
Real-time QoS monitoring for Cloud-based Big Data Analytics Applications in Mobile
Environments

Khalid Alhamazani1, Rajiv Ranjan2, Prem Prakash Jayaraman2, Karan Mitra3, Meisong Wang2, Zhiqiang (George) Huang2, Lizhe Wang4, Fethi Rabhi1
 1School of Computer Science and Engineering, University of New South Wales

{ktal130,Fethir}@cse.unsw.edu.au
2CSIRO Computational Informatics

{rajiv.ranjan, prem.jayaraman, deanmeisong, zhiqiang.huang}@csiro.au
3Luleå University of Technology, Skellefteå Campus, 93187 Skellefteå, Sweden

karan.mitra@ltu.se
4Chinese Academy of Sciences, Beijing, China

{lizhe.wang}@gmail.com

Abstract—The service delivery model of cloud computing acts
as a key enabler for big data analytics applications enhancing
productivity, efficiency and reducing costs. The ever increasing
flood of data generated from smart phones and sensors such as
RFID readers, traffic cams etc require innovative provisioning
and QoS monitoring approaches to continuously support big
data analytics. To provide essential information for effective
and efficient bid data analytics application QoS monitoring, in
this paper we propose and develop CLAMS—Cross-Layer
Multi-Cloud Application Monitoring-as-a-Service Framework.
The proposed framework: (a) performs multi-cloud
monitoring; and (b) addresses the issue of cross-layer
monitoring of applications. We implement and demonstrate
CLAMS functions on real-world multi-cloud platforms such as
Amazon and Azure.

Keywords- multi-clouds; cross-layer monitoring; QoS; cloud
computing

I. INTRODUCTION
Cloud computing is an emerging ICT service paradigm,

that offers a flexible access to huge pool of resources with
practically no capital investment and with modest operating
costs proportional to the actual use (pay-as-you use model)
[2]. Emerging trends in big data analytics supported by
advances in cloud computing have shifted the focus from
“What data should we store” to “What can we do with the
data” [1] leading to Analytics-as-a-service model. Big data
analytics offer valuable insight into data that can offer a
competitive advantage to organizations.

To support an Analytics-as-a-service model in the cloud
specifically in environments where floods of data generated
from smart phone and sensors are increasing by the day and
unpredictable, the goal is to develop techniques that can
ensure a guaranteed level of application performance. The
big data analytics in the cloud e.g. Mahout supported by
Hadoop require real-time QoS monitoring across the cloud
layers to ensure application’s availability and performance.
Consider an example of a crowd-sensing application that is
supported by a distributed big data analytics application
(Hadoop + Mahout) in the cloud. The volume and variety of
data depends on the number of users contributing data which
in most cases is not known before-hand. Hence, it is essential
to continuously monitor individual system performance at
different layers such as Hadoop job tracker (PaaS offering),
HDFS layer (PaaS offering) and VM performance/failure

(IaaS offering). The above QoS parameters cumulatively
affect the QoS of end-user of that big data analytics
application (SaaS offering).

Further, typical of distributed application environments,
the components could be deployed across multiple cloud
environments. Hence, there is a need for the QoS monitoring
service to work seamlessly in multi-cloud environments such
as Amazon and Azure. E.g. monitoring frameworks such as
CloudWatch and Fabric Controller provided by Amazon
AWS and Microsoft Azure cannot monitor
application/resources hosted on other cloud provider
platforms.

Reliable and efficient management of application
performance hosted on the cloud layers can be ensured by
continuously monitoring the compute, storage, networking
resources, application performance and their respective
quality of service (QoS) across the layers. Primarily,
monitoring is vital for: i) managing the QoS of resources
offered by the cloud; ii) providing continuous information
on the status of resources to cloud providers and application
administrators; and (iii) detecting and debugging software
and hardware problems affecting applications’ QoS.

