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Dictionary learning, which is based on sparse coding, has been frequently applied to many tasks related
to remote sensing processes. Recently, many new non-analytic dictionary-learning algorithms have been
proposed. Some are based on online learning. In online learning, data can be sequentially incorporated
into the computation process. Therefore, these algorithms can train dictionaries using large-scale remote
sensing images. However, their accuracy is decreased for two reasons. On one hand, it is a strategy of
updating all atoms at once; on the other, the direction of optimization, such as the gradient, is not well
estimated because of the complexity of the data and the model. In this paper, we propose a method of
improved online dictionary learning based on Particle Swarm Optimization (PSO). In our iterations, we
reasonably selected special atoms within the dictionary and then introduced the PSO into the atom-
updating stage of the dictionary-learning model. Furthermore, to guide the direction of the optimization,
the prior reference data were introduced into the PSO model. As a result, the movement dimension of the
particles is reasonably limited and the accuracy and effectiveness of the dictionary are promoted, but
without heavy computational burdens. Experiments confirm that our proposed algorithm improves the
performance of the algorithm for large-scale remote sensing images, and our method also has a better
effect on noise suppression.
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1. Introduction

Recently, sparse representation has become a very popular
topic in the area of remote sensing image processing. In many tasks
related to remote sensing images, such as image segmentation,
fusion, classification, reconstruction, and change detection, sparse
representation is frequently employed to improve the performance
of the algorithms. Modeling data as sparse combinations of atoms,
which are the elements of a dictionary, can manifest the important
intrinsic characteristics of remote sensing images.

There is a long research history on how to sparsely represent a
signal or data by a set of bases. We also call this set of bases a dic-
tionary. There are two different classes of dictionary: analytic and
non-analytic. Many of the earlier studies on sparse representation
focused on analytic dictionaries. Different bases, such as Fourier
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transformations, wavelets [1], curvelet [2], bandelet [3], direction-
let [4], and grouplet [5], were proposed in different periods. The
development of analytic dictionaries went through several stages,
such as multi-resolution, localization, anisotropy, and adaptation.
Another large class of dictionary is non-analytical. Unlike decom-
positions based on a predefined analytic base (such as a wavelet)
and its variants, we can also learn a hyper complete dictionary
without analytic form, which has neither fixed forms of atoms
nor requires base vectors to be orthogonal. The basic assumption
behind the learning approach is that the structure of complex inco-
herent characters can be more accurately extracted directly from
the data than by using a mathematical description.

A non-analytic dictionary learning problem apparently can be
modeled as a constraint-optimization problem. The optimization
of both the dictionary and coefficients is non-convex, but alterna-
tive optimization is convex. Therefore, many algorithms consist of
two stages: atom updating and sparse coding. The main differences
between most methods, such as the method of optimal directions
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(MOD) [6], generalized PCA (GPCA) [7], and K-SVD [8], are their
atom-updating stages. Obviously, we hope that dictionary learning
is as efficient as possible. The direct optimization method (DOM)
[9] denoted the algorithm as a one-step block-coordinate proximal
gradient descent. It is more efficient than alternating optimization
algorithms. On the other hand, the effectiveness of sparse repre-
sentation is also important. The Fenchel duality method [10]
solved this problem in a dual space and promoted the effectiveness
of the dictionary. Another idea is to use a first-order series expan-
sion instead of the dictionary-coefficient matrix product [11].
Doing so improves performance while adding only a small addi-
tional computational load. Apart from constraint optimization,
we can also model the dictionary problem as a stochastic process.
Non-parametric Bayesian dictionary learning (NBDL) [12] employs
a truncated beta-Bernoulli process to infer an appropriate dictio-
nary, and obtains significant improvements in image recovery
[12]. Furthermore, multi-scale dictionary learning can also be pre-
sented as a fully Bayesian model [13].

Non-analytic dictionary learning is very efficient in data repre-
sentation; however, it also introduces many new problems. First,
the relationship between the over-complete atoms attracts much
research attention. The atoms in the dictionary could be incoherent
[14], multi-model [15,16], multi-dictionary [17,18], multi-scale
[19,20], or hierarchical [21,22]. Second, the dictionary problem is
also a supervised versus unsupervised issue. In the early research,
most of the dictionary learning methods were unsupervised.
Recently, with its wide applications to many different areas, using
discriminative information [23-26] in the dictionary learning pro-
cess has become popular. Supervised dictionary learning [27]
makes the atoms more sophisticated and more flexible. Further-
more, the conception of task-driven dictionary learning was pro-
posed [28].

