This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

Ultra-scalable CPU-MIC Acceleration of Mesoscale
Atmospheric Modeling on Tianhe-2

Wei Xue*¥, Chao Yang'$, Haohuan Fu¥, Xinliang Wang*¥, Yangtong Xu*¥,
Junfeng Liao*¥, Lin Gan*, Yutong Lu¥, Rajiv Ranjanll, Lizhe Wang**
*Dept. of Computer Science & Technology, Tsinghua University, China
TInstitute of Software, Chinese Academy of Sciences, China
iMinistry of Education Key Laboratory for Earth System Modeling,
and Center for Earth System Science, Tsinghua University, China
§State Key Laboratory of Computer Science, Chinese Academy of Sciences, China
ﬂDept. of Computer Science & Technology, National University of Defense Technology, China
||Computational Informatics, CSIRO, Australia
**Institute of Remote Sensing & Digital Earth, Chinese Academy of Sciences, China
Corresponding author: Lizhe Wang, lizhe.wang @ gmail.com

Abstract—In this work an ultra-scalable algorithm is designed
and optimized to accelerate a 3D compressible Euler atmospheric
model on the CPU-MIC hybrid system of Tianhe-2. We first
reformulate the mesocale model to avoid long-latency operations,
and then employ carefully designed inter-node and intra-node
domain decomposition algorithms to achieve balance utilization
of different computing units. Proper communication-computation
overlap and concurrent data transfer methods are utilized to
reduce the cost of data movement at scale. A variety of opti-
mization techniques on both the CPU side and the accelerator
side are exploited to enhance the in-socket performance. The
proposed hybrid algorithm successfully scales to 6,144 Tianhe-
2 nodes with a nearly ideal weak scaling efficiency, and achieve
over 8% of the peak performance in double precision. This ultra-
scalable hybrid algorithm may be of interest to the community
to accelerating atmospheric models on increasingly dominated
heterogeneous supercomputers.

Keywords-Atmospheric modeling; MIC; Stencil; Tianhe-2

I. INTRODUCTION

As global warming has become a pivotal environmental
and social issue in the 21st century, large-scale numerical
models have become an indispensable tool for climate science.
Climate information provided by different models has a great
number of user groups, public and private organizations, and
its demand is continuously increasing [1]. The challenge of
climate simulation is due to that it involves a large number of
physical processes interacting over a large range of space and
time scales. More accurate models need wider range of scales
with a finer mesh resolution and larger number of physical
processes with more complicated theories, which leads to
significantly increased demand for computing power.

Over the last 40 years, the computing power of the fastest
supercomputers has increased from 250 Mflops to 33.9 Pflops,
with a trend of increasing by ten times per decade in the
future. In addition, heterogeneous systems with high density
many-core accelerators, have gradually become a main force in
current supercomputers. Examples include Tianhe-1A, Tianhe-
2, and Titan.

While climate model calls for an increase of several orders
of magnitude in the computing power, most existing global
climate models are still struggling with the poor scalability
and the inability to use many-core accelerators such as GPUs
or MICs in current heterogeneous supercomputers [2][3].

To tackle with the above problem, we propose a high-
ly scalable algorithm framework for atmospheric simulation
which can make efficient utilization of both CPU resources
and many-core accelerators. Our previous work of a highly-
scalable 2D shallow water model has scaled successfully on
both Tianhe-1A and Tianhe-2. It sustains a performance of
0.8 Pflops in double precision with 3,750 nodes (45,000 cores
and 3,750 GPUs) on Tianhe-1A [4] and a double performance
of 1.63 Pflops with 8,664 nodes (nearly 1.7 million cores) on
Tianhe-2 [5].

In this work, we further extend our previous work into a
mesoscale fully compressible 3D Euler model that provides
much more accurate description of the atmospheric dynamics.
The 3D Euler model requires more floating-point operations
and leads to a more complex communication pattern that
challenge the bandwidth in demand. Moreover, the definition
of a larger computational area and the different spatial and
temporal scales in a wider range will challenge the efficiency
of the petascale heterogeneous supercomputer. A stencil-based
method is required instead of a particle-based method because
of the advantage of its reduction on the coupling of the system.
Based on a successful computation and communication over-
lapping algorithm as well as the communication optimizations,
the algorithm achieves a nearly ideal weak scaling efficiency
and 73% strong scaling efficiency using up to 6,144 computing
nodes of Tianhe-2.

To enhance the performance on many-core accelerators,
we focus our work on tuning the stencil kernel of the
3D atmospheric model for Intel MIC architecture by model
reformulation, data layout optimization, loop splitting and
software prefetching. With the above techniques in hands, we
successfully push the performance to nearly 10% of the peak

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

performance on an accelerator. We also carefully tune the
domain decomposition among the CPU cores and the multi-
MICs as well as the communication across nodes on Tianhe-
2, so as to achieve best utilization of various computation
resources within the hybrid system.

In summary, the main contributions of this work are:

e A reformulated mesoscale model that avoid calculations
of pow (x¥). The fully compressible Eulers equations
widely adopted in mesoscale atmospheric modeling usu-
ally repeated evaluations of pow, which may introduce
unnecessary overhead on today’s many-core/many-core
system. We replace the traditional mesoscale model with
a reformulated one to avoid the calculation of pow and
to increase the overall performance.

o A comprehensive tuning progress for complex stencil
code on Intel MIC architecture. In this work, we get
close to 10% peak performance of single Intel Xeon Phi
processor, which is 20% better than that of our previous
work on 2D shallow water atmospheric model [5]. The
techniques we use may be insightful to similar works on
other real-world stencil applications.

o Achieving a nearly ideal weak scaling efficiency of 96%
on Tianhe-2 when gradually increasing the number of
computing nodes from 64 to 6,144 (nearly 1.2 million
cores). A performance of 1.74 Pflops in double precision
was sustained in the largest run. The strong scaling
efficiency is about 73% when the number of nodes
increases from 1,024 to 6,144 for a fixed 53.8 billion
mesh with 269 billion unknowns. To the best of our
knowledge, this is an unprecedented run of such a large-
scale 3D atmospheric simulation as well as a new record
of Petaflops atmospheric simulation.

o We present some experiences on detecting and resolving
silent errors of device/node during experiments at scale.
The work may be of interest to the user community of
large scale heterogeneous machine like Tianhe-2 as well
as the system software designers and developers of such
kind of system.

II. RELATED WORKS

As one of the most important applications in the world,
atmospheric modeling has drawn much attention in high per-
formance computing [6][7]. Since GPU became a main driven
force for heterogeneous computing, techniques on single card
acceleration have been studied for several atmospheric models,
including the WRF model [8], the NIM model [9], the GEOS-5
model [10], the HOMME model [11], and the GRAPES model
[12]. Although significant speedup over a single CPU core
has been observed in the above mentioned works, enabling
multi-node acceleration is an urgent demand for large-scale
simulations.