The previously stated arguments exemplify the need for
cloud monitoring techniques with specific emphasis on the
need for monitoring application components across layers
and across multiple cloud provider environments. To
develop optimized automatic big data analytics provisioning
strategies, there is a need to gain more accurate monitoring
data on application performance more specifically monitor
the performance of application components individually. We
aim to break free of current black-box based cloud
monitoring approaches [4, 5, 6] that give very little attention
to individual components of applications provisioned across
cloud layers. Hence, this renders the need for a uniform,
extensive and effective multi-cloud, cross-layer monitoring
framework that aid in controlling the application QoS based
on real-time monitoring of the status of application
components and underlying cloud platform (hardware and
software).

In this paper, we propose and demonstrate CLAMS—A
Cross-Layer Multi-Cloud Application Monitoring-as-a-
Service Framework [7]. The novel features of CLAMS
includes: (i) ability to monitor and profile QoS of
applications, whose parts or components are distributed
across multiple public or private clouds and (ii) ability to
provide visibility into QoS of individual components of

2014 IEEE 15th International Conference on Mobile Data Management

978-1-4799-5705-7/14 $31.00 © 2014 IEEE

DOI 10.1109/MDM.2014.74

337

application stack (e.g., web server, database server). CLAMS
follows a agent-based approach that is cloud provider
environments agnostic. We present a proof-of-concept
implementation of CLAMS framework monitoring
application QoS across layers deployed in multi-cloud
environments such as Amazon AWS and Microsoft Azure.

II. SCENARIO AND RESEARCH CHALLENGE
To illustrate the need and function of the proposed

CLAMS framework, consider a scenario of an Emergency
Situation Awareness system (ESAS) as depicted in Fig. 1.
Systems such as ESAS are required to efficiently manage
and respond to situations like public demonstrations, interior
domestic clashes, revolutions, major festivals, and major
public/national events. The system is a typical example of a
big data analytics system including functions such as
continuous data mining on data obtained from crowds and
social media to detect potential danger, machine learning
algorithms to predict future occurrences of events i.e.
modeling of event outcomes based on current data etc. In
such situations, sideline of danger and emergency cases
cannot be expected. Hence, an immediate and continuous
monitoring is required by authorities e.g. Police, and
National Guards.

To support a system such as ESAS that requires a round-
the-clock operation, robust techniques are required to ensure
system performance and availability. Based on historical
inferences, ESAS systems use certain policies and
procedures to define Service Level Agreements (SLAs).
Such policies and procedures are formulated to handle/avoid
ESAS bottlenecks in terms of known QoS parameters e.g.
e.g. network traffic hazards, VM failures etc. We go further
and consider the following situations which foster the need
for multi-cloud cross layer monitoring for optimized
provisioning of big data analytics applications.
In some events, public users contributing data may increase
phenomenally providing valuable inputs related to that event
(Step 1). Such burst of input data is hard to estimated or
predict. Moreover, dynamic changes in situation might
require additional machine learning algorithms to be
deployed on-demand to process and filter incoming data. The

ESAS system will be required to cope with such dynamic
demands to changing data patterns maintaining high level of
system stability and availability.

 When events as described previously occur, the demand on
the system increases significantly. Further, in such situations,
the interactions between the system and other users e.g.
police, hospital etc., also increase as more events and
dangerous situations are identified by the big data analytics
algorithm running in the cloud. To cope with such dynamic
situations, monitoring the entire VM as a black-box may not
be sufficient to guarantee systems SLA. Knowledge on
individual component performance can greatly help auto-
provisioning systems make better-informed decisions
providing insights into the following:

A. Which layer failure occurs (which application’s stack
component)
In case of failures, the challenge is to identify which

component of the application that caused the failure.
Knowing individual component performance accurately can
greatly help in auto-scaling the corresponding layer at the
right timing to avoid failure. To illustrate, when input data
load increase, the load on the corresponding system
components increase (e.g. queuing, Mahout, HDFS) that may
lead to system failure. If the monitoring approach being
adopted cannot do cross layer monitoring, scaling and
provisioning may not detect the issue until it impacts the
entire VM. On the other hand, if the monitoring is performed
across cloud layers, identifying and rectifying a specific
component (e.g. DB component at PaaS layer) in case of
failure is possible providing means for more intelligent
system scaling.

