
2 Published by the IEEE Computer Society 1089-7801/15/$31.00 © 2015 IEEE IEEE INTERNET COMPUTING

Cl
ou

d
Co

m
pu

ti
ng

Cloud Resource Orchestration
Programming
Overview, Issues, and Directions

Rajiv Ranjan
CSIRO and University of New
South Wales

Boualem Benatallah
University of New South Wales

Schahram Dustdar
Vienna University of Technology,
Austria

Michael P. Papazoglou
Tilburg University, the Netherlands

The pervasiveness and power of cloud computing alleviates some of the

problems application administrators face in their existing hardware and

locally managed software environments. However, the rapid increase in scale,

dynamicity, heterogeneity, and diversity of cloud resources necessitates having

expert knowledge about programming complex orchestration operations (for

example, selection, deployment, monitoring, and runtime control) on those

resources to achieve the desired quality of service. This article provides

an overview of the key cloud resource types and resource orchestration

operations, with special focus on research issues involved in programming

those operations.

O ver the last few years, cloud com-
puting has emerged as the new
model of distributed comput-

ing by offering hardware and software
resources as virtualization-enabled ser-
vices. Cloud computing1 providers such
as Amazon Web Services (AWS) and
Microsoft Azure give application own-
ers the option to deploy their application
over a network with a virtually infinite
resource pool with practically no up-
front capital investment and with modest
operating costs. Today, cloud computing
systems (see http://csrc.nist.gov/publica-
tions/nistpubs/800-145/SP800-145.pdf)
follow a service-driven, layered software
architecture model (see Figure 1), with
Software as a Service (SaaS), Platform as

a Service (PaaS), and Infrastructure as a
Service (IaaS).

Key to exploiting the potential of
cloud computing is the issue of resource
orchestration (RO).2,3 Based on the analy-
sis of several research papers, commercial
products, and analysts reports, we define
RO as the set of operations that cloud
providers (such as AWS) and application
owners (such as Netflix) undertake (either
manually or automatically via com-
puter programs) for selecting, deploying,
monitoring, and dynamically control-
ling the configuration of hardware and
software resources as a system of qual-
ity of service (QoS)-assured components
that can be seamlessly delivered to end
users. As Figure 1a shows, RO operations

Cloud Resource Orchestration Programming

May/jUNE 2015 3

span across all the layers of a cloud computing
stack. The overall goal of RO is to ensure success-
ful hosting and delivery of applications (SaaS)
by meeting QoS objectives of cloud application
owners (for example, maximizing availabil-
ity and throughput, while minimizing latency
and avoiding an overload) and resource providers

(maximizing usage, energy efficiency, profit, and
so on), respectively. A recent report from the Open
Data Center Alliance defines 19 usage scenarios of
RO, spanning across all three layers of the cloud
stack (see www.opendatacenteralliance.org/docs/
ODCA_Service_Orch_MasterUM_v1.0_Nov2012.
pdf).

Figure 1. Overview of a cloud computing system. (a) Reference cloud resource stack. The architecture provides a layered
approach to characterizing resources based on their attributes and granularity. (b) High-level architecture of a multilayered
enterprise application consisting of clients, a load balancer, Web servers, application servers, and database management servers.
The flow of requests between these layers is often complex. Each layer might instantiate multiple software resources, and
each software resource might need to be replicated on multiple hardware resources (for example, CPUs), while load balancers
distribute requests across instances of software resources. (c) Abstract resource orchestration (RO) operations in the lifecycle of
an enterprise application. (BLOB = Binary Large Object; EBS = Elastic Block Store; ERP = enterprise resource planning; IaaS =
Infrastructure as a Service; PaaS = Platform as a Service; SaaS = Software as a Service; and VPN = virtual private network.)

Email

Web
server

appliance

Elastic
transcoder

Auto
scaling

Apache
hadoop

Apache
mahout

Apache
storm

SA
A

S
PA

A
S

C
ro

ss
-c

ut
tin

g
or

ch
es

tr
at

io
n

op
er

at
io

ns

IA
A

S

CPU BLOB
storage

Clustered
CPU

Elastic
IP Cache

memory

Resource selection

Resource control

Resource
deployment

Resource
monitoring

Legend:

Operations

Work�ow

EBS

Storage

VPN Database

Database
layer

n1

Business
logic
layerApp

server

Web
server

Web
server

n1

App
server

Presentation
layer

Load-balancer

Database
appliance

App
server

appliance

Load
balancer

Virtualization technologies (for example, Xen, VMWare, and KVM)

Monitoring
appliance

Orhcestration
frameworks

Crowdsourcing Content delivery
networks

(a) (b)

(c)

