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The pervasiveness and power of cloud computing alleviates some of the 

problems application administrators face in their existing hardware and 

locally managed software environments. However, the rapid increase in scale, 

dynamicity, heterogeneity, and diversity of cloud resources necessitates having 

expert knowledge about programming complex orchestration operations (for 

example, selection, deployment, monitoring, and runtime control) on those 

resources to achieve the desired quality of service. This article provides 

an overview of the key cloud resource types and resource orchestration 

operations, with special focus on research issues involved in programming 

those operations.

O ver the last few years, cloud com-
puting has emerged as the new 
model of distributed comput-

ing by offering hardware and software 
resources as virtualization-enabled ser-
vices. Cloud computing1 providers such 
as Amazon Web Services (AWS) and 
Microsoft Azure give application own-
ers the option to deploy their application 
over a network with a virtually infinite 
resource pool with practically no up-
front capital investment and with modest 
operating costs. Today, cloud computing 
systems (see http://csrc.nist.gov/publica-
tions/nistpubs/800-145/SP800-145.pdf) 
follow a service-driven, layered software 
architecture model (see Figure 1), with 
Software as a Service (SaaS), Platform as 

a Service (PaaS), and Infrastructure as a 
Service (IaaS).

Key to exploiting the potential of 
cloud computing is the issue of resource 
orchestration (RO).2,3 Based on the analy-
sis of several research papers, commercial 
products, and analysts reports, we define 
RO as the set of operations that cloud 
providers (such as AWS) and application 
owners (such as Netflix) undertake (either 
manually or automatically via com-
puter programs) for selecting, deploying, 
monitoring, and dynamically control-
ling the configuration of hardware and 
software resources as a system of qual-
ity of service (QoS)-assured components 
that can be seamlessly delivered to end 
users. As Figure 1a shows, RO operations 
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span across all the layers of a cloud computing 
stack. The overall goal of RO is to ensure success-
ful hosting and delivery of applications (SaaS) 
by meeting QoS objectives of cloud application 
owners (for example, maximizing availabil-
ity and throughput, while minimizing latency 
and avoiding an overload) and resource providers 

(maximizing usage, energy efficiency, profit, and 
so on), respectively. A recent report from the Open 
Data Center Alliance defines 19 usage scenarios of 
RO, spanning across all three layers of the cloud 
stack (see www.opendatacenteralliance.org/docs/
ODCA_Service_Orch_MasterUM_v1.0_Nov2012.
pdf).

Figure 1. Overview of a cloud computing system. (a) Reference cloud resource stack. The architecture provides a layered 
approach to characterizing resources based on their attributes and granularity. (b) High-level architecture of a multilayered 
enterprise application consisting of clients, a load balancer, Web servers, application servers, and database management servers. 
The flow of requests between these layers is often complex. Each layer might instantiate multiple software resources, and 
each software resource might need to be replicated on multiple hardware resources (for example, CPUs), while load balancers 
distribute requests across instances of software resources. (c) Abstract resource orchestration (RO) operations in the lifecycle of 
an enterprise application. (BLOB = Binary Large Object; EBS = Elastic Block Store; ERP = enterprise resource planning; IaaS = 
Infrastructure as a Service; PaaS = Platform as a Service; SaaS = Software as a Service; and VPN = virtual private network.)
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Programming RO is challenging, because cloud 
applications are composed of heterogeneous soft-
ware and hardware resources that are deployed 
across the cloud stack and might have complex 
integration and interoperation dependencies. 
Currently, orchestrating cloud resources requires 
human familiarity with the various providers and 
extensive manual programming. This is inade-
quate, given the dynamic variation of application 
resource requirements, and the proliferation of 
autonomous and heterogeneous cloud service pro-
viders offering resources at different layers (IaaS, 
PaaS, and SaaS). Dynamic variation of application 
resource requirements4,5 arise from a number of 
factors, including resource capacity demand (such 
as bandwidth, memory, and processing power), 
failures (of a network link or resource), end-user 
access patterns (number of users, request arrival 
pattern burstiness, request service time distribu-
tion, and user location), and variations in resource 
prices. Modern configuration management solu-
tions such as Amazon OpsWorks and Puppet pro-
vide support for describing resource configuration 
over cloud services. However, even sophisticated 
professional programmers and system adminis-
trators regularly resort to understanding differ-
ent low-level cloud service APIs, command-line 
languages, Web interfaces, and procedural pro-
gramming, to create and maintain complex cloud 
resource configurations. Given the importance 
of resources orchestration to cloud service con-
sumers, major cloud service providers are rap-
idly improving their cloud resource-management 
capabilities. Recent offerings such as CloudSwitch 
(see https://home.cloudswitch.com), Azure Fab-
ric Controller (see http://fabriccontroller.net), and 
AWS CloudFormation (see http://aws.amazon.
com/cloudformation) exemplify such trends.

