication and mutation.
9) calculate the fitness of each individual and dis-

tances between sub-populations
10) UNTILL the predefined criteria is reached.
11) UNTILL t = tend

Algorithm 1 illustrates the GA variant customized for CSC.
In this particular algorithm, a trial of contamination source S is
encoded into an individual of a population (line 3). We assume
the simulation progresses in a sequence of discrete time steps.
For each time step, the GA evolves for multiple generations
(line 6 – 10) to obtain an optimized S within these generations.
The GA-based optimization runs through all time steps until
the simulation end time tend (line 11). The individuals (trials
of contamination source) are evaluated in following steps:

1) Calculate the simulated output via the simulation model
implemented by the EPANET software,

2) Calculate the fitness, which is prediction error as fol-
lows:

f =
I∑
i

|O(i, t)− C(i, t, S)| (3)

VI. PARALLEL CONTAMINATION SOURCE
CHARACTERIZATION WITH GRID WORKFLOW

Instead of using the PEPANET MPI based code, we have
transformed the code to be executed as part of a workflow. This
allows us to decouple the computation of CSC by distributing
tasks and orchestrating them with Grid workflow framework.
This includes the interplay between a multi-population GA
and the PEPANET simulations.

103710371043

reduce

mga: map
(generation k)

mga
(generation k+1)

pepanet pepanet pepanet......
sleep

mga: finalize
(generation k)

input-k-1

input-k-2

input-k-n

output-k-1
output-k-2

output-k-n

output-k

gen-k

mga: map
(generation 1)

......

......

GridFTP

GridFTP

GridFTP

GridFTP
GridFTP

GridFTP

computational Grids

Fig. 4. Parallel contamination source characterization with Grid workflow

• MGA
MGA is a framework for multi-population based niched
co-evolutionary approach based evolutionary strategy for
generating multiple alternative solutions for the Water
Distribution System contaminant source identification
problem. The MGA code is the optimization engine of
the simulation – optimization framework. It calls the sim-
ulation component: a persistent wrapper residing in the
directory “PEPANET” to carry out EPANET simulations
in parallel. For the water distribution problem, solutions
are represented as a location (node number), start time
with an integer and contaminant loading profile as a list.

• PEPANET
The PEPANET is the parallel version of EPANET simu-
lator [22]. It receives a number of contamination source
parameters from an input file and divides them into
multiple file chunks to different EPANET servers to
compute. The communication between EPANET servers

is done using MPI.
• REDUCE

The REDUCE code collects and merges computing re-
sults from multiple EPANET servers, and sends them to
MGA for individual evaluation.

The Cyberaide workflow for the CSC is shown in Figure 4.
The MGA code is executed iteratively on multiple generations
at the client. At each generation, it sends input data for
PEPANET computation via GridFTP. The PEPANET servers
are launched on remote Grid resources and simulate the urban
Water Distribution System. After the simulation finishes, the
results are sent back to the REDUCE code via GridFTP. The
MGA code resumes when all results are due, it then evaluates
all individuals and proceeds to the next GA generation.

VII. PERFORMANCE EVALUATION AND DISCUSSION

Our experiments are conducted on a number of TeraGrid
compute resources [26]. TeraGrid includes 11 supercomputing

103810381044

TABLE I
TESTBED SETUP IN TERAGRID

Compute resource Site Resource description
Abe NCSA Dell blade system: 1200 PowerEdge 1955 nodes

Each node: dual socket, quad core compute blades
InfiniBand interconnect
100 TB of storage in a Lustre filesystem

Big Red IU IBM e1350: 768 IBM JS21 compute nodes
Each node: two dual-core 2.5 GHz PowerPC 970MP CPUs
8 GB memory, 72 GB of local scratch disk

Queen Bee LONI Dell PowerEdge 1950 cluster: 668 nodes.
Each node: two Quad Core Intel Xeon 2.33GHz 64-bit processors
8 GB of memory, 10 Gb/sec Infiniband
192TB (raw) of storage in Lustre a file system .

centers across the USA. We test the performance of the CSC
application with our implementation while using three of
them: Abe at National Center for Supercomputing Application
(NCSA), Big Red at Indian University (IU), and Queen Bee at
the Louisiana Optical Network Initiative (LONI). The reason
why we chose these three resources is based on the fact that the
application could be easily ported to them. Other resources on
TeraGrid did not provide the right libraries or software stacks
to run the application successfully. The test bed is described
in Table I. We executed the CSC simulation with Cyberaide
workflow on the above resources of the TeraGrid. At each
resource 16 processors are allocated for the CSC problem
calculation.