Cloud Computing

4 www.computer.org/internet/ IEEE INTERNET COMPUTING

Programming RO is challenging, because cloud
applications are composed of heterogeneous soft-
ware and hardware resources that are deployed
across the cloud stack and might have complex
integration and interoperation dependencies.
Currently, orchestrating cloud resources requires
human familiarity with the various providers and
extensive manual programming. This is inade-
quate, given the dynamic variation of application
resource requirements, and the proliferation of
autonomous and heterogeneous cloud service pro-
viders offering resources at different layers (IaaS,
PaaS, and SaaS). Dynamic variation of application
resource requirements4,5 arise from a number of
factors, including resource capacity demand (such
as bandwidth, memory, and processing power),
failures (of a network link or resource), end-user
access patterns (number of users, request arrival
pattern burstiness, request service time distribu-
tion, and user location), and variations in resource
prices. Modern configuration management solu-
tions such as Amazon OpsWorks and Puppet pro-
vide support for describing resource configuration
over cloud services. However, even sophisticated
professional programmers and system adminis-
trators regularly resort to understanding differ-
ent low-level cloud service APIs, command-line
languages, Web interfaces, and procedural pro-
gramming, to create and maintain complex cloud
resource configurations. Given the importance
of resources orchestration to cloud service con-
sumers, major cloud service providers are rap-
idly improving their cloud resource-management
capabilities. Recent offerings such as CloudSwitch
(see https://home.cloudswitch.com), Azure Fab-
ric Controller (see http://fabriccontroller.net), and
AWS CloudFormation (see http://aws.amazon.
com/cloudformation) exemplify such trends.

To help navigate this terrain, here we char-
acterize cloud resources orchestration in a mul-
tilayered stack and highlight the main research
challenges involved with programming orchestra-
tion operations for different cloud resource types.

RO Operations for Hosting Enterprise
Applications on the Cloud
The application architecture (such as content
delivery networks, streaming Big Data analyt-
ics applications, and high-performance computing
applications) determines how, when, and which
orchestration operations should be affected on cloud
resources. Though lack of space doesn’t permit dis-
cussion about all application architectures, here we

discuss some orchestration operations for man-
aging typical enterprise applications (see https://
media.amazonwebservices.com/AWS_Web_Host-
ing_Best_Practices.pdf). Figure 1b depicts the high-
level architecture of an enterprise application, which
consists of multiple software resource layers, includ-
ing the presentation, business logic, and data layers.
Across each layer, we must program a number of
orchestration operations to control the resources at
design time, as well as at runtime, to fulfill the QoS
objectives. We detail the operations in the following
paragraphs (see also Figure 1c).

Selecting resources (at design and runtime). An
application owner analyzes candidate software
resources to determine whether we can select
them for realizing the required functionality sat-
isfying certain resource requirements and con-
straints (for example, interoperability with other
software resources, compatibility with target hard-
ware resources, cost, availability, and so on). Next,
we select the compatible hardware resources that
we can allocate to software resources.

Deploying resources (both design time and run-
time). This operation involves instantiating soft-
ware resources on cloud services and configuring
them for communication and interoperation with
other software resources. Integrating an application
server with the database server (see Figure 1b) is a
salient example of this orchestration operation.

Monitoring resources (runtime). Monitoring QoS
attributes of cloud applications involves detect-
ing event patterns (such as a load spike) from
information produced by deployed resources (for
example, application usage statistics).

Controlling resources (runtime). Based on event
patterns detection, a resource orchestrator can
react to deviations in application behaviors and
initiate (policy-based) corrective actions, ide-
ally without disrupting the runtime system. An
example resource control operation could be to
horizontally scale a database server by migrat-
ing it from a small CPU resource configuration
to an extra-large CPU resource in AWS Elastic
Compute Cloud (EC2) for improving throughput.

Cloud Resource Types and
Orchestration Challenges
Now, let’s look at each resource type through
examples (see Figure 1a) and analyze the core

Cloud Resource Orchestration Programming

May/jUNE 2015 5

research challenges involved with program-
ming orchestration operations.

IaaS
The CPU, storage, and network resources in cloud
environments are supplied by a collection of data
centers installed with hundreds to thousands of
physical resources such as cloud servers, stor-
age repositories, and network backbone. These
resources expose configuration attributes (see
Table 1) that define consumable features and func-
tions that are available from hardware resources.
Providers manage these physical resources through
hardware virtualization technologies, such as
Xen,6 Citrix, and VMware (see www.vmware.com/
au/virtualization).

A CPU resource is essentially a piece of virtu-
alization software running on the physical cloud
server. It’s the most common method of exposing
the computational power to software resources;
where we get finer-granularity accessibility and
flexibility at the super-user level that can help
customize the placement of software resources
for QoS. The CPU resource emulates the properties
of a physical CPU resource by providing a virtual
CPU: a network card, physical memory, and hard
disk. Table 1 shows orchestration operations rel-
evant to IaaS resources.

The second IaaS-level hardware resources
are the Binary Large Object (BLOB) data storage
resources, which let users store raw application
data on virtualized disks and access them any-
time from any point on the Internet. BLOB storage
(such as AWS Simple Storage Service) can hold
video, audio, photos, and archived email mes-
sages, and let applications store and access data
from any point on the Internet. This storage type
aims to enforce fault-tolerant behavior through
redundancy. For example, Azure provides differ-
ent levels of redundancy7,8 options for its BLOB
and other types of storage resources (queues and
tables), including local redundant storage, geo
redundant storage, and read access–geo redun-
dant storage.