B. Certainty of which cloud platform failure occurs (which
application’s stack component)
In situations, where the ESAS components are hosted

across different regions by different cloud providers CLAMS
can monitor all application stack components distributed
individually independent of the cloud platforms. Therefore,

Figure 1. Example of a Emergency Situation Awareness System using Cloud Data Analytics

338

system scaling can take the appropriate action eventually
resulting in maintaining the agreed SLAs.

Fig. 2 presents the key strengths of the CLAMS
framework and examples of monitoring application
components across layers and cloud provider environments.

Figure 2: CLAMS – Cloud Monitoring Framework across Layers in Multi-

cloud Environments

III. CLAMS: CROSS-LAYER MULTI-CLOUD
APPLICATION MONITORING AS A SERVICE

FRAMEWORK
CLAMS include mechanisms for efficient cloud

monitoring at different *aaS layers. CLAMS provides
standard interfaces and communication protocols that enable
application/system administrator to gain awareness of the
whole application stack across different cloud layers in
heterogeneous, hybrid environments (monitor VMs hosted
on different cloud platforms). In this way, CLAMS also
satisfies the challenges related to interoperability between
heterogeneous cloud resources. Fig. 3 presents a detailed
architecture of the proposed CLAMS framework.

A. CLAMS Monitoring Manager
The CLAMS Monitoring Manager is a software

component that collects QoS information from CLAMS
Monitoring Agents running on several virtual machines
(VMs) across multi-cloud environments. In particular, the
monitoring manager collects the QoS values from the agents
running at the SaaS, PaaS and IaaS layers. As soon as the
monitoring system is initialized on the cloud(s), the VMs
running the CLAMS manager(s) and the agents boot up.
Using discovery mechanisms like broadcasting, selective
broadcasting or decentralized discovery mechanisms [3], the
agents and manager discover each other. The CLAMS
monitoring manager employs a QoS data collection schema
to store QoS statistics into the local database and an agent
schema to maintain the list of discovered agents. The
CLAMS monitoring manager also incorporates an API that
is used by other monitoring manager or external service to
share the QoS statistics.

B. CLAMS Monitoring Agent
 Another key component of the CLAMS framework is

the monitoring agent. The monitoring agent resides on VM
running on the cloud and collects and sends QoS parameter

values as requested by the manager. After the monitoring
system initialization, the agent waits for the incoming
requests from the manager or starts to push QoS data to the
manager. Upon arrival of the request, the agent retrieves the
stated QoS values belonging to a given process and/or a
system resource and sends them back as a response to the
Manager.

IV. SYSTEM IMPLEMENTATION
 The proof-of-concept implementation of the proposed
CLAMS framework has been developed using Java and is
completely cross-platform interoperable i.e., it works on both

Windows and/or Linux operating systems. Fig. 4a, 4b, 4c
presents proof-of-concept implementation screenshots. Table
1 presents the list of application components and the
corresponding layers that were monitored for demonstration
purpose.

Table 1: Monitoring across different layers

Process/Resource Description Owner
Tomcat7w.exe Apache Tomcat 7 User
MySqld.exe MySQL Workbench 6.0 User
Javaw.exe Monitoring Manager User
Lsass.exe Local Security Authority Process System
Winlogon.exe Windows Logon App. System
Services.exe Services and Controller App. System
VM CPU Usage CPU usage of the entire VM System
VM Memory Usage Memory usage of the entire VM System

Monitoring Agent Implementation: The process of

retrieving QoS targets is done by utilizing functionalities
provided by SNMP, SIGAR and other custom built APIs.
For instance, SNMP is used to retrieve the QoS values
related to networking, number of packets in and out, route
information and, number of network interfaces. SIGAR
(http://www.hyperic.com/products/sigar) is used to obtain
access to low-level system information such as CPU usage,
actual used memory, actual free memory, total memory and
process specific information (e.g. CPU and memory

Figure 3: CLAMS Framework Architecture

339

consumed by a process). To enable SNMP monitoring, we
define new SNMP Objects Identifiers (OIDs) in a sequence.
For example function to get the CPU usage of a specific
process (tomcat) is assigned an OID .1.3.6.1.9.1.1.0.0.
Similarly, function to get process memory is assigned an
OID .1.3.6.1.9.1.1.0.1.