For large groups of data, it is very hard to take all the data into
the computation model at once. Therefore, in addition to the batch-
based methods mentioned above, a group of online learning meth-
ods, such as recursive least squares dictionary learning (RLS) [29],
online dictionary learning (ODL) [30], and the non-parametric
Bayesian method (NBDL) [12], were developed in recent years.
However, these online learning tools also led to some new prob-
lems and concerns, such as how to introduce the data into the
training process in a smooth and orderly manner, how to perform
dimension reduction [31], and how to optimize the structure of the
dictionarys atoms. More importantly, experiments show that the
accuracy of sparse representation of the dictionary produced by
online learning is decreased because of the complexity of the large
data sets of remote sensing images. The reason for this is that the
strategy of updating atoms in ODL, RLS, or NBDL is unreasonable
when handling large data. When taking both dictionaries, D, and
coefficients, o, as variables, it is difficult to optimize them at the
same time because of the non-convex character of the object func-
tion. Alternative optimization of atoms and coefficients decreases
the accuracy of dictionary learning, especially when the data set
is very large. It is easy to stop at a local extreme value under the
influence of the continuous computation manner, noise, and com-
plexity of the data. However, for large remote sensing data sets,
there are often many other priors than the sparsity that we can uti-
lize in the dictionary-learning process.

First, for a certain area, the remote sensing images for a terres-
trial object at different times always show some similarities because
the changing of land covers is usually slow. Second, for the same
scene, the remote sensing images from different sensors often share
similar textures to some extent. Therefore, when the location is
given, we can usually use the history or multi-source data to guide
the direction of the optimization in the atom-updating stage of dic-
tionary learning. For example, in the atom-updating stage of the

ODL method, the gradient direction can be easily guided by refer-
ence data or an existing reference dictionary.

In this paper, to effectively and sparsely represent the large
remote sensing image set, we use reference data as priors and
introduce PSO [32] into the atom-updating stage of the ODL algo-
rithm. In the iteration, special atoms in the current dictionary are
selected as the particles in the PSO model. In order to reduce the
dimensions of the particles, every selected atom is represented
by the linear combination of a reference image and the remaining
atoms. To make the optimization more efficient, in PSO, the flying
directions are limited to the few dimensions that are estimated by
considering the relationship between the different subspaces of the
atoms. Furthermore, for the redundant and cluster characters of
the textures of the large remote sensing data set, the features of
the reference data constrain and guide the ranges and directions
of random particle movement in PSO. As a result, the flying of
the particles in PSO is semi-random. This proposed semi-random
PSO promotes the accuracy of the atom updating, and does not
result in heavy computational burdens because of the guidance
of the reference data. In the following sections, we first summarize
the ODL algorithm and then propose our method based on the new
atom-updating scheme.

2. Online dictionary learning based on gradient descent

The non-analytic sparse representation uses a hyper-complete
dictionary matrix D € R™", which includes n atoms for columns
to represent a signal x € R™ as a sparse linear combination of these
atoms. The representation of sample data x can be written as the
approximate x ~ Do, which satisfies ||x — Du||, < &. Here, the typi-
cal norm for sparse representation is ’—norms, and usually is true
in the case of p = 2. Dictionary learning is an optimization problem
written as:

.1 ,
argDmmiHX*Dflllﬁ+A||O<H1- (1)

For convenience, X € R™9(m « q) is the training data set and
X; € R™ is the ith column of training data matrix X. The dictionary
is denoted by D = {dy,---,d;,---,and d,}, and d; stands for the jth
column of D. 4 is a regularization parameter. « is the coefficient of
sparse representation. The Frobenius norm of a matrix X in R™?

here can be denoted by ||X||; £ (ZLZ]‘-’:1X[i,j]2)m. The object
function to be minimized in Eq. (1) is not jointly convex in « and
D, but it becomes convex in one variable, keeping the other fixed.
Thus, the ODL algorithm can be divided into two steps that alter-
nately solve the optimization problem in an iterative loop. One is
keeping D fixed and finding o, which is called the sparse coding
stage. The other is keeping « fixed and finding D, which is called
the atom-updating stage.