A pioneering work on speeding up atmospheric model-
ing on multi-node heterogeneous platforms was done by
Shimokawabe et al. [13], in which a multi-GPU algorithm
was proposed for the ASUCA nonhydrostatic model and

demonstrated with up to over 500 GPUs scalability on T-
SUBAME 1.2 supercomputer. The work was further extended
to nearly 4,000 GPUs on TSUBAME 2.0 with a 145 Tflops
performance in single precision [14]. Another nonhydrostatic
model, NICAM, was recently accelerated by several times on
up to 320 GPUs [15], although only the shallow water code
was accelerated. In our previous works, we have enabled both
CPU-GPU acceleration on using up to 3750 nodes on Tianhe-
1A [4], and CPU-MIC acceleration on using up to 8664 nodes
on Tianhe-2 [5] for a 2D shallow water model. In this paper,
we extend the previous works to a 3D mesoscale model with
more insightful algorithms and optimization techniques and
achieve a flops efficiency of over 8% on Tianhe-2. In addition,
we present some experiences on detecting and resolving silent
errors on Tianhe-2, which may be of interest to the community
of heterogeneous computing. Some works [35], [36], [37]focus
on about how the ratio of communication-computation degrade
the performance. Since the communication will affect the
performance a lot in large scale test, in this work we use
non-blocking communication to overlap the communication
overhead with computation. We also exploit some MPI op-
timizations and environment variables setting to boost the
performance. We think that is the valuable experience for the
platform and the extreme large-scale situation.

Stencil computation is an important kernel in scientific ap-
plications, a variety of optimization techniques have been well
addressed in recent years for CPU, GPGPU, and IBM Cell
processor [16]. To resolve issues of data reusing, the cache-
oblivious algorithm, and the 3.5-D blocking algorithm have
been proposed in [17], [18], [19]. Meanwhile, to relieve the
searching burden, auto-tuning framework has been developed
for stencil computation, so as to select the optimal blocking
factors as well as implementations for different architectures
[20]. For stencil optimization on the Intel MIC architecture,
[21] discussed the combination of temporal and space block-
ing as well as block decomposition in task parallelism on
MPDATA stencil. In this paper, we employe a reformulated
atmospheric model to avoid long-latency operations and take
various efforts to tune the complex 3D stencil kernel on the
Intel MIC architecture, by trading off between exploiting vec-
torization with irregular memory accesses and keeping good
locality of L1 cache access, and getting a 20% performance
improvement compared with our early work in [5].

As a newly launched many-core system, there are sever-
al studies conducted with respect to analyzing performance
results, designing algorithms on the Intel MIC architecture as
well as tuning kernels. Tuning an image reconstruction code on
Intel Xeon Phi was demonstrated in [22]. A high performance
multi-node MIC-based Linpack implementation was presented
in [23]. The discussions concerning the L1 cache pressure
issue and high latency for memory access of current Intel
Xeon Phi acclerators in [24], [23], [25], [26] help us better
understand the performance results of the atmospheric model.
The gather-scatter performance bottlenecks were evaluated in
[27] during vectorizing molecular dynamics code on different
architectures, including the Intel MIC architecture. It was also

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

reported in [28] that current system software MPSS is lack
of protecting the offloads and managing processes across Intel
Xeon Phi processors and CPU cores, which helps us detect
silent errors in large scale tests on Tianhe-2.

III. MODEL DESCRIPTION

Several equation sets are available to model the complex
dynamics of the atmosphere. Compared with other simplified
models such as the shallow water model, the hydrostatic
model, or the incompressible model, the fully compressible
Euler equations are accurate at mesoscale with almost no
assumption made [29]. Considering a non-rotating 3D channel
with possibly nonsmooth bottom topography, a widely adopted
form of the Euler equations is as follows [30]:

0Q OF 0G 0OH

s tatay e TS0
= (¢, pu, pv, pw, (p0)") ",

= (pu, puu + p’, puv, puw, pub)
= (pv, pvu, pvv + p’, prw, pv@)T , 2)
= (pw, pwu, pwv, pww + p', pwo)"

S =1(0,0,0,p'g,0)",

where (1)

T
’

Here p, v = (u,v,w), p, and 0 are the density, the velocity,
the pressure and the potential temperature of the atmosphere,
respectively. The system is closed with the equation of state

RO\
“%%ZJ’ 3)

where pog = 1013.25hPa is the ground level pressure, R =
287.04J/(kg - K) is the gas constant for dry air and v = 1.4.
To minimize roundoff errors, values of p' = p — p, (pf) =
p — 70 and p' = p — P have been shifted according to the
hydrostatic state that satisfies % = —pg.

To solve the Euler equations (1)-(3), we make use of a
terrain-following mesh and employ a cell-centered finite vol-
ume scheme for spatial discretization together with a second-
order TVD Runge-Kutta method for time stepping; a similar
work has been done in [31] for the Euler equations in 2D. At
each time step, two stencil sweeps are applied consecutively
at all mesh elements. For each mesh element, the stencil eval-
uation consists of three steps: (i) compute coordinates of the
mesh element; (ii) reconstruct intermediate states from inside
and outside of the element by using a linear interpolation; (iii)
calculate numerical fluxes on mesh boundaries by employing
a AUSM+up Riemann solver and update the mesh state. The
pattern of the resulting computation is a 3D 25-point stencil,
as shown in Fig. 1.

IV. TIANHE-2 SUPERCOMPUTER

The Tianhe-2 supercomputer, developed by the National
University of Defense Technology (NUDT), is the current top-
ranked supercomputer in the TOP 500 list since June 2013.
Tianhe-2 has already been installed in Guangzhou Supercom-
puting Center and is currently in early-use phase.

The peak performance of Tianhe-2 is 54.9 Pflops. The
sustained LINPACK performance is 33.9 Pflops, leading to

Fig. 1. A 25-point stencil for the 3D Euler equations.

a performance-per-watt of 1.9 Gflops/W. Tianhe-2 consists of
16,000 computing nodes, each of which is equipped with two
Intel Xeon E5-2692 processors, three Intel Xeon Phi 31S1P
accelerators, and 64GB memory. There are in total 1.4PB of
memory and 12.4PB of storage with a power consumption of
17.8MW at its peak. The system software includes a 64-bit
Kylin OS, an Intel 14.0 compiler, a customized MPICH-3.1
for TH Express-2, and a self-designed hybrid hierarchy file
system H2FS.