To help navigate this terrain, here we char-
acterize cloud resources orchestration in a mul-
tilayered stack and highlight the main research 
challenges involved with programming orchestra-
tion operations for different cloud resource types.

RO Operations for Hosting Enterprise 
Applications on the Cloud
The application architecture (such as content 
delivery networks, streaming Big Data analyt-
ics applications, and high-performance computing 
applications) determines how, when, and which 
orchestration operations should be affected on cloud 
resources. Though lack of space doesn’t permit dis-
cussion about all application architectures, here we 

discuss some orchestration operations for man-
aging typical enterprise applications (see https://
media.amazonwebservices.com/AWS_Web_Host-
ing_Best_Practices.pdf). Figure 1b depicts the high-
level architecture of an enterprise application, which 
consists of multiple software resource layers, includ-
ing the presentation, business logic, and data layers. 
Across each layer, we must program a number of 
orchestration operations to control the resources at 
design time, as well as at runtime, to fulfill the QoS 
objectives. We detail the operations in the following 
paragraphs (see also Figure 1c).

Selecting resources (at design and runtime). An 
application owner analyzes candidate software 
resources to determine whether we can select 
them for realizing the required functionality sat-
isfying certain resource requirements and con-
straints (for example, interoperability with other 
software resources, compatibility with target hard-
ware resources, cost, availability, and so on). Next, 
we select the compatible hardware resources that 
we can allocate to software resources.

Deploying resources (both design time and run-
time). This operation involves instantiating soft-
ware resources on cloud services and configuring 
them for communication and interoperation with 
other software resources. Integrating an application 
server with the database server (see Figure 1b) is a 
salient example of this orchestration operation.

Monitoring resources (runtime). Monitoring QoS 
attributes of cloud applications involves detect-
ing event patterns (such as a load spike) from 
information produced by deployed resources (for 
example, application usage statistics).

Controlling resources (runtime). Based on event 
patterns detection, a resource orchestrator can 
react to deviations in application behaviors and 
initiate (policy-based) corrective actions, ide-
ally without disrupting the runtime system. An 
example resource control operation could be to 
horizontally scale a database server by migrat-
ing it from a small CPU resource configuration 
to an extra-large CPU resource in AWS Elastic 
Compute Cloud (EC2) for improving throughput.

Cloud Resource Types and 
Orchestration Challenges
Now, let’s look at each resource type through 
examples (see Figure 1a) and analyze the core 
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research challenges involved with program-
ming orchestration operations.

IaaS
The CPU, storage, and network resources in cloud 
environments are supplied by a collection of data 
centers installed with hundreds to thousands of 
physical resources such as cloud servers, stor-
age repositories, and network backbone. These 
resources expose configuration attributes (see 
Table 1) that define consumable features and func-
tions that are available from hardware resources. 
Providers manage these physical resources through 
hardware virtualization technologies, such as 
Xen,6 Citrix, and VMware (see www.vmware.com/
au/virtualization).

A CPU resource is essentially a piece of virtu-
alization software running on the physical cloud 
server. It’s the most common method of exposing 
the computational power to software resources; 
where we get finer-granularity accessibility and 
flexibility at the super-user level that can help 
customize the placement of software resources 
for QoS. The CPU resource emulates the properties 
of a physical CPU resource by providing a virtual 
CPU: a network card, physical memory, and hard 
disk. Table 1 shows orchestration operations rel-
evant to IaaS resources.