In the first stage, the ODL uses LARS [33] or orthogonal match-
ing pursuit (OMP) [34] to find o:

.1
o = argmino [l — Dy + ||y )

where the subscript t means the tth iteration of the ODL procedure.
In the second step, the original objective function is:

11 ,
D:argmm?;il\xi*D%H§+ﬂ\|%‘||1- (3)

DeC

As we know, the optimization variable in the object function is
the dictionary D; in the meantime, we use the matrix form of X
instead of the vector o«. The Eq. (3) can thus be rewritten as:

1
D, = argmlnjHX—DaH?. (4)
DeC
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To some extent, the Frobenius norm of a matrix can be replaced
by the trace of another matrix, and we can obtain the following
equation:

D, =arg mianr[(X — Do)(X — Dar)"). (5)

DeC 2

After using the knowledge of the trace to operate Eq. (5), the
object function is simplified as:

D; = arg minltrr[(Da)(Doc)T —2X(Da)")

2
DeC ) (6)
= argmin - Tr[D"Dot” — 2D"XoT).
Dec 2t

Two intermediate variables, A and B, are introduced in ODL.
They carry information on the sparse coefficients of the previous
samples. The forms of intermediate variables come from the sto-
chastic gradient algorithm [35]. A and B update themselves as:

Ar — Atfl + O‘t“rT~ (7)
B — By +x.0. (8)

With the definition of A and B, the objective function is ulti-
mately written as:

D=arg min% (Tr(D"DA,) — Tr(D"By)). 9)
DeC

While updating atoms in ODL based on the stochastic gradient
decent, calculating the gradient V of Eq. (9) signifies a partial
derivative with respect to matrix D:

o(1D"DA - D'B)

V== oD
_ 1{o'D), aD'D) ,\ oD (10)
_i( a0 T~ )t ap B
—B-DA

After getting the gradient, the authors give the updating equa-
tion to update the atoms one by one, based on the stochastic gra-
dient descent algorithm:

1

Ui «—
]
Aj

(bj — Daj) + dj. (11)

Therefore, the atom d; is:

1

—— ;. 12
max(Jyl,, 1) (12)

il
We find that current atoms updating stage for small data set is
not enough for large data set. For large data set, the atoms updating
stage is more easily apt to plunge into local minimum. Therefore, in
this paper, PSO is introduced into the atoms updating stage of the
dictionary learning process. When we take atom as the particle in
PSO, it is relative easy to implement in discrete computation. Fur-
thermore, using PSO, the atoms updating stage can search the
atoms in a larger scope.

To some extent, the PSO algorithm is similar to the stochastic
gradient descent algorithm. The PSO, which simulates the aggrega-
tion and migration of birds, was first presented by Drs. Kennedy
and Eberhart in 1995.

PSO optimizes a problem by having a population of candidate
solutions, here dubbed particles, and moving these particles
around in the search space according to simple mathematical for-
mulae over the particle’s position and velocity. Each particle’s
movement is influenced by its local best-known position, but is
also guided toward the best-known positions in the search space,
which are updated as better positions are found by other particles.

This is expected to move the swarm toward the best solutions. The
PSO algorithm, without complex evolution operations, which
works well in terms of calculation speed and accuracy, was devel-
oped very quickly in recent years. Compared with the gradient
algorithm, PSO may be closer to the infinite exhaustive method.
The strategy of constructing a dictionary requires ODL to update
all atoms in an iterative loop, but we can optimize only one atom
or part of an atom if necessary. Therefore, we propose our method
based on PSO. The proposed algorithm focuses on improving the
performance of ODL by using PSO [32] in the optimization portion
of atoms in a dictionary.

3. Introducing PSO into the atom-updating stage

Our goal is to improve the performance of ODL in terms of the
accuracy of reconstructed remote sensing images. Briefly, the algo-
rithm we presented applies the PSO algorithm to optimize the
most important atom selected by the scheme we designed in the
dictionary-updating step. The selected atom is linearly represented
by the other atoms in the dictionary, and the particle in PSO is the
coefficient of the linear representation but not the selected atom.

( S={X1, Xz, ..., Xt} >

v

Select a data subset from S

v
Get the initial dictionary and
initial sparse coefficients by
Using ODL

v

Using the error matrix to
select candidate atoms

v

Using the candidate atom
as particles and get its
initial linear representation no

v

Bring the particle into PSO
equation and updating the <——‘

velocity and the position

Y no

PSO is converged?

yes

no data in S?

yes

( End )

Fig. 1. The flowchart of the proposed method.
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Therefore, the dimension of the particle will not be too high. Every
time, a part of data are introduced into the learning process for
each iteration. The flowchart of the proposed algorithm is shown
in Fig. 1 in this section.