All computing nodes are connected with a customized
network named TH Express-2, which uses a fat tree topology
including thirteen 576-port switches at the top level. Every 32
nodes in Tianhe-2 are collected into one frame and most of the
frames have 16 links connected to the top level switches. The
bi-directional bandwidth of TH Express-2 can achieve 20GB/s
in theory, and offloaded collective operations are supported.

The Intel Xeon Phi accelerator is manufactured based on the
Intel Many Integrated Core (MIC) architecture. The Intel Xeon
Phi 31S1P accelerator installed in Tianhe-2 has a theoretical
peak double precision performance of 1.003 TreaFLOPS. Each
MIC coprocessor equipped Tianhe-2 has 57 cores running at
1.1GHz and 8GB on-board GDDR5 memory all connected
by a high performance bidirectional ring. Each core is an in-
order, dual-issue core having 4-way hyper-threading support
to help hide memory and multi-cycle instruction latency. Each
core also has a proprietary L1 cache and a shared L2 cache.
The L1 cache consists of 8-way set associative 32 KB L1
instruction and 32 KB L1 data cache. L1 data cache has two
ports: one for read and the other for write. Issuing a prefetch
instruction will occupy both of the two ports at the same
time, and might delay L1 data accesses for computation. In
the worst case, it will stall the core pipeline. The L2 cache
is also 8-way set associative and 512 KB in size with a 14-
15 cycles latency, which is fully coherent using a set of tag
directories. The latency of the L2 cache miss on MIC can be
an order of magnitude larger than that on multi-core CPUs.
The Intel MIC architecture provides a completely new 512-bit
SIMD instruction set. Among the new features provided by
the new instruction set, the gather instruction supports loading
sparse memory locations into a vector register and the scatter
instruction performs its reverse operation. The two instructions
may help enhance the performance of a simple code when

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

using the data layout of Array of Structure (AoS), which
usually degrade the performance on many-core platforms.
The current Intel Xeon Phi accelerator features a shared
memory model across all threads and supports traditional
multiprocessor programming models such as Pthreads and
OpenMP. Offloading is the most efficient way to program Intel
MIC architecture as an accelerator and is used for hybridiz-
ing our code on Tianhe-2. The Intel Many Integrated Core
Platform Software Stack (MPSS) provides the capability to
operate Intel Xeon Phi accelerator properly and inter-operate
with other hardware components in a computing node, which
has a symmetric software architecture both on host side and
accelerator side. The MPSS version used in Tianhe-2 is 3.1.2.
It has to be noted that MPSS introduces some overhead on
the host side and offloading involves one hardware core of the
accelerator for initialization, marshaling and transferring data,
and invocation. Moreover, as mentioned in [28], the MPSS
does not protect against thread and memory oversubscription
and isolate the execution of offloads on accelerators and also
does not manage the computing resources across accelerators
and host efficiently, which will introduce difficulty in running
applications when one accelerator is temporally offline in
large-scale multi-accelerator systems like Tianhe-2.

V. PARALLEL ALGORITHMS
A. Reformulated model to avoid long-latency operations

In the compressible Euler model (1) and (2), the pressure
p in (2) is calculated based on the state equation (3), which
requires computations of pow (z¥). For today’s many-core
platform, the evaluation of pow may introduce a long latency
and substantially degrade the overall performance. Therefore
it is necessary to seek for a new formulation that does not
require this long-latency operation. To that end, we follow
[39] by replacing the energy equation with the total energy
per as a prognostic variable and rewrite (2) as

/

(', pu, pv, pw, (per))" |

pu, puu + p', puv, puw, (per + p)u)"

= (pv, pvu, pov + p', pow, (per + p)v)")
= (pw, pwu, pwv, pww + p', (per +p)w)"
=(0,0,0,p'g,0)",

L Qmd

where p is calculated from

1
p=(y=Dpler = 5[IvI[* - g2). (5)

Although the mathematical models have changed, the dis-
cretization described in Section III remains essentially intact
with only minor modifications.

In the 3D Euler model, there are some other operations
might also bring out long latency, for example, div and
sqrt in calculating fluxes and sound speed. These operations
are widely used in today’s scientific applications and are
usually not easy to be replaced. Despite some efforts done
in [32][33], we did not use those techniques in our design. It
is worth pointing out that further investigations and analysis

are necessary on these operations, especially on today’s many-
core accelerators.

B. Inter-node domain decomposition

The whole 3D channel is partitioned into small subdomains
with each assigned to a node of Tianhe-2. In practice, we use
a 2D decomposition strategy although the whole domain is 3D
(as shown in Fig. 2). The reason of using a 2D method instead
of 3D is two fold. First, the vertical scale of the atmosphere is
relatively small compared to the horizontal scale. Second, a 2D
method helps reduce the complexity of boundary computation
and the number of immediate neighbors for communication.
Based on the 2D partition, before doing the stencil computing
for each subdomain, it is required to communicate with four
neighbors for updating the halo area needed by the stencil
sweep of the subdomain. The whole procedure of a stencil
sweep is illustrated in Fig. 3.

subdomain subdomain
N N-1

L
L1071

subdomain f
2 P
|

halo—+

ﬁkinner
- Fsubdomain 1

Fig. 2. A 2D domain decomposition scheme for the 3D domain. The
decomposition is done only in the horizontal plane.

A
4
1
l
el

2w e

25 points
stencil

C. Intra-node subdomain partition

On each hybrid computing node, we need to perform the
stencil computation of one subdomain (as shown in Fig. 2)
and have to divide the subdomain among the CPU cores and
accelerators. There are a number of options available for the
subdomain partition.

One is the adjustable inner-outer partition proposed in
[4]. The subdomain is divided into an inner part owned by
accelerators and an outer part by CPUs. The size of the inner-
and outer-part is adjustable to achieve a balanced utilization
of both computing units. However, the method does have
some disadvantages. First, the performance on the CPU side
is not satisfactory due to irregular memory access pattern
when processing the outer part. Second, it is not easy to
efficiently communicate between multi-accelerators in a same
node. Currently, the best way is to use the CPU as an agency.
Third, it is difficult to conduct communication to both CPUs
and other accelerators concurrently from an accelerator.

Another choice for partition is the process-level partition
used in NICAM [15] and phase-field simulations [34]. The
process-level partition performs an uniform partition of the
cube and assigns one process to one accelerator correspond-
ingly in the system. Even though this method is easy to
implement, it might bring performance issues due to larger
amount of MPI communication and inefficient utilization of
CPUs.

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

MPI update halos

one stencil cycle

Compute
coordinates

CPU

| Reconstructintermediate

calculate fluxes on mesh boundaries and
update the mesh state

states

® @ @

CPU-only implementation

Fig. 3.