The second IaaS-level hardware resources 
are the Binary Large Object (BLOB) data storage 
resources, which let users store raw application 
data on virtualized disks and access them any-
time from any point on the Internet. BLOB storage 
(such as AWS Simple Storage Service) can hold 
video, audio, photos, and archived email mes-
sages, and let applications store and access data 
from any point on the Internet. This storage type 
aims to enforce fault-tolerant behavior through 
redundancy. For example, Azure provides differ-
ent levels of redundancy7,8 options for its BLOB 
and other types of storage resources (queues and 
tables), including local redundant storage, geo 
redundant storage, and read access–geo redun-
dant storage.

A CPU resource has access to its local hard 
disk. However, by default, the local disk is non-
persistent; once the instance of a CPU resource is 
terminated, its local storage contents are purged. 
To overcome this issue, cloud providers offer 
off-instance storage resources that persist inde-
pendently from the life of a CPU resource. These 
off-instance storage resources are referred to as 
the Elastic Block Store (EBS) and XDrive in AWS 

EC2 and Microsoft Azure, respectively. Principal 
advantages of designing applications using off-
instance storage include the following: automatic 
data replication — this prevents data loss due to 
a single point of failure; and point-in-time data 
snapshot creation and backup to cloud-specific 
BLOB storage resources.

As the need for high-volume data transfer and 
communication across network boundaries grows 
for applications, networking resources (for exam-
ple, routers, switches and communication band-
width, AWS elastic IP, OpenFlow, and the AWS 
security group) become a vital component at the 
IaaS level. Network resources provide a variety of 
functionality, including bandwidth, virtual over-
lays for isolating traffic, guaranteeing message 
delivery delay, encrypting communication chan-
nels, and network monitoring.

Programming IaaS-Layer Orchestration 
Operations
Here we discuss research issues in program-
ming orchestration operations at the IaaS layer.

Selecting optimal IaaS resources. The diversity of 
offerings at this layer leads to complex decision-
making problems of optimal comparison and 
selection of IaaS resources from multiple cloud 
providers. For example, how does an application 
engineer compare the cost and performance fea-
tures of hardware resources offered by different 
providers such as AWS and Azure? Similarly, an 
engineer can choose one provider for storage-
intensive applications and another for computa-
tion-intensive applications. During the selection 
process, an engineer must consider many attri-
butes (see Table 1), including goals, comparison 
benchmarks, and resource type alternatives. The 
main research challenges include how to iden-
tify and formulate selection criteria and solve 
qualitative (that is, the virtualization format and 
cloud location) and quantitative (for example, 
minimizing response time and cost) QoS con-
straints while considering a large number of IaaS 
resource alternatives and application use cases. 
Existing approaches have focused on applying 
combinatorial optimization,9 evolutionary opti-
mization,10 and multicriteria11 decision-making 
techniques for solving the selection problem.

Controlling concurrency. Orchestration operation 
on a particular class of hardware resources (such 
as a CPU resource) is enforced by invoking their 
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respective (provider-specific) Web service API. Pro-
gramming applications that can be hosted across 
distributed IaaS resources require a developer to 
orchestrate concurrent computation and commu-
nication across heterogeneous cloud services, in 
a manner that’s robust to delays and failures. For 
example, in a multistep orchestration operation of 
allocating a CPU resource to a software resource, 
followed by assigning an elastic network IP and 
mounting an EBS resource — if one of the immedi-
ate operations fails or throws an unexpected error, 
a trivial implementation would fail stop, leaving the 
system in inconsistent state. Ensuring deadlock-free 
orchestration to deal with a high level of concurrency 
and network traffic arising from potentially large 
numbers of overlapping requests, recent efforts2,12 
have advocated programming resource orchestration 
based on declarative programming languages.