A. Performance evaluation and discussion

Figure 5 shows the CSC task execution time on Big Red,
Abe and Queen Bee with different GA generation numbers.
It shows that on each compute resource (Big Red, Abe and
Queen Bee) task execution time is proportional to the number
of GA generation. This can be explained as follows:

• The execution time of simulating the WDS is determined
largely by the input data size and compute resource
capacity. As we calculate the same WDS and the input
data is the same for all tests, the time to execute the sim-
ulations is proportional to the compute resource capacity.

• The data transferred between clients and TeraGrid re-
sources (Big Red, Abe and Queen Bee) includes the WSD
system information and input trial individuals. The WDS
system information contains the WDS parameters and
layouts, whose size is around several tens of megabytes in
total for our test problem. These files can be uploaded to
TeraGrid resources before the test and remain unchanged
during the execution. For a simulation of each input
individual, the input data is around several kilobytes. The
data transfer time of input data can be ignored considering
the high-speed network of the TeraGrid (typically 1
Gigabit/S or 10 Gigabit/S).

Such performance characteristic can be easily included in
better utilization of the distributed resources in the TeraGrid
for this application.

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

#" (" ##" #(" $#" $(" %#" %(" &#" &("

!"
#$
%&
'&
()
*+

,%
*-

&%
.#
&(
+,

/0
%

1&,&2"*+,%,)-3&2%

*+," +-."/01" 23004"+00"

Fig. 5. Task execution time vs. generation number

VIII. HADOOP IMPLEMENTATION ON FUTUREGRID

We implemented the application while using the Hadoop
methodology. To evaluate the Hadoop implementation per-
formance, we also modified the original program and im-
plemented a WTM in a master/slave paradigm. To achieve
this modified algorithm, we created in each generation of the
Genetic Algorithm that is inherent in the application, a master
that divides multiple individuals to sub-tasks that are then
sent to slaves for individual evaluation. To allow the use of
distributed resources the communication between master and
slaves is protected via SSL allowing the use of tools such as
ssh and scp to coordinate execution and copying of results.
We refer to this implementation as the ssh implementation.
We used the india cluster from the FutureGrid project to
conduct performance experiments. Figures 6 and 7 show the
performance of the hadoop vs the ssh implementation while
comparing it with the number of nodes used. We observer that
the ssh based solution is more efficient than the hadoop based
solution.

103910391045

we created in each generation of the Genetic Algorithm that is inherent in the applica-
tion, a master that divides multiple individuals to sub-tasks that are then sent to slaves
for individual evaluation. To allow the use of distributed resources the communica-
tion between master and slaves is protected via SSL allowing the use of tools such as
ssh and scp to coordinate execution and copying of results. We refer to this imple-
mentation as the ssh implementation. We used the india cluster from the FutureGrid
project to conduct performance experiments. Figures 6 and 7 show the performance
of the hadoop vs the ssh implementation while comparing it with the number of nodes
used. We observer that the ssh based solution is more efficient than the haddop based
solution.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

'#!!"

#!!!"

$" %" '" ("

!"
#$
%&
'&
()
*+

,%
*-

&%
.
/01

%2
"3

++
4%

5)-6&7%+8%,+3&#%+8%01&%2"3++4%(9)#0&7%

)*+*,-./+"+/01$"

)*+*,-./+"+/01%"

)*+*,-./+"+/01#"

)*+*,-./+"+/01$!"

)*+*,-./+"+/01%!"

)*+*,-./+"+/01&!"

)*+*,-./+"+/01'!"

Figure 6: Task execution time in hadoop vs. number of nodes

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

()*+"(),-$."
//0"

()*+"(),-%."
//0"

()*+"(),-'."
//0"

()*+"(),-1."
//0"

!"
#$
%&
'&
()
*+

,%
*-

&%
./
/0

1%

,)-2&3%+4%,+5&#%

2+(+345)("(),-$"

2+(+345)("(),-%"

2+(+345)("(),-#"

2+(+345)("(),-$!"

2+(+345)("(),-%!"

2+(+345)("(),-&!"

2+(+345)("(),-'!"

Figure 7: Task execution time using ssh vs. number of nodes

Fig. 6. Task execution time in hadoop vs. number of nodes

we created in each generation of the Genetic Algorithm that is inherent in the applica-
tion, a master that divides multiple individuals to sub-tasks that are then sent to slaves
for individual evaluation. To allow the use of distributed resources the communica-
tion between master and slaves is protected via SSL allowing the use of tools such as
ssh and scp to coordinate execution and copying of results. We refer to this imple-
mentation as the ssh implementation. We used the india cluster from the FutureGrid
project to conduct performance experiments. Figures 6 and 7 show the performance
of the hadoop vs the ssh implementation while comparing it with the number of nodes
used. We observer that the ssh based solution is more efficient than the haddop based
solution.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

'#!!"