According to the issues mentioned above, we extend the
2D subdomain partition method proposed previously in [5]
to the 3D subdomain. As shown in Fig. 4, when taking one
Tianhe-2 node as an example, we partition the 3D subdomain
in the horizontal plane into a halo area, three accelerator areas,
three exchange areas, and one CPU area. The inner part of
the 3D subdomain is sliced only along the y dimension to
minimize memory stride and at the same time help fit for
cache blocking on the accelerator. The exchange areas and
the halo area are processed by the CPU and sent to the
corresponding accelerators after packing the result. Here the
size of the exchange areas and halo area is determined by the
size of optimal cache blocking on the CPU, so as to enhance
flops efficiency while not hindering the efficiency of inter-node
communications and intra-node data transfers. Compared to
the other two approaches, the CPU area is more regular for
memory accesses and more cache friendly.

Fig. 4. A flexible partition scheme in which we divide the 3D subdomain
into halo area, exchange areas, accelerator areas, and CPU area.

D. Computation-communication overlap

Inspired by previous works [35] [36] [37] [38], a carefully
designed computation-communication overlapping algorithm
is presented for the 3D Euler solver to incorporate with
both the inter-node domain decomposition and the intra-node
subdomain partition. In the algorithm, the computations for
the inner part processed by the CPU and the accelerator

A CPU-only stencil algorithm for a stencil sweep in the 3D Euler solver.

are used to hide the cost of inter-node communication and
reduce the effect of communicating fluctuation. The overall
work flow of the hybrid algorithm for each stencil sweep on
Tianhe-2 is shown in Fig. 5. In the hybrid algorithm, except
updating halo which is overlapped with other operations, the
CPU is in charge of: (@) copying data for the halo area; 2)
computing stencils in the halo area; 3) computing stencils in
the exchange area; and then (@)-(9) exchanging data with the
three MIC cards. simultaneously, each MIC card only focuses
on: (D computing stencils in the accelerator area; and (5)-(8)
exchanging data with the CPU.

VI. IMPLEMENTATIONS AND OPTIMIZATIONS
A. Accelerator level optimizations

Several optimization techniques are employed on MIC,
include threading/vectorization, loop splitting, AoS to SoA,
prefetching and intermediate variable reusing. The perfor-
mance increase of each method is shown side-by-side in Fig.6.

110.00 - (GFLOPS)

104.26

l

Reuse of
intermediate
results

105.00
100.38

Prefetch

100.00

95.00 93.30
90.00
85.00
80.00

79.46
67.21
. J
60.00

75.00
70.00
AoS->SoA

Thread+vec Loop split

Fig. 6. Performance tuning by using different optimization techniques on
MIC. The problem size on MIC is 256 X 116 x 224.

1) Threading and vectorization: The CPU processor and
the MIC accelerator share a similar computing architecture
that consists of multiple cores and vector processing units.
Therefore, as a starting point of the optimization process,
we utilize threading and vectorization to achieve an efficient
utilization of all available processing resources.

0018-9340 (c) 2013 |EEE. Personal use is permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

one cycle
MPI —
Comm ‘ update halo
CPU Copy Halo H Compute Halo |->| CPU Compute Internal Parts }J Copy Data to Buffer g Copy Data from Buffer
Sync. Sync. Sync. Sync, 2
g
=
C2A g
and Y E
A2C =3
=B
RE
g
g
Accelerator-1 Compute the Inner Part-1 | Copy Data To Buffer g Copy Data From Buffer
o
Accelerator-2 Compute the Inner Part-2 Copy Data To Buffer g Copy Data From Buffer
(@}
s~}
Accelerator-3 Compute the Inner Part-3 [copy Data To Buffer | = Copy Data From Buffer
(O] 2 (©)] @ 6 (6)] (8)(9)(10)

Fig. 5. The work flow of the hybrid algorithm for each stencil sweep.

Taking the MIC accelerator as an example, we run 224
threads on the 56 cores to process different planes in the 3D
domain. In terms of vectorization, we move all conditional s-
tatements to the CPU side, so as to assure a better vectorization
on the MIC side.

As the baseline version of the entire optimization process,
our design with threading and vectorization can achieve a
performance of 67.21 GFlops.

2) Loop splitting: After removing all the pow operations,
the performance of CPU increases significantly from 62.19
GFlops to 116.67 GFlops. However, the same technique has
little effect on MIC. Instead an apparent performance gap be-
tween the CPU and the MIC accelerator may occur. Therefore
it is necessary to further enhance the performance on MIC to
avoid imbalanced utilization of different computing units.

According to the profiling results in Intel VTune, the L1
hit ratio on the MIC side is only 69.4%. By analyzing the
algorithm, we find out that the low hit ratio is mainly due
to the complicated data structure used in the 3D model. We
have 5 variables (40 bytes) for each mesh element, and around
33x5 = 165 variables (1320 bytes) for the stencil computation
of each mesh element. Considering the vectorization on MIC,
we need 6920 bytes for calculating 8 elements in parallel,
which is already very close to the L1 data cache size allocated
for each thread (8KB). Therefore it is important to find a way
to relieve the data requirement during the computing.

An important feature of the 25-stencil algorithm is that the
stencil computation along the three different dimensions are
all independent. Thus, we can split the entire loop into three
individual loops. By splitting the loop, the size of data required
for computing 8 elements in parallel is reduced to 3160
bytes, 4720 bytes, 4720 bytes for the x, y, and z directions
respectively, and the L1 cache hit ratio is increased to 92.6%.
The performance on the MIC side also increases from 67.21
GFlops to 79.46 GFlops accordingly.

3) AoS to SoA: According to VTune, the vectorization
intensity on the MIC side is only 4.252, which is relatively
low when compared with the CPU side. We analyze that the

main obstacle to vectorization on MIC is mainly due to the
original AoS (Array of Structure) data layout in the kernel.
To solve this issue, we reformat the data layout on the MIC
side from AoS to SoA (Structure of Array). The data layout
on the CPU side remains unchanged, so as to avoid rewriting
the data transfer and communication interfaces. For the data
exchange between CPU and MIC, the CPU would perform
the data layout transform in the data exchange buffer. The
change of data layout from AoS to SoA on MIC leads to
a significant improvement of the vectorization intensity from
4.252 to 8.878, with the performance increased from 79.46
GFlops to 93.30 GFlops accordingly.

4) Prefetching: Compared with the AoS data layout, the
SoA data layout enables a better vectorization but also leads
to a worse data locality. After the data layout transform, the
L1 cache hit ratio reduces from 92.6% to 72.9%.