Configuring dynamic resources. The impetus behind 
cloud computing is the ever-increasing demand to 
manage growth and increase computing flexibility 

by dynamically scaling up or down resources based 
on demand.4,5 However, existing cloud resource-
provisioning techniques don’t effectively support 
dynamic resource configuration. For instance, 
applications or workloads can’t be dynamically 
and automatically partitioned or migrated arbi-
trarily from one cloud service to another if demand 
cycles increase. Moreover, dynamic configuration 
of resources is a complex issue because of lack of 
visibility and control across heterogeneous ser-
vices at different layers. Advanced cloud resource 
orchestration techniques13 have focused on devel-
oping an analytical application workload-predic-
tion model for forecasting application resource 
requirements, and developing adaptive resource 
management techniques that can dynamically 
configure resources to meet requirements and con-
straints. While initial research results are promis-
ing, more than that, in many cases there’s research 
from the fields of autonomic computing that we 
can leverage to a certain extent — however, design-
ing effective dynamic cloud resource orchestration 

Table 1. IaaS, PaaS, and SaaS resource types, their attributes, and list of supported orchestration operations.

Service
Hardware 
resources Attributes Supported orchestration operations

IaaS

CPU Cores, speed, family, physical memory capacity, storage 
capacity, addressing bits, I/O performance, renting cost, 
type (single or cluster of templates), resource sharing 
(multitenant or dedicated), physical location of cloud, 
availability zone, availability, performance statistics, service-
level agreement (SLa), security, privacy, and integrity

Start, stop, restart, select, mount off-
instance storage, monitor, reconfigure, 
assign IP, select cloud location, select 
availability zone, scale-in, scale-out, 
authorize, and authenticate

BLOB storage Type (persistent or nonpersistent), storage size, storage 
format, renting cost, location of host cloud, availability zone, 
availability, performance statistics, SLa, security, privacy, and 
integrity

Create new buckets, upload file, download 
file, scale-in, scale-out, monitor, encrypt, 
decrypt, authorize, and authenticate

Network IP Type (static or dynamic), version (IPV4 or IPV6), renting 
cost, message encryption cost, URL, data transfer-in 
cost, data transfer-out cost, connection hour, availability, 
performance statistics, SLa, security, privacy, and integrity

allocation of IP addresses, URL, ports, 
availability zone, VPN to CPU resources, 
and monitor

PaaS

Feature (Web server, database server, load balancer, 
authorization server, and so on), virtualization format (such 
as Xen and VMware), environment (host operating system, 
implementation language such as java, .Net, PHP, or Ruby 
on Rails), legal and regulatory issues, security, reliability, 
integrity, licensing terms and costs, initialization scripts, 
availability, performance statistics, and SLa

Start, stop, restart, select, allocate hardware 
resources, integrate with other appliances, 
install script, monitor, create, migrate, scale-
in, scale-out, login, log-out, install software, 
replicate, synchronize, backup, delete, 
encrypt data, decrypt data, authorize, and 
authenticate

SaaS

Feature (email, customer relationship management, 
ERP, social networking, document management, and 
crowdsourcing), legal and regulatory issues, security, privacy, 
integrity, reliability, licensing terms and costs, availability, 
performance statistics, SLa, and data portability

Customize, accounting, billing, select, data 
porting, authentication, and authorization
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techniques that cope with large-scale heteroge-
neous cloud environments remains a deeply chal-
lenging problem.

Allocating cloud resources energy-efficiently. 
In recent years, energy-efficient allocation12 of 
hardware resources to applications has emerged 
as a critical requirement, due to the worldwide 
focus on minimizing the carbon footprint. Efforts 
have focused on fabricating energy-efficient 
hardware, such as low-power, energy-efficient 
CPUs and solid-state drives to minimize energy 
consumption. The research community has also 
focused on software-based approaches to mini-
mize energy consumption, such as resource allo-
cation and task consolidation. That said, what 
remains a difficult and open research problem 
is the development of energy-efficient IaaS 
resource orchestration techniques that take into 
account application-specific service-level agree-
ments (SLAs) while making resource allocation 
decisions for software resources.