Our algorithm makes four main advances:

(1) The scheme for selecting special atoms.
We make some changes to the norm part of Eq. (1).

2
‘ <X — Zdj(lj) — dkOCk

ik

K 2

X — djOCj
=

HX—Dai—’

F F

We define E; as:
Ek =X- Zdj“j (13)

ik
Here, o; is the jth row in the sparse coefficient matrix o. Ej
stands for the error of all samples when the kth atom is
removed [36]. The special atom d, here is defined as the atom
that makes the biggest contribution to the estimate of a sam-
ple X. d, is defined as:

2
dk::arggnaXHEkHF

(2) The scheme for selecting particles.
The flying behavior of particles is random to a certain
degree. If we directly choose an atom to be the particle,
the atomic pattern may not still be organized in terms of
texture features and it may appear to be noisy. Because of

the theorem of linear algebra, in a hyper complete dictionary
matrix, D € R™9(m < q), we can easily find m atoms as a
vector group to represent other atoms linearly. We might
as well make some derivations. Assume that r, is the rank
of matrix D. The rank r, of row vector group D satisfies
r, < m, and r., which is the rank of column vector group D,
satisfies r. < n. We know the theorem that, in a matrix
D,r. =r. =rg. It is not difficult to know r. < m in the case
of m <« q. The number of maximum linearly independent
vector groups of columns must be less than or equal to m,
so we have a conclusion that we can find not more than m
column vectors as maximum linearly independent groups
to represent the other columns. It is reasonable for us to
use the coefficients, which are the linear representations of
the atoms selected to be particles. Here we consider the
worst case scenario: that the number of vectors in a maxi-
mum independent group is equal to m. In fact, the number
is usually less than m. In a sense, it is reducing the dimen-
sions of the particles in a PSO problem as follows:

d =y101 4+ Y202+ + Yy Un, (14)

where V = {vy,..., vn} stands for the vector group and y; is
the linear representation  coefficient. @ The  set
Y ={y;y,....¥n} is the particle in our method.

(3) The matching Initial velocities scheme.

Because the textures of large-scale remote sensing images
are complicated, the values of the coefficients we obtain
from the strategy of selecting a particle range from 10~ to

(c) ODL

(d) PSODL

Fig. 2. Compare the reconstruction results of Landsat-8 images.
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(c) ODL

(d) PSODL

Fig. 3. Compare the reconstruction results of HJ-1-A images.

10%. We thus designed a matching scheme of initial veloci-
ties, which can be dynamically adjusted according to the
value of the coefficients. If the particles fly randomly in the
search space, the time required to find an optimal solution
will greatly increase. The scheme aims to guide the flying
particles in more reasonable dimensions.
(4) Stability for the whole algorithm.

As we know, in high-dimension situations, PSO is not very
effective at achieving optimal solutions. Our experiments
show that, without any stability measurements, sometimes
PSO is not stable enough to optimize the atoms. On the other
hand, we also need a mechanism to carry past information,
which includes changes to sparse coefficients due to PSO.
Here, after optimizing by PSO, we use the intermediate vari-
ables A and B, but make only a small change. The formulas of
A and B that were used in our method are positioned as:

Ar — Arq + ool (15)
and
Br — B[_] + BX[(X{, (16)

where f is an important coefficient whose value often ranges
from 0.05 to 0.1. In ODL, it accelerates the convergence speed
[30], and in our algorithm, it plays a role in improving the
stability of our method.

The selected atom, di, and the other atoms are randomly chosen
from the initial atomic group. We need some other atoms to be the

vector group so that we can represent the atomic group. After the
atomic group is represented by the vector group, we then get the
linear representation coefficients. These coefficients fly in the
search space as a particle swarm at velocities that are dynamically
adjusted according to each particles own flying experience and the
groups flying experience.