To compensate the cache miss penalty, we include manual
cache prefetching instructions to increase the L1 cache hit
ratio. By exploring all possible prefetching offsets, we identify
that the optimal strategy is to prefetch the 8 elements required
for the current vectorized operation to L1, and to prefetch the
8 elements required for the next vectorized operation to L2.
The strategy for L1 cache prefetching is shown in Fig.7. The
colored elements are required in the calculation while among
them the ones with dark color are manually prefetched.

By applying the manually prefetching strategy, we increase
the L1 cache hit ratio from 72.9% to 81.8%, and improve the
performance from 93.3 GFlops to 100.38 GFlops.

We have also explored various spatial and temporary block-
ing strategies to improve the cache hit ratio. However, none
of them seem to work due to the large number of variables
related to each mesh element.

5) Intermediate variable reusing: According to our profil-
ing results, the reconstruction step is the most time-consuming
part in the stencil sweep. To further improve the performance,
we explore the possibility to reuse some of the intermediate
variables in the reconstruction step.

When computing the result of mesh element (k,j,4), we

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

Z direction

Y direction

Fig. 7. Prefetching strategy in each direction. Elements in colors are
dependent elements in the computing. The dark color ones are manually
prefetched to enhance performance.

need to firstly compute the rightward reconstruction value
of mesh element (k,j — 1,i), the leftward and rightward
reconstruction value of mesh element (k, j,¢), and the leftward
reconstruction value of mesh element (k,j + 1,). Similarly,
when computing the result on mesh element (k,j + 1,4), we
need to compute the rightward reconstruction value of mesh el-
ement (k, j, 1), the leftward and rightward reconstruction value
of mesh element (k,j + 1,4), and the leftward reconstruction
value of mesh element (k,j + 2,4). Therefore, the rightward
reconstruction value of mesh element (%, j,4) and the leftward
reconstruction value of mesh element (k, j+1,4) can be reused
for the computation of mesh elements (k, j,4) and (k, j+1, 7).

We only apply this reusing technique along the y direction,
as reusing along the x direction would cause vectorization
conflicts, and reusing along the z direction leads to thread con-
flicts. By employing the reusing strategy, we further increase
the performance from 100.38 GFlops to 104.26 GFlops.

B. Intra-node level optimizations

For intra-node level computation, we try to solve two
important performance issues. One is data transfer between
CPUs and MICs, and the other is thread affinity of CPU cores.

The data transfer between CPUs and accelerators needs
to be designed carefully to take advantage of the duplex
channel of the PCI-E bus. We propose an asynchronous and
concurrent data transfer between CPU and accelerators, as
shown in Fig. 8. Taking a Tianhe-2 node as an example, the
CPU starts to pack and transfer the data to different MICs
as early as possible after the computations for corresponding
exchange area are done. And the MIC executes two offloading
operations, rather than one, for bidirectional data transfers.
With this scheme, we can exploit the asynchronous and
concurrent communication from CPU to MICs and perform
the bidirectional communication in every CPU-MIC pair at

the same time.

The thread affinity of CPUs can be a performance bottle-
neck, especially when using complex offloading mechanism
in the algorithm. We find that without explicitly setting the
thread affinity of CPUs, the performance of our algorithm will
degrade and jitter largely. As the table I shown, the thread
affinity does have a strong influence on the performance.
We believe that the asynchronous offloads and data transfers
might lead to frequent and unexpected thread switching when
occupying all the CPU cores during stencil computations for
better utilization.

TABLE I
PERFORMANCE COMPARISON OF SETTING THE THREAD AFFINITY.

process number affinity max(s) min(s) average(s)
2x2x1 No affinity 0.4299 0.1775 0.2718
2x2x1 Compact 0.1550 0.1523 0.1538
4x4x2 No affinity 0.3797 0.1779 0.2623
4x4x2 Compact 0.1585 0.1561 0.1567

C. Inter-node level optimizations

1) Communication optimization: We conduct experiments
on tuning the performance of MPI communication based
on the PETSc (Portable Extensible Toolkit for Scientif-
ic computation) library. We use a pair of PETSc APIs,
DMGlobaltoLocalBegin and DMGlobaltoLocalEnd,
to prepare the data for communication and to perform the
neighborhood communications.

It is found that the performance of data packing and
unpacking in the two APIs is more expensive than expected.
To solve this problem, multi-threading is introduced in the
implementations for data preparation, which greatly improves
the performance of data packing and unpacking.

To investigate the performance of different MPI imple-
mentations for neighborhood communication on TH Express-
2, non-blocking standard communication, non-blocking syn-
chronous communication, non-blocking ready communication,
one-side communication are implemented and evaluated as
well as blocking all-to-all communication and non-blocking
all-to-all communication. With careful benchmarking, we find
that non-blocking standard communication is the optimal
choice on TH Express-2. Moreover, we add MPI_Testall
immediately after the non-blocking communications posted in
DMGlobaltoLocalBegin to start the communications as
early as possible. This simple method improves the commu-
nication performance by 5-10%.

There are several settings can control the communication be-
havior of TH Express-2. We choose two of them to improve the
communication performance. One is GLEX_BYPASS_SHM,
which should be set to 1 since there is only one MPI process
per node and we do not need to use share memory for intra-
node communications and pay for the overhead. The other
is GLEX_RDMA_WRITE_ONLY, which should be set to 0.
It is set to use RDMA read instead of RDMA write as the

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

One stencil cycle

Offloading
MIC 0 Compute MICarea
MIC 1 Compute MIC area
MIC 2 Compute MIC area

Offloading
Pack data for CPU Unpack data from CPU |
Pack data for CPU Unpack data from CPU |
Pack data for CPU Unpack data from CPU |

Compute CPU area

CPU Pre-Processing

Fig. 8.

default RDMA protocol and will improve the performance by
simplifying the acknowledge message in RDMA write.

As mentioned in Section. IV, each frame of Tianhe-2 has
32 tightly connected nodes. To better utilize the network
bandwidth of TH Express-2, we tried to use the Hilbert space-
filling curve to map the processes to physical nodes. However
the process mapping did not bring us obvious performance
improvement on Tianhe-2, which is still under investigation.
One possible reason is that the effect of process mapping on
the fat tree network is less critical than that of torus- or cube-
like networks such as that of Blue Gene/Q and K computer,
especially when we only assign one MPI process per node.
The second reason is that the communication-computation
overlapping algorithm releases the burden of network in some
extents. The third is that we are not able make full use of
the locality characteristic of the mapping based on the space-
filling curve since it is not easy to get adequate working frames
during the early-use stage of Tianhe-2.

