
s we delve deeper into the “Digital Age,” we’re witness-
ing an explosive growth in the volume, velocity, variety, 
veracity, and value (the 5Vs) of data produced over the 
Internet. According to recent Cisco1 and IBM2 reports, 

we now generate 2.5 quintillion bytes of data per day, and this is 
set to explode to 40 yottabyes by 20203—that is, 5,200 gigabytes 
for every person on the earth. As noted in previous “Blue Skies” 
columns, data generated by Internet of Things (IoT) devices and 
sensors are part of the big data landscape.4,5 IoT comprises bil-
lions of Internet-connected devices (ICDs) or “things,” each of 
which can sense, communicate, compute, and potentially actuate, 
and can have intelligence, multimodal interfaces, physical/virtual 
identities, and attributes. ICDs can be mobile devices, sensors, 
medical imaging devices, individual archives, social networks, 
smart cameras, body sensors, automobile cosimulations, or soft-
ware logs. In a nutshell, a large volume of veracity data is gener-
ated at high velocity from a variety of sources. 

The amalgamation of ICDs 
with big data processing soft-

ware frameworks and cloud-based hardware resourc-
es leads to the creation of novel big data applications 
in domains such as healthcare, traffic management, 
smart energy grids, and smart manufacturing. Man-
aging large, heterogeneous, and rapidly increasing 
volumes of data, and extracting value out of such 
data, has long been a challenge. In the past, this was 

partially mitigated by fast processing technologies 
that exploited Moore’s law. However, with a funda-
mental shift toward big data applications, data vol-
umes are growing faster than they can be analyzed, 
regardless of increased CPU speeds or other perfor-
mance improvements. Although the impetus for the 
remainder of our article comes from healthcare big 
data, the problems and solutions discussed are appli-
cable to other application domains. 

Trustworthy Processing 
of Healthcare Big Data in 
Hybrid Clouds
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Big Data in Healthcare
A 2015 Gartner report noted that data 
processing technologies haven’t kept 
pace with the significant increase in the 
volume of digital healthcare data, and an 
integrated and trustworthy healthcare 
analytics solution can facilitate more 
effective decision making in patient 
care and risk management, improving 
quality of life, optimizing performance 
of services, and so on.6 Medical profes-
sionals have made similar observations. 
For example, the chief information of-
ficer of Boston’s Beth Israel Deaconess 
Medical Center explained that, “work-
ing with big data in hospital systems is 
hugely challenging but at the same time 
holds tremendous promise in providing 
more meaningful information to help 
clinicians treat patients across the con-
tinuum of care.”7 

Consider, for example, the problem 
of managing petabytes of multimedia 
content produced by advanced medical 
devices in the healthcare or medical 
domain as exemplified by the following 
inventions and reports. 

•	 In conjunction with traditional x-
rays, medical imaging can now delve 
deeper into the human body, dis-
covering and analyzing smaller and 
smaller details. A research team 
from Williams College at Harvard 
University has developed a new type 
of optical medical imaging device 
that captures high-resolution live 
video of human cells and molecules.8 

•	 A report from AT&T reveals that 
medical content (x-rays, computed 
tomography, genetic data, and other 
pathology test reports) archives are 
increasing by 20–40 percent each 
year.9 In 2012, there were 1 billion 
of above mentioned content types in 
United States alone, accounting for 
one-third of global storage demand. 

•	 According to another study, “In 

2012, worldwide digital healthcare 
data was estimated to be equal to 
500 petabyes and is expected to 
reach 25,000 petabyes in 2020.”10 
Further, it’s anticipated that in 
2015, an average hospital will need 
to manage 665 terabytes of patient 
data, 80 percent of which will be 
unstructured medical imaging data. 

The challenge is how to ensure data 
confidentiality and integrity when stor-
ing such data but still make it highly 
available, process it to extract action-
able information for decision makers, 

including medical professionals, and 
share it with collaborators, while pre-
serving the privacy of individual pa-
tients and giving them the full control 
of their data at all times. This challenge 
calls for a trustworthy big data process-
ing platform. 