#!!!"

$" %" '" ("

!"
#$
%&
'&
()
*+

,%
*-

&%
.
/01

%2
"3

++
4%

5)-6&7%+8%,+3&#%+8%01&%2"3++4%(9)#0&7%

)*+*,-./+"+/01$"

)*+*,-./+"+/01%"

)*+*,-./+"+/01#"

)*+*,-./+"+/01$!"

)*+*,-./+"+/01%!"

)*+*,-./+"+/01&!"

)*+*,-./+"+/01'!"

Figure 6: Task execution time in hadoop vs. number of nodes

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

()*+"(),-$."
//0"

()*+"(),-%."
//0"

()*+"(),-'."
//0"

()*+"(),-1."
//0"

!"
#$
%&
'&
()
*+

,%
*-

&%
./
/0

1%

,)-2&3%+4%,+5&#%

2+(+345)("(),-$"

2+(+345)("(),-%"

2+(+345)("(),-#"

2+(+345)("(),-$!"

2+(+345)("(),-%!"

2+(+345)("(),-&!"

2+(+345)("(),-'!"

Figure 7: Task execution time using ssh vs. number of nodesFig. 7. Task execution time using ssh vs. number of nodes

IX. CONCLUSION

The Contaminant Source Characterization (CSC) in a Wa-
ter Distribution System is a critical research issue due the
importance of Urban Water Distribution Systems. The CSC
calculation is a compute-intensive application that typically
requires high performance computing resources. In this paper,
we solve the CSC problem on the supercomputing resources
of the TeraGrid project with the Cyberaide workflow. We
developed the Cyberaide workflow engine, portal and wrapper
service for executing the optimization – simulation framework
of the CSC application. Test results of CSC problem on the
TeraGrid resources justify our design and implementation of
the Cyberaide workflow system.

Although we have shown that one could design a master
slave framework including fault tolerance with the Java CoG
Kit Karajan workflow engine (as we have done), Hadoop
provides also an implicit framework for executing map reduce
like tasks in parallel. The advantage of using a framework
such as Karajan is the ability to develop sophisticated fault
tolerant services with custom behaviors. The advantage of
using a framework such as Hadoop is that fault tolerant
mechanisms are provided by default with little effort. Effort to
use frameworks such as map reduce is non-trivial and poses the
need for the engineers to be familiar not only with map reduce
but also with the target application. However, the cost for such

an implementation is magnified by significant performance
overhead. In addition, we observed that the use of FutureGrid
provided us with a complete new way of implementing a
solution to the problem that was not accessible to us before.

ACKNOWLEDGMENT

Dr. Lizhe Wang’s work is funded by “One-Hundred Talents
Program” of The Chinese Academy of Sciences.

Dr. Dan Chen is funded by National Natural Science Foun-
dation of China (grant No. 60804036), the Hundred University
Talent of Creative Research Excellence Programme (Hebei,
China), the Fundamental Research Funds for the Central
Universities (CUGL100608, CUG, Wuhan), the Specialized
Research Fund for the Doctoral Program of Higher Educa-
tion (grant No. 20110145110010), the Programme of High-
Resolution Earth Observing System (China), and the Program
for New Century Excellent Talents in University (grant No.
NCET-11-0722). Dr. Dan Chen gratefully acknowledges sup-
port from the Birmingham-Warwick Science City Research
Alliance.

The original versions of MGA and PEPANET software
implemented with MPI were developed by Dr. Jitendra Kumar
and Mr. Sarat Sreepathi at North Carolina State University.

REFERENCES

[1] S. Sreepathi, K. Mahinthakumar, E. Zechman, R. Ranjithan, D. Brill,
X. Ma, and G. von Laszewski, “Cyberinfrastructure for Contamination
Source Characterization in Water Distribution Systems,” in Proceedings
of the INternational Conference on Computational Science, ICCS 2007,
ser. Lecture Notes in Computer Science, vol. 4487. Springer, 2007, p.
1058.

[2] G. von Laszewski, K. Mahinthakumar, R. Ranjithan, D. Brill, J. Uber,
K. Harrison, S. Sreepathi, and E. Zechman, “An Adaptive Cyberinfras-
tructure for Threat Management in Urban Water Distribution Systems,”
in Proceedings of the International Conference on Computational Sci-
ence, ICCS 2006, vol. 3993, 2006, pp. 401–408.