2) Detecting and resolving silent errors at large scale:
There are two kinds of system errors we have taken much
effort to resolve during the large scale experiments on Tianhe-
2. We call these errors “silent errors” since they could not
be found by the checking programs deployed on Tianhe-2.
With these silent errors, we didn’t catch any warning or error
information at all during simulation but finally got the wrong
results.

One silent error is offloading mismatch for MIC. There
are three MICs in each computing node of Tianhe-2. One of
the MIC cards might be offline occasionally during operation
without notice, which leads to two different offloads in our
program sent to the same MIC card even if we have appointed
different MIC card for different offloads. In this situation, the
program will not fail, but the simulation will get the wrong
results since the two offload kernels on the same card overwrite
the arrays and variables with the same name. Our current
solution to detect the error is to check the device name of each
offload at the preload stage and every several time-steps. At the
same time, we have to make sure the kernels on different MIC
cards will access different arrays and variables with different

| Pack data for MIC Unpackdata ” Post-Processing |

An asynchronous and concurrent data transfer algorithm between CPUs and multi-accelerators

names. We think the best way to solve this problem is to
enhance the functionality of MPSS by isolating the different
offloads and dealing with the memory oversubscription, which
will keep the simplicity of user programming.

The other silent error is PCI-E error. We ever found that
one of the MIC card in some computing node got NaN
(Not-a-Number) results during simulation, and the so-called
problematic MIC card were mostly the card connected to the
network adapter via a same PCI-E bridge. Further diagnosis
shows that it is not due to the error or offline of MIC card.
There was a PCI-E connection error since the point-to-point
communication performance from or to this node was only
around several MB/s. Our solution to detect the error is to
check the results of different devices every several time steps
to identify the problematic node.

The above experiences indicate that it may be necessary
to investigate more efforts in fault-tolerant heterogeneous
computing from both application level and system level.

VII. VALIDATION AND PERFORMANCE

Several benchmark test cases are proposed and studied to
validate a regional mesoscale model. Among them, we select
the baroclinic instability test in a 3D channel [40]. The test
is initiated by adding a confined perturbation in the zonal
wind field to a geostrophically balanced background flow. The
setup in the test resembles in a great way the famous spherical
baroclinic wave experiment. The test is useful to examine the
correct response a numerical scheme produces to interact with
the unbalanced trigger. Some other important tests, have also
been done to further verify the model, but we omit the details
here for brevity.

A. Numerical Validation

The size of the 3D channel in the baroclinic instability test is
40,000 km x 6,000 km x 30 km. We use a relatively small
mesh with a horizontal resolution of 100 km and a vertical
resolution of 1 km to verify the model and compare with
reference results. A contour plot of the 500 m level pressure
distribution at day 8 is presented in Fig. 9. It is observed

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

from the figure that distinct low and high pressure regions are
generated with sharp fronts, which agrees well with the results
in [40].

Fig. 9. The 500 m level pressure distribution of the atmosphere at day 8 for
the baroclinic instability test in a 3D channel.

B. Performance results on Tianhe-2

1) The effect of model reformulation: To investigate the
effectiveness of the model reformulation to avoid the pow
operations, we measure the performance with and without
using the reformulated model and show the time-to-solution
of one time-step simulation as well as the speedup in Fig. 10.
In the tests, we use the CPU-only code and perform the weak
scaling tests using 1 to 128 computing nodes in Tianhe-2.
Each node owns a same mesh size of 260 x 240 x 228. In the
tests, we can get average 55% performance improvement when
using the proposed algorithm on CPU. It is worth noting that
the performance improvement can be substantial when using
hybrid code.

r 1.600

1200 (ms) B pow ver.

== pow_opt ver.

=+=speedups

1000
- 1580

800

;- 1.560

600

r 1540

400

r 1520
200

- 1500

Fig. 10. Performance improvement by using the reformulated model to avoid
computing pow. It is evaluated with the CPU-only version. Results shown is
of weak scaling tests from 1 to 128 computing nodes on Tianhe-2. A same
260 x 240 x 228 mesh is assigned to each node.

2) Many-core acceleration: For evaluating the many-core
acceleration, we first compare the performance of the hybrid
code using adaptive load balance strategy between CPUs and
accelerators with that of the same code in which CPU only
takes charge of the computation of boundary system. In the
tests we only use one computing node and fix the mesh size
to be 260 x 240 x 228. It can be found in Fig. 11 that the
load balance scheme can get about 41.05%, 7.90% and 3.08%
performance improvement with one, two, and three MICs

together with two CPUs. The red line indicates the percentage
of meshpoint processed by CPUs. As shown in Fig. 11 the
CPU side can compute 14.15% of the workload to make full
use of the whole computing node of Tianhe-2. According to
the one MIC results, we can find that the MIC code and
the CPU code can get comparable performance. However,
the performance improvement of adaptive load balance will
decrease obviously when using more MICs. We believe that it
is because the computation time of boundary system dominates
the time of CPU side with the increase of MIC number,
and the computation of boundary system can not get as
high efficiency as the computation of internal part because
of irregular memory access pattern.

45.00 4 r 50.00

mperformance improvement %

40,00 - -=-cpu mesh size % L 45.00

3500 - - 40.00

- 35.00
30.00
- 30.00
25.00 -

24.22 - 25.00

20.00 -
- 20.00

15.00 -

1415 | 1500

10.00 1 t 10.00

2CPUs+2MICs 2CPUs+3MICs

5.00 -

0.00

2CPUs+1MIC

Fig. 11. The performance improvement and CPU workload in percentage
with one, two, and three MICs together with 2 CPUs on one computing node
of Tianhe-2. The performance results are evaluated with the hybrid code and
a fixed mesh size of 260 x 240 x 228.

350.00 - (GFLOPS) mm flops of cpu ver. - 3.80

wflops of hybrid ver. 3.74
300.00

=+=speedups
250.00 -
200.00 -
150.00 -

100.00 -

50.00 -

196*180*228

260%240*228 516*450*228

Fig. 12. Speedup and aggregated performance of the hybrid code w.r.t
different mesh size in each computing node.

We further compare the performance of the hybrid code
mentioned above with the performance of tuned multi-core
code. The performance results by using three MICs and two
CPUs in each computing node are described as the speedups
(compared to the tuned CPU code) and the aggregated flops,
shown in Fig. 12. In the tests we only use one computing node
and fix the mesh size to be 196 x 180 x 228, 260 x 240 x 228

0018-9340 (c) 2013 |EEE. Personal use is permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

and 516 x 450 x 228, respectively. When using more MICs,
the aggregated performance increases proportionally as well as
the speedups. The aggregated flops of the three meshes using
the entire node are 242.60 Gflops, 260.98 Gflops, and 297.33
Gflops respectively. The speedups with the use of three MIC
cards are 3.29x, 3.47x, and 3.74x for different mesh size.