Data security and privacy. The most significant 
difference between cloud security and traditional 
security controls stems from the fact that users 
spanning different corporations and trust lev-
els often interact with the same set of computing 
resources. The security and availability of general 
cloud resources is dependent upon the security of 
basic APIs. From authentication and access con-
trol to encryption and activity monitoring, we 
must design these interfaces to protect against 
both accidental and malicious attempts to circum-
vent policy. For example, consider BLOB storage 
resources that have limited data security and pri-
vacy features, such as simple access control based 
on trusted credentials. BLOBs only support fine-
grained security and privacy features to protect 
its end users from the following risks: data expo-
sure (confidentiality), data tampering (integrity), 
and denial of access to data (availability). Recent 
research efforts have focused on developing addi-
tional third-party security infrastructures14 to 
ensure the security, privacy, and integrity of data 
— not only while being transmitted over network 
links but also while at rest on BLOB resources.

Interoperability. To improve resilience, an intuitive 
solution is to deploy applications across multiple 
IaaS providers. Unfortunately, most of the exist-
ing providers aren’t compatible with each other. 
They tend to have proprietary APIs, which aren’t 

explicitly designed for cross-cloud interoperability. 
To tackle such heterogeneities, there’s a require-
ment to enforce standardization across layers of 
the cloud resource stack. Recent developments — 
including Delta Cloud, jclouds, and Dasein Cloud 
(see http://dasein-cloud.sourceforge.net) — sim-
plify this task by implementing a single API that 
abstracts APIs related to multiple clouds such as 
AWS EC2 and GoGrid. We can orchestrate funda-
mental cloud resources such as CPU, appliances, 
and storage via SOAP/RESTful APIs. However, 
orchestrating monitoring, load balancing, and 
auto-scaling RO operations to handle uncertain-
ties in application and resource behaviors across 
clouds via a unified API still isn’t viable, and hence 
remains an open research problem. The Topology 
and Orchestration Specification for Cloud Applica-
tions (TOSCA; see www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=tosca#overview) 
is an interoperability specification that provides 
building blocks to support cross-stack orchestra-
tion of cloud resources.

PaaS
The PaaS layer features a rich pool of software 
appliances that facilitate the end-to-end lifecy-
cle of developing, testing, deploying, and host-
ing applications. The following software resource 
categories are relevant at this layer.

Appliances. Appliances15 are pre-configured, self-
contained, virtualization-enabled, and pre-built 
software resource units (database, Web server, appli-
cation server, Apache Hadoop, Apache Storm, load 
balancers, and so on) that we can integrate with 
other compatible appliances for designing complex 
applications. Primarily, it’s the goal of the resource 
orchestrator to select, assemble, deploy, and man-
age a set of appliances (refer to https://solution-
exchange.vmware.com/store/category_groups/
virtual-appliances) delivering a particular applica-
tion functionality.

For instance, several reusable appliances (see 
http://cloud.dzone.com/news/sql-vs-nosql-cloud-
which) emerged in the area of Big Data process-
ing (refer to http://cloud.dzone.com/articles/
small-cross-section-big-data), including SQL and 
NoSQL appliances.16 SQL appliances (see http://
aws.amazon.com/rds) provide traditional rela-
tional database systems (such as MySQL, SQL 
Server, PostGres, and Oracle). NoSQL appliances 
(for example, Neo4j, CouchDB, MongoDB, Cas-
sandra, and Amazon Dynamo) offer efficient 
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support for unstructured data management and 
limited-to-no support for atomicity, consistency, 
isolation, and durability (ACID) transaction prin-
ciples of SQL-like database systems.

In addition, to process Big Data produced 
by social media, mobile devices, the Internet of 
Things, business transactions, and content distri-
bution, there has been a paradigm change from the 
traditional “one shot” machine-learning approach 
to elastic and virtualized cloud-based machine 
learning (ML) and data-processing appliances that 
are able to mine continuous, high-volume, open-
ended data streams.

Distributed ML appliances17 (such as Apache 
Mahout, MLBase, GraphLab, R, FlexGP, Vowpal 
Wabbit, MOA, and Pegasus) implement a wide 
range of ML algorithms (for example, clustering, 
decision trees, latent Dirichlet allocation, regres-
sion, and Bayesian) that are capable of mining 
datasets in parallel by leveraging a distributed 
set of machines.

Special data processing appliances — such as 
Apache S4 (see http://incubator.apache.org/s4), 
Twitter Storm, Amazon Kinesis, StreamBase, and 
Apache Hadoop — enable programming of appli-
cations that rapidly process massive amounts 
of data in parallel on large sets of machines. To 
speed up the ML algorithms, these data process-
ing appliances simplify the process of distributing 
the training and learning tasks across a parallel 
set of resources.