Private Clouds: What Are the 
Research Opportunities?
Existing technology deployments within 
a medical organization, including its in-
ternal, on-premise infrastructure (pri-
vate clouds) for data storage and the 
image archiving and communication 
systems used by radiologists, radically 
limit efforts to harness the massive 
amount of medical imaging and other 
healthcare data. In other words, orga-
nizations face several limitations when 

using private clouds to process health-
care application data. 

The first limitation is scalability. 
On-premise private cloud deployments 
might not consider future growth, re-
sulting in limited scalability. This isn’t 
surprising, as building highly scalable 
private clouds requires a large capital 
investment for procuring and installing 
computing and storage resources. How-
ever, the changing volume, velocity, and 
variety of data make it difficult to accu-
rately plan private cloud capacity, and 
private clouds are often either under- 
or overprovisioned. To reduce capital 

investment, private clouds are always 
built with limited scalability

Analytics is another possible limi-
tation. Analytics models and software 
frameworks required to manage hetero-
geneous data might not be available in 
the private cloud because of higher op-
erational costs. In general, as Editor-in-
Chief Mazin Yousif notes, public clouds 
support the most commonly used ana-
lytics models and software frameworks 
because of their commercial interests, 
and private clouds deploy analytics 
models and software frameworks not 
available from public cloud providers or 
analytics models and software frame-
works developed in-house. 

A third limitation is data sharing. 
Data must be shared with collaborators 
who don’t have access to private clouds 

According to recent reports, we now 
generate 2.5 quintillion bytes of data 
per day, and this is set to explode to 

40 yottabyes by 2020.
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or who reside outside the perimeter 
defenses. For example, a medical prac-
titioner from a hospital in a different 
jurisdiction might not be able to access 
the data stored in the private cloud be-
cause at present, healthcare providers 
are generally subject to exacting regula-
tory requirements to ensure the security 
and privacy of patient and other sensi-
tive data.

Although private clouds are inher-
ently trustworthy, these limitations 
hamper the use of private clouds for 
processing healthcare big data. We also 
note the evolution of externally hosted 

private clouds, which are managed by 
third parties but support strict secu-
rity and privacy guarantees. For exam-
ple, the Postgres Plus Cloud Database 
(PPCD) provides an externally hosted 
private cloud. This service includes 
strict security and auditing features that 
are in compliance with the Health In-
surance Portability and Accountability 
Act (HIPPA).11 PPCD’s architecture en-
sures that database instances and data 
are hosted in complete isolation from 
other instances and data. However, this 
isn’t possible with purely public clouds. 

Further, an externally hosted pri-
vate cloud model incurs higher leasing 
costs and offers fewer opportunities to 
optimize costs than public clouds (for 
example, leasing spot instances from 
the Amazon Elastic Compute Cloud is 

relatively cheaper than leasing standard 
instances). Although public cloud infra-
structures offer the opportunity to opti-
mize hosting costs, they’re more prone 
to security and privacy attacks because 
of the multitenancy of virtual machines 
(VMs) and data.

On the other hand, public clouds 
support the scalability and easy shar-
ing of data. Alan Sill, editor of the 
“Standards Now” column, also rightly 
pointed out that US-based cloud service 
providers must ensure that they meet 
HIPAA requirements and offer levels of 
service that provide privacy and are in 

compliance with various internationally 
recognized standards. 

The National Institute of Standards 
and Technology (NIST) defines the four 
stages of the big data lifecycle as col-
lection, preparation, analysis, and ac-
tion.12 At different stages of the data 
processing, however, the data could be 
targeted by an attacker. For example, 
big data processing frameworks don’t 
allow application orchestrator such as 
Apache Yarn (http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop 
-yarn-site/YARN.html) to control which 
physical server rack the mapper and re-
ducer VMs are deployed on at runtime. 
Hence, these instances can be mapped 
to VMs from other applications because 
of multitenancy, exposing the data to 
different types of security and privacy 

attacks. Public cloud service providers 
and existing big data processing frame-
works have no easy way of detecting or 
monitor such data leakage. Therefore, 
data auditing,13,14 data protection,15 and 
privacy preservation16 have emerged as 
salient areas of inquiry for researchers 
from industry and academia. 