The performance results shown above prove the effective-
ness and feasibility of our hybrid algorithm and implementa-
tion.

3) Weak scaling results: Based on the observations made
above, we fix the mesh size of each computing node to be
196 x 180 x 228, 260 x 240 x 228 and 516 x 450 x 228
and gradually increase the number of computing nodes from
64 to 6,144. In the largest run of the tests, we solve about
53.8 billion mesh elements and 269 billion unknowns using
about 1.2 million cores. The results are summarized in Fig. 13,
where the averaged compute time per time step is plotted
with respect to the number of computing nodes as well as the
aggregated flops. We observe from the figure that the compute
time increases from 458.71 ms to 476.86 ms, leading to a
parallel efficiency of about 96% for the largest runs. Moreover,
we can get 1.45 Pflops, 1.63 Pflops, and 1.74 Pflops with
different mesh size scaling to 6,144 computing nodes.

700.00 - (ms) (TFLOPS) [2000.00

== Walltime, hybrid ver., small case

= Walltime, hybrid ver.,, medium case
== Walltime, hybrid ver., large case 1737.10 | 1800.00
600.00 -

=@-Flops of hybrid ver., small case
=<=Flops of hybrid ver., medium case
=0-Flops of hybrid ver., large case

- 1600.00

50000 1 - 1400.00

- 1200.00
400.00 -

- 1000.00

300.00 -
- 800.00

200.00 - [600.00

- 400.00

100.00 -
- 200.00

0.00 0.00

64 128 256 512 1024 2048 4096 6144

Fig. 13. Weak scaling results on Tianhe-2.

These suggest that our computation-communication over-
lapping strategy is successful. Most overhead caused by the
increased amount of communication is hidden and a nearly
ideal weak scaling curve is obtained.

4) Strong scaling results: In the strong scaling tests, we fix
the total problem size to be largest run used previously and
increase the number of computing nodes from 1,024 nodes to
6,144 nodes. The test results are provided in Fig. 14. From
the figure, we observe that the parallel efficiency decreases
to 88.0% when using 2,048 nodes and further to 73% when
using 6,144 nodes. The observed degradation of the strong
scaling efficiency is acceptable because the working load is
too small to scale at a higher node count. Further performance
improvement is still under investigation.

500 - r 120
mm Solution time per time-step(ms)

450 - -=-Parallel efficiency

87.00

1024 2048 3072 4096 5120 6144

Fig. 14. Strong scaling results on Tianhe-2.

VIII. CONCLUDING REMARKS

Recent scientific demands are pushing the global atmospher-
ic model towards an ultra-high resolution within 1km and the
capability to resolve the clouds. Currently, most existing global
climate models are still struggling with the poor scalability
and the inability to use many-core accelerators, such as GPUs
or MICs in many dominant heterogeneous supercomputers.
To solve these challenges and to enable cloud-resolving atmo-
spheric simulation, we design and implement an ultra-scalable
algorithm to accelerate a 3D atmospheric model on the CPU-
MIC hybrid system of Tianhe-2. We extend our previous work
on a highly-scalable 2D shallow water model to the mesoscale
fully compressible 3D Euler model. To achieve the high
performance, we reformulate the model to avoid long-latency
operations and reorganize both the computation pattern and
data layout to enable all possible vectorizations and locality.
We also carefully choose domain decomposition algorithms on
both inter-node and intra-node levels. Performance is tuned
among the CPU cores and the multi-MICs as well as the
communication across nodes, so as to ensure perfect over-
lapping of computation and communication, and to achieve
best utilization of various computation resources within hybrid
system. Our final design can scale up to 6,144 nodes with
a nearly ideal weak scaling efficiency, and achieve over 8%
of the peak performance. This ultra-scalable hybrid algorithm
may provide a guidance for our further development of a
large-scale cloud-resolving atmospheric model on increasingly
dominated heterogeneous supercomputers.

REFERENCES

[1] National Research Council of the National Academies, A National
Strategy for Advancing Climate Modeling. — The National Academies
Press, 2012.

[2] W. M. Putman, “Development of the Finite-Volume Dynamical Core On
Cubed-Sphere”, Ph.D. dissertation, The Florida State University, May
2007.

[3] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A, Mirin, A. P, Craig,
R. Jacob, and S. Mickelson, “Computational performance of ultra-high-
resolution capability in the Community Earth System model”, Int’l J.
High Perf. Comput. Appl., vol. 26, pp. 5-16, 2012.

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2366754, | EEE Transactions on Computers

[4] C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun, G. Yang, and
W. Zheng, “A peta-scalable CPU-GPU algorithm for global atmospheric
simulations”, In Proc. PPoPP’13, ACM, New York, NY, USA, 2013, pp.
1-12.

[S] Wei Xue, Chao Yang, Haohuan Fu, Xinliang Wang, Yangtong Xu,
Lin Gan, Yuotng Lu, Xiaogian Zhu, “Enabling and scaling a global
shallow-water atmospheric model on Tianhe-2”, In Proc. IPDPS’ 14, IEEE
Computer Society, Phoenix, Arizona, USA, 2014, to appear.

[6] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken, A. Snavely, N. J.
Wright, T. Spelce, B. Gorda, and R. Walkup, “WRF nature run”, In Proc.
SC’07. ACM, New York, NY, USA, 2007, pp. 59:1-59:6.

[7]1 P. Johnsen, M. Straka, M. Shapiro, A. Norton, and T. Galarneau, “Petas-
cale WRF simulation of hurricane Sandy deployment of NCSA’s cray
XE6 Blue Waters”, In Proc. SC’13, ACM, New York, NY, USA, 2013,
pp. 63:1-63:7.

[8] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical
weather prediction”, in Proc. IPDPS’0S, 1EEE, 2008, pp. 1-7.

[9] M. W. Govett, J. Middlecoff, and T. Henderson, “Running the NIM next-
generation weather model on GPUs”, in Proc. CCGrid’10, 1IEEE, 2010,
pp. 792-796.

[10] W. Putman, “Graphics Processing Unit (GPU) Acceleration of the
Goddard Earth Observing System Atmospheric Model”, NASA Technical
Report, Goddard Space Flight Center, 2011.

[11] I. Carpenter, R. K. Archibald, K. J. Evans, J. Larkin, P. Micikevicius,
M. Norman, J. Rosinski, J. Schwarzmeier, and M. A. Taylor, “Progress
towards accelerating HOMME on hybrid multi-core systems”, Int’l J.
High Perf. Comput. Appl., vol. 27, pp. 335-347.