We distinguish between basic and composite 
appliances. A basic appliance (such as AWS Rela-
tional Database Service [RDS], Apache Mahout, 
Apache Storm, and SQL Azure) delivers single-
abstract functionality that might not be sufficient 
to design a fully functional application stack. 
Examples include Web server, database, and 
monitoring appliances. However, multiple basic 
appliances might need to be integrated to create a 
functional application. On the other hand, a com-
posite appliance encapsulates a number of soft-
ware resource units to support a standalone, fully 
functional application. For instance, Bitnami’s 
Redmine composite appliance encapsulates mul-
tiple software resource units, including MySQL 
and Ruby on Rails.

We can classify appliances as customizable 
and non-customizable. Bitnami and rPath offer 
appliances that we can customize in terms of their 
mapping to hardware resources. For instance, we 
can map a Bitnami appliance (see http://wiki.bit-
nami.com/Applications) to one of the AWS CPU 

resource types, depending on anticipated QoS 
targets. Similarly, with customizable appliances, 
users have the flexibility to mount EBS volumes, 
if persistence of application data is a requirement. 
On the other hand, providers such as AWS EC2 
offer noncustomizable appliances that we can 
integrate directly (without any further modifica-
tion to its hardware resource configuration) into 
an application. For instance, AWS offers a load 
balancer and a monitoring appliance such as 
AWS CloudWatch (see http://aws.amazon.com/
cloudwatch) for integration with other appliances 
(such as an app server appliance) to be hosted on 
AWS EC2.

Programming PaaS-Layer Orchestration 
Operations
Now, let’s discuss research issues in program-
ming orchestration operations at the PaaS layer. 

Selecting optimal appliances. This operation 
requires an understanding of the technical 
details, features, and interoperation ability of 
competing appliances. In particular, the orches-
trator needs to evaluate whether an appliance 
can deliver the requested functionality (such 
as stream data processing, database server, and 
source code management server). If a group of 
appliances is going to be selected, then they 
must meet integration constraints. Finally, an 
appliance’s compatibility with the virtualization 
technology of the target cloud must be consid-
ered during the selection process. Other impor-
tant selection criteria include the appliance’s host 
operating system and its programming environ-
ment. To solve the appliance selection problem, 
research efforts have focused on applying mul-
ticriteria decision making11 and semantic-based 
services’ discovery techniques.18

Integrating appliances. An application can be com-
posed of several appliances. The deployment pro-
cedures and order of their executions are unique to 
each application and cloud environment. Depen-
dencies between various appliances in an applica-
tion must be taken into account to ensure correct 
deployments. In today’s interoperability solutions, 
templates are used as an interoperation mechanism 
to combine appliances. These templates capture 
appliances’ unstructured information that’s notori-
ously difficult to use as a means to support infor-
mation with other compatible templates to render 
composite offerings at the PaaS level. Today, no 
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description language exists to describe and com-
bine metadata descriptions of PaaS appliances in 
a uniform manner. Instead, a plethora of such for-
malisms exists, with varying types of concerns and 
different capabilities. Nor is there a consistent way 
to model the dependencies between operational 
and deployment dimensions to create end-to-end 
combinations of modular cloud stack offerings to 
meet application or consumer demands.

Comprehensive monitoring.19 Although the cloud 
provider offers proprietary monitoring appli-
ances, such as CloudWatch by AWS and Fabric 
Controller by Azure, they have the following 
limitations: an inability to monitor application 
components deployed across multiple cloud pro-
viders; and an inability to support QoS (such as 
latency and availability) monitoring for individ-
ual software resources (for a Web, application, or 
database server, for example). To improve this 
situation, recent research efforts have focused on 
developing monitoring techniques that can mon-
itor both hardware and software resources and 
support a comprehensive list of QoS parameters 
for each resource type.