Another potential future research 
opportunity is bringing together the 
inherent features of public clouds (scal-
ability) and private clouds (security) to 
build a trustworthy big data processing 
platform. 

A Trustworthy Hybrid Cloud for 
Big Data Processing 
There has been a paradigm shift toward 
hosting big data applications in hybrid 
infrastructures consisting of private 
and public clouds. However, building 
trustworthy end-to-end big data pro-
cessing platforms that exploit hybrid 
cloud infrastructures can be challeng-
ing for several reasons.

First, existing big data ingestion 
frameworks (such as Apache Kafka and 
Amazon Kinesis), data storage frame-
works (such as MongoDB, BigTable, 
MySQL, and Cassandra), parallel and 
distributed programming frameworks 
(such as Apache Hadoop and Apache 
Storm), scalable data mining frame-
works (such as Apache Mahout and 
GraphLab), and distributed file systems 
(such as the Hadoop Distributed File 
System and Google File System) might 
not guarantee trustworthy (secure and 
privacy-preserving) data processing. 
Most of these frameworks can’t support 
encryption of big data without compro-
mising their inherent scalability and 
performance.

In addition, traditional data and 
distributed system security and privacy- 
preserving techniques can’t be auto-
matically adapted to operate efficiently 
in a hybrid cloud infrastructure de-

The National Institute of Standards 
and Technology (NIST) defines  
the four stages of the big data 

lifecycle as collection, preparation, 
analysis, and action.
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ployed with multiple big data processing 
frameworks to process big data with 5Vs 
characteristics. There are two core rea-
sons for this. First, as noted in a previous 
column, most of the big data processing 
frameworks can only process data within 
a single private or public cloud datacen-
ter.5 Second, porting existing security 
and privacy-preserving techniques to 
multiple big data processing framework 
is a hard undertaking because they 
support diverse data programming ab-
stractions (for example, MapReduce in 
Hadoop, continuous query operators in 
Storm, and transactional operators in 
MySQL and Cassandra) and perform 
computation on diverse dataflows (such 
as batch, streaming, and transactional)

Security and privacy controls in 
public cloud computing infrastructures 
support basic security feature such as 
public key infrastructure- (PKI)-based 
access control and authorization to 
VMs and binary storage resources. They 
might have limited capability to protect 
data and applications against security 
attacks such as denial-of-service (DoS) 
and Sybil attacks.

Data holders (such as healthcare 
providers) typically want to ensure 
that their data is protected from mali-
cious insiders who might steal or exfil-
trate the data for sale. Such data can 
then be used to derive direct clinical 
value or profit from possible insights.7 
Data movement and advanced encryp-
tion techniques (such as homomorphic 
encryption) can make it challenging to 
provide data holders full control of their 
data in hybrid clouds without affecting 
performance. This gets even more com-
plicated when patients want full control 
of their own data. 

Existing cryptographic schemes are 
unlikely to be suited to a hybrid cloud 
deployment because of computational 
efficiency limitations and other con-
straints. Attribute-based encryption 

(ABE), for example, is designed to pro-
vide the scalability and flexibility of 
real-time data sharing in computing 
environments, including the cloud.17,18 
However, in existing ABE schemes, 
user revocation remains challenging, 
particularly when there’s a large num-
ber of users. In addition, existing ABE 
schemes require the cloud server to be 
fully trusted, and in the aftermath of 
Edward Snowden’s revelations that the 
National Security Agency has been con-
ducting wide-scale government surveil-
lance, the requirement that all cloud 
servers in the deployment be trusted 

might be onerous. Therefore, it isn’t 
surprising that cloud cryptography of-
fering enhanced security without com-
promising usability and performance is 
an ongoing research topic. 