[3] “The Globus Toolkit.” [Online]. Available: http://www.globus.org
[4] “gLite.” [Online]. Available: http://glite.web.cern.ch/glite/
[5] P. Beckman, “Building the TeraGrid,” Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
363, no. 1833, pp. 1715–1728, 2005.

[6] “The GridFTP Protocol and Software.” [Online]. Available:
http://www.globus.org/datagrid/gridftp.html

[7] L. Wang, G. von Laszewski, A. J. Younge, X. He, M. Kunze, J. Tao,
and C. Fu, “Cloud computing: a perspective study,” New Generation
Comput., vol. 28, no. 2, pp. 137–146, 2010.

[8] L. Wang and C. Fu, “Research advances in modern cyberinfrastructure,”
New Generation Comput., vol. 28, no. 2, pp. 111–112, 2010.

[9] L. Wang, M. Kunze, J. Tao, and G. von Laszewski, “Towards building
a cloud for scientific applications,” Advances in Engineering Software,
vol. 42, no. 9, pp. 714–722, 2011.

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[11] “Apache hadoop project,” Web Page, http://hadoop.apache.org/.
[12] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a

mapreduce framework on graphics processors,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, ser. PACT’08. New York, NY, USA: ACM, 2008, pp. 260–
269. [Online]. Available: http://doi.acm.org/10.1145/1454115.1454152

[13] R. Chen, H. Chen, and B. Zang, “Tiled-mapreduce: optimizing
resource usages of data-parallel applications on multicore with
tiling,” in Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, ser. PACT’10. New
York, NY, USA: ACM, 2010, pp. 523–534. [Online]. Available:
http://doi.acm.org/10.1145/1854273.1854337

104010401046

[14] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr:
Mapreduce framework on fpga,” in Proceedings of the 18th annual
ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA’10. New York, NY, USA: ACM, 2010, pp. 93–102.
[Online]. Available: http://doi.acm.org/10.1145/1723112.1723129

[15] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and multiproces-
sor systems,” in 13st International Conference on High-Performance
Computer Architecture, 2007, pp. 13–24.

[16] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” in Proceedings of
the 2009 IEEE International Symposium on Workload Characterization.
Austin, TX, USA: IEEE, 2009, pp. 198–207.

[17] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos,
“Supporting mapreduce on large-scale asymmetric multi-core clusters,”
SIGOPS Oper. Syst. Rev., vol. 43, pp. 25–34, April 2009. [Online].
Available: http://doi.acm.org/10.1145/1531793.1531800

[18] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight,
streaming runtime for cloud computing with support for map-reduce,”
in CLUSTER. New Orleans, Louisiana, USA: IEEE, 2009, pp. 1–10.

[19] C. Miceli, M. Miceli, S. Jha, H. Kaiser, and A. Merzky, “Programming
abstractions for data intensive computing on clouds and grids,” in
Proceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, ser. CCGRID’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 478–483. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2009.87

[20] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and
Z. Zhang, “Moon: Mapreduce on opportunistic environments,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC’10. New
York, NY, USA: ACM, 2010, pp. 95–106. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851489

[21] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H.
Tuulos, “Misco: a mapreduce framework for mobile systems,” in
Proceedings of the 3rd International Conference on PErvasive
Technologies Related to Assistive Environments, ser. PETRA’10. New
York, NY, USA: ACM, 2010, pp. 32:1–32:8. [Online]. Available:
http://doi.acm.org/10.1145/1839294.1839332

[22] S. Sreepathi, “Cyberinfrastructure for contamination source charac-
teraization in water distribution systems,” Master’s thesis, North Carolina
State University, Raleigh, North Carolina, USA, 2006.

[23] B. Y. Mirghania, K. G. Mahinthakumara, M. E. Trybya, R. S. Ranjithana,
and E. M. Zechman, “A parallel evolutionary strategy based simulation-
optimization approach for solving groundwater source identification
problems,” Advances in Water Resources, vol. 32, no. 9, pp. 1373–1385,
2009.

[24] “Epanet,” [Online], http://www.epa.gov/nrmrl/wswrd/dw/epanet.html.
[25] L. Rossman, “EPANET 2 users manual,” US Environmental Protection

Agency, Cincinnati, Ohio, Tech. Rep., 2000.
[26] “TeraGrid,” 2001. [Online]. Available: http://www.teragrid.org/

104110411047