Managing Big Data. While research groups have 
focused on large-scale data management in tradi-
tional enterprise settings, cloud computing and its 
available NoSQL and SQL appliances have their 
own research challenges with regards to program-
ming orchestration operations (such as selection, 
scale-in, scale-out, synchronize, replicate, and 
backup). Supporting ad hoc querying on top of 
NoSQL appliances and providing hard data-con-
sistency guarantees remains an open research 
problem. Further, it’s not clear how NoSQL appli-
ances will perform for different classes of appli-
cations (for enterprises or streaming Big Data, 
for example) and workload (decision support, I/O 
intensive, and so on). Developing techniques that 
can impart the intelligence16 of characterizing the 
data density (density and distribution of data; or 
composition of queries) to a cloud-based load-
balancing appliance (such as AWS Elastic Load 
Balancer) for improving the QoS (including query 
latency and database service throughput) remains 
a popular research topic.

Cloud data security. Similar to BLOB storage 
resources, data stored on NoSQL and SQL appli-
ances aren’t secured at a finer granularity level. 
The application data managed by these appliances 

are vulnerable to theft, because adversaries can 
gain access to private data and malicious database 
administrators might capture or leak data. Hence, 
research efforts20 have focused on developing 
techniques that efficiently support the following: 
encryption and decryption of data without caus-
ing additional query and data-processing over-
head (time and space); and execution of a variety 
of traditional SQL (equality checks, order compari-
sons, aggregates, and joins) or NoSQL queries over 
encrypted data.

SaaS
SaaS integrates multiple, interoperable PaaS- and 
IaaS-level cloud resources to deliver applications 
to end users — for example, social network ser-
vices such as Facebook and Twitter. The orches-
tration operations for managing lifecycles of 
SaaS-level resources are handled behind the 
scenes by SaaS providers. A SaaS provider can 
own or rent the underlying PaaS- and IaaS-level 
resources. SaaS applications are accessed over the 
Internet and typically are charged on a subscrip-
tion basis. Table 1 also shows the orchestration 
operation relevant to SaaS.

Programming SaaS-Layer  
Orchestration Operations
Next, we discuss research issues in program-
ming orchestration operations at the SaaS layer.

Managing Big Data. Social network applications 
generate massive amounts of data. Timely acquisi-
tion and processing of data from social networks 
play an important role in many application sce-
narios, such as emergency situation awareness, 
customer sentiment analysis, and syndromic bio-
surveillance. However, the rate at which social 
networks produce data (Twitter generates 40,000 
messages per second) leads to many complex 
orchestration challenges, whether it involves 
aggregating data in real time or processing effi-
cient, QoS-aware data in real time for detecting an 
event (such as a disease outbreak, flood, or earth-
quake) within a specified time constraint.

Optimizing a QoS location-aware network. With 
the growing popularity of online multimedia ser-
vices such as YouTube and Netflix, there’s a need 
to orchestrate QoS-aware content delivery to end 
users. Users of online multimedia services tend to 
consume content based on their own interest, pop-
ularity, and content type. However, key challenges 
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exist in detecting users’ hotspots such that a suit-
able cloud data center can be chosen to initiate 
dynamic content migration.

Data portability with security and privacy. SaaS 
providers such as SalesForce.com need to provide 
service features that let users — such as small- and 
medium-sized enterprises (SMEs) and governments 
— migrate their existing application data to cloud 
environments with minimal effort. All existing in-
house application data must be exported transpar-
ently, then formatted and parsed to suit the data 
format supported by cloud-hosted SaaS installa-
tion. Porting in-house applications (including CRM 
and email servers) remains a challenging issue for 
SMEs and government organizations. This is mainly 
due to a lack of technologies that can seamlessly 
migrate existing security (authorization, authenti-
cation, and accounting) mechanisms to public SaaS 
installations.

Distributed denial of service (DDoS). With the pay-
as-you-go cloud model, the conventional DDoS 
attacks targeting SaaS can be transformed into a 
new attack that can create significant economic 
loss for the application owners. For example, a 
high rate and volume of malicious service requests 
lead to excessive cloud usage bills, due to unneces-
sary scaling of the CPU resources, as well as net-
work data transfer to and from the SaaS. To thwart 
such attacks, Fahd Al-Haidari and his colleagues21 
propose an early approach, where their Shield sys-
tem detects and mitigates distributed DoS attacks 
against CPU resources. However, further research 
is required to determine whether researchers can 
apply similar techniques for thwarting attacks 
against a variety of application models — in par-
ticular, those that must perform real-time analytics 
over a data stream flowing from external sources 
(such as mobile devices and sensors).