In the event of a security breach, 
there might not be an easy way to con-
duct digital investigations, particularly 
across borders and between organiza-
tions, which would allow the victim to 
mitigate future risks and/or pursue the 
criminals through a criminal investi-
gation or civil litigation. For example, 
would it even be possible to remotely 
collect evidence from a hybrid cloud 
in the event of a digital investigation 
or incident response19? In addition, as 
noted elsewhere, “it’s currently unclear 
whether existing legislation, say in Aus-
tralia, permits the use of such remote 

real-time evidence preservation and 
collection processes and tools to pre-
serve evidential material stored or held 
overseas without a mutual assistance 
request.”20 

In the virtual laboratory approach, 
data is kept inside the private cloud.21 
The virtual laboratory hosts the data 
and supports a number of data process-
ing algorithms. The output datasets are 
checked against all privacy rules before 
they’re released. This approach isn’t 
scalable because it’s built for private 
cloud infrastructures. Furthermore, 
it doesn’t support privacy-preserving 

computation over data from multiple, 
heterogeneous, and dynamic sources 
because the virtual laboratory is a trust-
ed entity and resides within a defense 
perimeter. 

Therefore, there’s a need to balance 
the data’s privacy and security against 
data sharing or performing scalable, ef-
ficient, near-real-time data analytics. To 
this end, a data outsourcing approach 
has emerged. 

The Data Outsourcing Approach 
and Encryption Techniques
Traditional access-control mechanisms 
have been successfully used for con-
trolled data sharing in collaborative 
environments; however, the applicabil-
ity of such mechanisms is limited in a 
hybrid cloud environment where some 

There’s a need to balance the  
data’s privacy and security against 

data sharing or performing scalable, 
efficient, near-real-time data 

analytics.
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data can reside outside the defense pe-
rimeter (that is, organizational bound-
aries). An alternative is to use the PKI 
infrastructure supported by public 
clouds. In addition to its data security 
limitations, this approach isn’t scalable. 
Recently, several encryption techniques 
have been developed to address existing 
security concerns. 

Proxy reencryption (PRE) enables 
data encrypted using one user’s public 
key to be transformed in such a way that 
it can be decrypted with another user’s 
private key.22 The basic idea is that two 
parties publish a proxy key that allows 

an untrusted intermediary to convert 
ciphertexts encrypted for the first party 
directly into ciphertexts that can be de-
crypted by the second.

Identity-based encryption (IBE) al-
lows any pair of users to communicate 
securely and to verify each other’s sig-
natures without exchanging private or 
public keys, keeping key directories, 
or using the services of a third party.23 
This scheme is ideal for sharing infor-
mation among closed groups of people 
(for example, within an organization). 
The idea is based on the public key 
cryptosystem, but the public keys are 
generated using attributes (such as com-
pany name or IP address) and individual 
users have corresponding private keys. 

Attribute-based encryption (ABE) 
aims to overcome one of the limitations 

of earlier IBE schemes—that is, their 
use of string-based attributes.24 ABE is 
one of two applications of Fuzzy IBE, 
introduced by Amit Sahai and Brent 
Waters, which allows attributes to take 
value from a domain other than strings 
(the other application is IBE that uses 
biometric identities).24  In an ABE sys-
tem, a user’s keys and ciphertexts are 
labelled with sets of descriptive attri-
butes, and a particular key can decrypt 
a particular ciphertext only if there’s a 
match between the attributes of the ci-
phertext and the user’s key. Sahai and 
Waters’ cryptosystem allows for decryp-

tion when a ciphertext and a private key 
share at least k attributes. Although 
this primitive was shown to be useful 
for error-tolerant encryption with bio-
metrics, the lack of expressibility limits 
its applicability to larger systems. 

Existing solutions based on ABE 
and PRE introduce a heavy computation 
overhead on the data owner so don’t scale 
well when fine-grained data access con-
trol is desired. To address this problem, 
a combination of ABE and PRE schemes 
have been proposed in the cloud security 
and cryptography literature to exploit the 
benefits of both schemes.