Monitoring Manager Implementation: The monitoring
manager uses a MySQL database to store the QoS statistics
collected from the agents. For the proof-of-concept
implementation, we used a pull approach where the Manager
is responsible to poll for QoS data from agents distributed
across multiple cloud provider VMs. The manager uses a
simple broadcasting mechanism for agent discovery. The
polling interval is a pre-defined constant and can be changed
using the manager configuration files.

Agent Manager Communication: For the proof-of-
concept implementation, the communication between the
agent and the manager has been implemented using two
techniques namely RESTful Web services and SNMP.
Having a RESTful approach enables easy lightweight
communication between CLAMS agents and manager/super
manager. Using a standardized SNMP interface makes
CLAMS compatible with existing SNMP-based applications,
tools and system and reduces the effort involved in collecting
QoS statistics.

Figure 4a: CLAMS proof-of-concept Implementation

Figure 4b: Screenshots of CPU and MEN Usage

Figure 4c: Screenshots of the Curve of CPU Usage

Monitoring Manager Interface: The monitoring manager
implements a RESTful API allowing other applications to
request QoS data of individual application components
running in a multi-cloud environment. The web interface
consumes the API to present the data about applications and
agents visually. The web interface is developed using
HTML5 and java scripts. Fig. 4b, and 4c presents the web
interface screenshots.

V. CONCLUSION
In this paper, we proposed CLAMS, a multi-cloud cross

layer cloud monitoring framework. CLAMS provides its
users the ability to monitor applications by providing insights
into individual component performance as against a black-
box approach. We implemented and demonstrated CLAMS
in a multi cloud environment (Amazon and Azure)
monitoring processes across layers. Our implementation
outcomes show the proposed approach is feasible and does
not impose significant overheads on the application.

REFERENCES
[1] Intel, “Big Data in the Cloud: Converging Technologies”, Febuyrary

2013. Available from:
http://www.intel.com/content/dam/www/public/us/en/documents/prod
uct-briefs/big-data-cloud-technologies-brief.pdf

[2] R. Ranjan, K. Mitra, D. Georgakopoulos, “MediaWise Cloud Content
Orchestrator”, Journal of Internet Services and Applications,
Springer, vol. 4, Jan 2013.

[3] R. Ranjan; L. Chan; A. Harwood.; S. Karunasekera; R. Buyya.,
"Decentralised Resource Discovery Service for Large Scale Federated
Grids," e-Science and Grid Computing, IEEE International
Conference on , vol., no., pp.379,387, 10-13 Dec. 2007.

[4] M. K. Nair and V. Gopalakrishna, "‚ÄòCloudCop‚Äô: Putting
network-admin on cloud nine towards Cloud Computing for Network
Monitoring," in Internet Multimedia Services Architecture and
Applications (IMSAA), 2009 IEEE International Conference on,
2009, pp. 1-6.

[5] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, "Toward an
architecture for monitoring private clouds," Communications
Magazine, IEEE, vol. 49, pp. 130-137, 2011.

[6] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M.
Wolf, "Monalytics: online monitoring and analytics for managing
large scale data centers," in Proceedings of the 7th international
conference on Autonomic computing, 2010, pp. 141-150.

[7] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. Huang, L. Wang, and
F. Rabhi, “CLAMS: Cross-Layer Multi-Cloud Application Monitoring-as-a-
Service Framework” 2014 IEEE SCC. [ACCEPTED]

340