Assume that in a m dimension objective search space (m is also
the number of vectors in a maximum linearly independent group)
the particle swarmisY = (Y4, Y>,...,Y,), whichis made up by n par-
ticles, and Y; is the coefficient set of linear representation. Y;, which
also stands for the position of the ith particle, can be presented as

i, Yi,»---+¥i,)"- Individual extremum P; = (p; ,p;,,....p;,)" is the
previous best position of the ith particle. When the global extremum
Py = (Pg,:Dgys - - - ,pgm)T represents the previous best position of the
swarm. Flying velocity can be presented as V; = (v;,, v;,,. . ., vim)T.
The velocity update is conducted as follows:

VI = Vi + e (P = YE) + cora (P — YE) (17)

where k represents the iteration number and w is the inertia weight
[37]. 1 and r, are random numbers that range from 0 to 1. ¢; and ¢,
are called acceleration factors, whose values range from 0 to 4.
Here, we let ¢; equal c;. The equation for updating particle positions
is given below:

Yty (18)
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Algorithm 1. Online dictionary learning based on PSO

Require:
A group of samples {X1,X>,..., X},
1: forn=1totdo

2: Get X, from a set of samples and use ODL to get the
dictionary D, and the sparse coefficient matrix o, ;
3: Make use of the atom-selecting scheme to choose the

special atom dy,, which is to be optimized by PSO.

dy,, = argznaXHEan? (19)

4: Use Eq. (14) to make the initial representation of dj,
and get the linear representation coefficients as the initial
particle swarm. Using the initial atomic group as the input
variable d;,, calculate the initial value of the objective
function of PSO. Obtain the initial individual extremum and
the initial global extremum.

fo= H(Xn =Y di,0,) — dint,

jn#kﬂ

i (20)

5: Apply Eqgs. (17) and (18) to update the velocity and the
position of the particle. Multiply the new swarm by the
vector group to gain the new atomic group. Calculate the
value of Eq. (20) with the new atomic group. and update the
individual extremum and the global extremum.

6: Repeat step 5 until convergence of the PSO algorithm
occurs. Get the new atom.

7: Construct the dictionary D,. Then, with the OMP
algorithm, get the new a,. Using (15) and (16), update
intermediate variables A and B. The new dictionary is the
initial D for the ODL when the next sample, X1, arrives.

8: end for

After several iterative loops, the best position of the swarm is
the new coefficients of the selected atom, and we now have a
new dictionary. Based on the new D, we get the new «. Then we
update the variables A and B using (15) and (16) shown in
Algorithm 1.

4. Experiments and Results

The performance of the proposed algorithm is tested with the
real large remote sensing image data set. The remote sensing
images are selected from two satellite image sets. They are from
Landsat-8 and HJ-1-A. For convenience, partial images at a size of
512 x 512 are shown in figures. The proposed algorithm (PSODL)
is comprehensively compared with the ODL algorithm. In experi-
ments, the performances of two different algorithms are measured
qualitatively and quantitatively. For qualitative comparisons, the
images reconstructed by two different algorithms are compared
visually for accuracy of reconstruction. For quantitative compari-
sons, the reconstructed performs are measured in terms of the
peak signal-to-noise ratio (PSNR).

In the first experiment, the original images all include the addi-
tive noise, and we use four remote sensing images, which are
named ImageX (here, X means a number, such as 1, 2, 3, 4, etc.)
to test the performance of two algorithms. The additive noise sat-
isfies the normal distribution, with a mean of 0 and standard devi-
ation of 0.1. A normal distribution for additive noise is the most
common pattern for real satellite images. With the same control

Table 1
The comparison of the performances of different method by different images with
additive noise. ¢ is the standard deviation of the noise.

a Method Imagel Image2 Image3 Image4
0.2 ODL 25.0645 26.7851 25.6123 24.7673
PSODL 25.1474 26.8611 25.7102 24.9304
0.3 ODL 24.4947 25.8528 25.0626 24.2324
PSODL 24.6190 25.9428 25.1823 24.4531
0.4 ODL 23.9255 25.3754 241570 23.6514
PSODL 24.0488 25.4853 24.2707 23.9463
0.5 ODL 23.5808 24.6571 21.2242 23.1855
PSODL 23.6989 24.7729 21.5771 23.4699
Table 2
The comparison of PSNR with sparsity of 5%.
Unit:dB Imagel Image2 Image3 Image4
ODL 26.5514 30.9478 30.2476 26.3403
PSODL 26.5714 30.9895 30.2667 26.4140
Table 3
The comparison of PSNR with the sparsity of 10%.
Unit:dB Imagel Image2 Image3 Image4
ODL 24.0673 27.4614 27.8027 23.4125
PSODL 24.0770 27.5017 27.8407 23.4602
Table 4

The comparison of sparsity with the controlled PSNR value of 24 dB.

Image1 (%) Image2 (%) Image3 (%) Image4 (%)

ODL 29 0.99 1.28 2.34
PSODL 2.89 0.99 1.29 2.35
Table 5

The comparison of sparsity with the controlled PSNR value of 20 dB.