Moreover, existing data sharing 
techniques do not support the data ana-
lytics. A different branch of research 
has recently emerged in which the 
computation can be performed on en-

crypted data in the cloud. Craig Gentry 
introduced the first fully homomorphic 
encryption scheme in 2009.25 This was 
a revolutionary cryptographic achieve-
ment, but the scheme was far too inef-
ficient for any practical use, especially 
because of its computational complex-
ity (running time). Since 2009, several 
works have improved upon Gentry’s 
technique, leading to significant reduc-
tions in running time. Although many 
researchers have improved the process-
ing time, homomorphic encryption has 
other limitations. For instance, it re-
quires that all recipients have access to 
the same key to encrypt the inputs and 
decrypt the results, which might be dif-
ficult to arrange if they belong to dif-
ferent organizations. This also doesn’t 
support computation over data from 
multiple sources. Furthermore, current 
fully homomorphic encryption solutions 
are limited to a small number of opera-
tions or their performance isn’t suitable 
for real-time and complicated analysis. 
In addition to numerical operations, 
all data mining operations must be 
performed over encrypted data. An en-
crypted data versioning system is also 
needed. These challenges offer great 
opportunities for future research.

Data sharing approaches should 
therefore be combined with data ana-
lytics approaches to support end-to-end 
trustworthy data sharing and processing 
platforms in public clouds. This ques-
tion leads to further research on secure 
multiparty computation. MPC takes 
private input data from multiple parties 
and carries out a joint computation on 
them while ensuring that the input data 
remains private to their owners during 
the computation process.

The focus so far has been on data 
privacy in a private or virtual cloud. 
Some applications require a hybrid cloud 
approach, in which privacy-sensitive 
data is kept in the private cloud and 

Data sharing approaches should 
be combined with data analytics 

approaches to support end-to-end 
trustworthy data sharing.
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de-identified data is kept in the public 
cloud. This approach works well in the 
health domain, where the de-identified 
data can be shared with collaborators 
and processed in the collaborators/pub-
lic cloud environment. However, segre-
gating private and public data, moving 
public data, and integrating results af-
ter processing are some of the challeng-
ing issues requiring further research.

o ensure the privacy of person-
ally identifiable information (PII) 

and other sensitive healthcare data in a 
(hybrid) cloud environment (despite the 
varying legal requirements in different 
jurisdictions), it’s necessary to ensure 
the security of the underlying cloud ar-
chitecture or ecosystem—for example, 
through the use of cryptography and 
privacy-enhancing or preserving tech-
nologies. Therefore, we need efficient 
cloud cryptography as well as privacy-
enhancing or preserving systems that 
can be deployed in healthcare settings. 
We must also ensure that the underly-
ing cloud architecture or ecosystem is 
designed to facilitate the identification, 
preservation, and collection of eviden-
tial data in the investigation of a data 
breach incident.

Developing techniques and APIs 
that can guarantee data security and 
privacy and computation across a hybrid 
cloud ecosystem consisting of multiple 
private and public cloud datacenters 
remains an open and difficult research 
problem. Future efforts also need to fo-
cus on designing and developing com-
putationally efficient privacy-preserving 
techniques that seamlessly scale across 
multiple big data processing frame-
works by exploiting the elasticity of hy-
brid (multiple private and public) cloud 
infrastructures while adapting to un-
certain data volume, data velocity, and 
data variety. This could be achieved by 

exploiting the inherent software-level 
configuration of big data processing 
frameworks for scaling existing security 
and privacy-preserving techniques. 

In summary, efforts need to focus 
on the development of security and 
privacy techniques that can deal with 
changing volume, velocity, and vari-
ety of heterogeneous dataflow (batch, 
streaming, transactional); be ported to 
diverse big data programming frame-
works (Apache Hadoop, Apache Storm, 
Apache Hive); deal with variable com-
putational complexity due to hetero-
geneous VM, storage, and network 

configurations across multiple clouds; 
and be seamlessly implemented in 
multicloud orchestration APIs such as 
jclouds. 
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