[12] H. Xiao, J. Sun, X. Bian, and Z. Dai, “GPU acceleration of the
WSM6 cloud microphysics scheme in GRAPES model”, Computers &
Geosciences, vol. 59, 2013, pp. 156-162.

[13] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo,
A. Nukada, N. Maruyama, and S. Matsuoka, “An 80-fold speedup,
15.0 TFlops full GPU acceleration of non-hydrostatic weather model
ASUCA production code”, in Proc. SC’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1-11.

[14] T. Shimokawabe, T. Aoki, J. Ishida, K. Kawano, and C. Muroi, “145
TFlops performance on 3990 GPUs of TSUBAME 2.0 supercomputer
for an operational weather prediction”, Procedia Computer Science, Proc.
ICCS’11, vol. 4, 2011, pp. 1535-1544.

[15] 1. Demeshko, N. Maruyama, H. Tomita, and S. Matsuoka, “Multi-
GPU Implementation of the NICAM Atmospheric Model”, In Proc.
HeteroPar’12. Rhodes Island, Greece, 2012, pp. 175-184.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures”, in Proc.
SC’08). Piscataway, NJ, USA: IEEE Press, 2008, pp. 4:1-4:12.

[17] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Implicit and explicit optimizations for stencil computations”, In Proc.
MSPC’06, 2006, pp. 51-60.

[18] M. Frigo and V. Strumpen, “The memory behavior of cache oblivious
stencil computations”, J. Supercomput., vol. 39, 2007, pp. 93-112.

[19] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs”, In Proc. SC’10, IEEE Press, 2010, pp.1-13.

[20] M. Christen, O. Schenk, and Y. Cui, “Patus for convenient high-
performance stencils: evaluation in earthquake simulations”, In Proc.
SC’12, IEEE Computer Society Press, Los Alamitos, CA, USA, 2012,
pp. 11:1-11:10.

[21] Szustak L, Rojek K, Wyrzykowski R, et al. “Toward efficient distribution
of MPDATA stencil computation on Intel MIC architecture”, In Proce.
HiStencils’14, 2014, pp. 51-56.

[22] J. Park, P. Tang, M. Smelyanskiy, D. Kim, and T. Benson, “Efficient
backprojection-based synthetic aperture radar computation with many-
core processors”, In Proc. SC’12, IEEE Computer Society Press, Los
Alamitos, CA, USA, 2012, pp. 28:1-11.

[23] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov,
R. Dubtsov, G. Henry, A. G. Shet, G. Chrysos, and P. Dubey, “Design
and Implementation of the Linpack Benchmark for Single and Multi-node
Systems Based on Intel Xeon Phi Coprocessor”, In Proce. IPDPS’13,
IEEE Computer Society, Washington, DC, USA, 2013.

[24] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” In
Proc. ICS ’13, ACM, New York, NY, USA, 2013, pp. 273-282.

[25] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Miiller,
“Assessing the Performance of OpenMP Programs on the Intel Xeon Phi”,
In Proc. Euro-Par’l3, Aachen, Germany, 2013.

[26] S. Ramos, and T. Hoefler, “Modeling communication in cache-coherent
SMP systems: a case-study with Xeon Phi”, In Proc. HPDC’13. ACM,
New York, NY, USA, 2013, pp. 97-108.

[27] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
“Exploring SIMD for molecular dynamics, using Intel Xeon processors
and Intel Xeon Phi coprocessors”, In Proc. IPDPS’13, IEEE Computer
Society, Washington, DC, USA, 2013.

[28] S. Cadambi, G. Coviello, C.-H. Li, R. Phull, K. Rao, M. Sankaradass,
and S. Chakradhar. “COSMIC: middleware for high performance and
reliable multiprocessing on Xeon Phi coprocessors”, In Proce. HPDC’13.
ACM, New York, NY, USA, 2013, pp. 215-226.

[29] P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Eds.,
Numerical Techniques for Global Atmospheric Models. Springer, 2011.

[30] Y. Ogura and A. Phillips, “Scale analysis of deep and shallow convection
in the atmosphere”, Mon. Wea. Rev., vol. 19, 1962, pp. 173-179.

[31] C. Yang and X.-C. Cai, “A scalable fully implicit compressible euler
solver for mesoscale nonhydrostatic simulation of atmospheric flows”,
SIAM J. Sci. Comput., 2014, to appear.

[32] B. Hejazialhosseini, D. Rossinelli, C. Conti, and P. Koumoutsakos,
“High throughput software for direct numerical simulations of compress-
ible two-phase flows”, In Proc. SC’12. IEEE Computer Society Press,
Los Alamitos, CA, USA, 2012, pp. 16:1-16:12.

[33] D. Rossinelli, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, A. Curioni,
A. Bertsch, S. Futral, S. J. Schmidt, N. A. Adams, and P. Koumoutsakos,
“11 PFLOP/s simulations of cloud cavitation collapse”, In Proc. SC’13,
ACM, New York, NY, USA, 2013, pp. 3:1-3:13.

[34] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruya-
ma, A. Nukada, and S. Matsuoka, “Peta-scale phase-field simulation
for dendritic solidification on the TSUBAME 2.0 supercomputer”, in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’11). New York,
NY, USA: ACM, 2011, pp. 3:1-3:11.

[35] M. Crovella, R. Bianchini, T. LeBlanc, E. Markatos, R. Wisniewski,
“Using communication-to-computation ratio in parallel program design
and performance prediction”, In Proc. IPDPS’92, IEEE Computer Soci-
ety, Arlington, TX, USA, 1992.

[36] V. Tarokh, H. Jafarkhani, “On the computation and reduction of the
peak-to-average power ratio in multicarrier communications”, In IEEE
Transactions on Communications, IEEE Computer Society, vol. 48, 2000,
pp. 37-44.

[37] F. Zhang, M. Sakr, “Cluster-size Scaling and MapReduce Execution
Times”, In Proceedings of The International Conference on Cloud Com-
puting and Science, IEEE Computer Society, Bristol, UK, 2013.

[38] S.U.Khan, A.Y.Zomaya, L. Wang, “Scalable Computing and Communi-
cations: Theory and Practice”, Wiley-IEEE Computer Society Press, New
Jersey, USA, 2013.

[39] M. Satoh, “Conservative scheme for the compressible nonhydrostatic
models with the horizontally explicit and vertically implicit time integra-
tion scheme”, Mon. Wea. Rev., vol. 130, 2002, pp. 1227-1244.

[40] P. Ullrich and C. Jablonowski, “Operator-split RungeKuttaRosenbrock
methods for nonhydrostatic atmospheric models”, Mon. Wea. Rev., vol.
140, 2012, pp. 1257-1284.

0018-9340 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.