Image1 (%) Image2 (%) Image3 (%) Image4 (%)
ODL 0.34 0.27 0.21 0.49
PSODL 0.34 0.26 0.21 0.51

Eleﬂseegsitivity of PNSR with respect to the change of iteration parameter . on Image4.
7 5 8 10 12 14 15
PSNR 263764 26.3784 263848  26.4020 26.4064  26.4140
7 17 30 40 50 60

PSNR  26.4254 26.4308  26.4268 26.4242  26.4264

parameters, we qualitatively and quantitatively measure the
reconstruction performance of the two algorithms. Here we set
the number of atoms at 100 and the size of each atom is 8 x 8.
Fig. 2 shows the reconstruction of the original Image1 with addi-
tive noise by ODL and PSODL. Image1 was selected from Landsat-
8. Fig. 2(a) shows the original Imagel. Fig. 2(b) is the original
Image1 with additive noise. Fig. 2(c) is the reconstruction image
by ODL and Fig. 2(d) is the result of PSODL. Fig. 3 shows the result
of the remote sensing images from HJ-1-A. We can observe that
there are more edges and details that are reconstructed by the pro-
posed PSODL. From Figs. 2 and 3, we can see that the proposed
algorithm is better than ODL at maintaining the edge texture

(2014), http://dx.doi.org/10.1016/j.knosys.2014.10.004
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PSNR vs lteration Parameter
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Iteration

26.37 ‘ .
0
Fig. 4. PSNR vs iteration number.

characteristics of the large-scale remote sensing image, such as
coastlines, mountain ridges, and rivers. Table 1 quantitatively
shows the reconstruction performances of the two algorithms.
We also observe that the PSNR of images reconstructed by PSODL
is higher than that of ODL. The experiments in Table 1 confirm that
the reconstruction performance with noise of our algorithm from
remote sensing images is better than that of ODL. This also means
that our algorithm has a better effect on noise suppression or
image de-noising.

In the second experiment, we compare the performance of ODL
and PSODL from two sides. One is the performances of two algo-
rithms in accurate reconstruction with the same sparsity; the other
is the sparsity performance with the same expected values of
PSNR. We found that, if the size is too small, the sparsity of the
two algorithms is not very high. The reason for this is that the scale
of the texture of the remote sensing images is large and compli-
cated. Therefore, in the experiment comparing sparsity, we set
the size of the data sample and atom to 16 x 16. Table 2 provides
the comparison of the reconstructed images in terms of PSNR, with
the same sparsity control. The sparsity value is 5%. Table 3 is also a
PSNR comparison, but the sparsity value of is 10%. From the results
summarized by the two tables, it is clear that the PSNR of PSODL is
higher than that of ODL in most cases. Table 4 is a comparison of
the sparsity of the representation coefficients in matrix o with an
expected PSNR of 24 dB. Table 5 is also a comparison of sparsity,
with an expected PSNR value of 20 dB. We can see that the PSODL
sparsity is almost the same as that of ODL in most cases.

In the third experiment, the reconstruction performance with
respect to the PSO iteration number was also measured in terms
of PSNR. We tested the PSODL reconstruction performance from
5 to 60 iterations. To show the details more clearly, we used the
data in Table 6 to make a line chart. Fig. 4 shows the PSNR change
with respect to the change of the iteration number. It is easily seen
that, at the beginning, the PSNR increased with the iteration num-
ber. However, when the iterations reached a special point, the
PSNR growth trend slowed and stabilized. Therefore, our method
still maintains some of the PSO algorithm properties.

5. Conclusion
In this paper, we proposed an approach to represent large-scale

remote sensing images based on introducing PSO into online dic-
tionary learning. By establishing a new strategy of selecting atoms

and modeling the atom-updating stage using PSO, the proposed
algorithm improves the performance of ODL algorithms in terms
of the accuracy of large-scale remote sensing images. We did some
experiments with two satellite image sets to test the proposed
algorithm. The results demonstrate that, with the same sparsity,
the precision of the representation by our proposed algorithm is
higher than that of ODL. On the condition of the same precision
control, the sparsity of results achieved by the proposed algorithm
is almost the same as the sparsity of those achieved by ODL. Fur-
thermore, our algorithm also has a better effect on noise suppres-
sion. In the future work, we plan to add some priors from
geographical information or image texture to improve a faster
convergence.
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