Issues Overlapping across IaaS, PaaS, and 
SaaS Layers
Having looked at each service individually, 
now we turn our attention to overlapping issues 
across the service layers.

Holistic cloud interoperability. Cloud interoperation 
requires, in addition to common APIs, clear separa-
tion of concerns (and control), flexible mappings of 
cloud resources to services, and higher-level forms 
of abstraction to automate the orchestration of 
resources. It also requires creating a cloud solution 

with one of its portions running on internal sys-
tems, and another portion delivered from the exter-
nal cloud environment in which there’s ongoing 
data exchanges and process coordination between 
the internal and external cloud environments. We 
believe that holistic cloud interoperability to address 
operational and deployment concerns mentioned at 
different cloud stack layers is needed. Holistic cloud 
interoperability fuses two interoperability issues.

The first, horizontal cloud interoperability, is 
cross-cloud stack interoperability between the 
same tiers in different cloud stacks — such as 
cross-SaaS, cross-PaaS, or cross-IaaS interopera-
tion. For instance, a logistics application can com-
bine order management, inventory, and payroll 
services from diverse providers at the SaaS level. 
These are services that can be composed unam-
biguously and safely with other similar services at 
the same horizontal levels of the cloud stack.

The first, vertical cloud interoperability, is 
between downstream-compatible cloud tiers in dif-
ferent stacks — such as SaaS to PaaS and PaaS to 
Iaas. For instance, an order-management service at 
the SaaS level might appropriately interface with a 
specialized Oracle sales forecasting data repository 
from an external provider at the PaaS level. These 
are services that can be composed unambiguously 
and safely with other conformant services from 
adjoining downstream levels in the cloud stack. 
For instance, the payroll solution Oracle’s People-
Soft Enterprise ePay platform runs on an Android 
smartphone operating platform so that we can use 
it on mobile devices.

Dependencies of RO operations across IaaS and 
PaaS layers. Table 1 shows that some RO oper-
ations are applicable to both IaaS and PaaS 
resources — for instance, start, stop, restart, scale-
in, and scale-out operations. Though seman-
tically these operations are compatible, each 
operation needs to cater to the type of resource 
(such as IaaS or PaaS) under consideration while 
programming the orchestration. For instance, the 
“start” operation for a MySQL database appli-
ance (at the PaaS level) means first instantiating 
a virtual CPU resource (by invoking an IaaS-level 
API), followed by starting the database instance 
via a specific command (such as start mysqld). 
On the other hand, the “start” operation for an 
Apache Tomcat Web server appliance will be sim-
ilar to a database appliance at the IaaS level but 
different at the PaaS level (for example, cata-
lina start). Developing APIs to resolve such 
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dependencies across the layers automatically will 
continue to be an active area of research.

C loud computing is a vast, complex, and evolv-
ing technology landscape, embracing a multi-

layered resource stack that must be orchestrated 
in an intricate manner to ensure that the applica-
tion delivers an acceptable QoS level to the end 
users. We characterized cloud resources in a mul-
tilayered stack based on their attributes, granu-
larity, and supported orchestration operations. 
This work will help readers clearly understand 
the core cloud computing concepts, interrelation-
ship between different resource types, and rel-
evant research challenges.

A taxonomy of cloud resources is discussed 
elsewhere.22,23 In Lamia Youseff and her colleagues’ 
work, they list a unified ontology for describing 
the cloud resource.24 They use composability as the 
methodology for developing the resource ontol-
ogy. Although these works help in understanding 
the issues of cloud computing, they fail to capture 
the essence of programming resource orchestration 
frameworks and associated research challenges. 
Further, they don’t consider all of the resource 
types that we captured here. Arguably, our work is 
the first attempt at capturing orchestration opera-
tions and related research issues involved with 
programming orchestration frameworks across all 
layers of a cloud resource stack. 
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