A CPU resource has access to its local hard
disk. However, by default, the local disk is non-
persistent; once the instance of a CPU resource is
terminated, its local storage contents are purged.
To overcome this issue, cloud providers offer
off-instance storage resources that persist inde-
pendently from the life of a CPU resource. These
off-instance storage resources are referred to as
the Elastic Block Store (EBS) and XDrive in AWS

EC2 and Microsoft Azure, respectively. Principal
advantages of designing applications using off-
instance storage include the following: automatic
data replication — this prevents data loss due to
a single point of failure; and point-in-time data
snapshot creation and backup to cloud-specific
BLOB storage resources.

As the need for high-volume data transfer and
communication across network boundaries grows
for applications, networking resources (for exam-
ple, routers, switches and communication band-
width, AWS elastic IP, OpenFlow, and the AWS
security group) become a vital component at the
IaaS level. Network resources provide a variety of
functionality, including bandwidth, virtual over-
lays for isolating traffic, guaranteeing message
delivery delay, encrypting communication chan-
nels, and network monitoring.

Programming IaaS-Layer Orchestration
Operations
Here we discuss research issues in program-
ming orchestration operations at the IaaS layer.

Selecting optimal IaaS resources. The diversity of
offerings at this layer leads to complex decision-
making problems of optimal comparison and
selection of IaaS resources from multiple cloud
providers. For example, how does an application
engineer compare the cost and performance fea-
tures of hardware resources offered by different
providers such as AWS and Azure? Similarly, an
engineer can choose one provider for storage-
intensive applications and another for computa-
tion-intensive applications. During the selection
process, an engineer must consider many attri-
butes (see Table 1), including goals, comparison
benchmarks, and resource type alternatives. The
main research challenges include how to iden-
tify and formulate selection criteria and solve
qualitative (that is, the virtualization format and
cloud location) and quantitative (for example,
minimizing response time and cost) QoS con-
straints while considering a large number of IaaS
resource alternatives and application use cases.
Existing approaches have focused on applying
combinatorial optimization,9 evolutionary opti-
mization,10 and multicriteria11 decision-making
techniques for solving the selection problem.

Controlling concurrency. Orchestration operation
on a particular class of hardware resources (such
as a CPU resource) is enforced by invoking their

Cloud Computing

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

respective (provider-specific) Web service API. Pro-
gramming applications that can be hosted across
distributed IaaS resources require a developer to
orchestrate concurrent computation and commu-
nication across heterogeneous cloud services, in
a manner that’s robust to delays and failures. For
example, in a multistep orchestration operation of
allocating a CPU resource to a software resource,
followed by assigning an elastic network IP and
mounting an EBS resource — if one of the immedi-
ate operations fails or throws an unexpected error,
a trivial implementation would fail stop, leaving the
system in inconsistent state. Ensuring deadlock-free
orchestration to deal with a high level of concurrency
and network traffic arising from potentially large
numbers of overlapping requests, recent efforts2,12
have advocated programming resource orchestration
based on declarative programming languages.

Configuring dynamic resources. The impetus behind
cloud computing is the ever-increasing demand to
manage growth and increase computing flexibility

by dynamically scaling up or down resources based
on demand.4,5 However, existing cloud resource-
provisioning techniques don’t effectively support
dynamic resource configuration. For instance,
applications or workloads can’t be dynamically
and automatically partitioned or migrated arbi-
trarily from one cloud service to another if demand
cycles increase. Moreover, dynamic configuration
of resources is a complex issue because of lack of
visibility and control across heterogeneous ser-
vices at different layers. Advanced cloud resource
orchestration techniques13 have focused on devel-
oping an analytical application workload-predic-
tion model for forecasting application resource
requirements, and developing adaptive resource
management techniques that can dynamically
configure resources to meet requirements and con-
straints. While initial research results are promis-
ing, more than that, in many cases there’s research
from the fields of autonomic computing that we
can leverage to a certain extent — however, design-
ing effective dynamic cloud resource orchestration

Table 1. IaaS, PaaS, and SaaS resource types, their attributes, and list of supported orchestration operations.

Service
Hardware
resources Attributes Supported orchestration operations

IaaS

CPU Cores, speed, family, physical memory capacity, storage
capacity, addressing bits, I/O performance, renting cost,
type (single or cluster of templates), resource sharing
(multitenant or dedicated), physical location of cloud,
availability zone, availability, performance statistics, service-
level agreement (SLa), security, privacy, and integrity

Start, stop, restart, select, mount off-
instance storage, monitor, reconfigure,
assign IP, select cloud location, select
availability zone, scale-in, scale-out,
authorize, and authenticate

BLOB storage Type (persistent or nonpersistent), storage size, storage
format, renting cost, location of host cloud, availability zone,
availability, performance statistics, SLa, security, privacy, and
integrity

Create new buckets, upload file, download
file, scale-in, scale-out, monitor, encrypt,
decrypt, authorize, and authenticate

Network IP Type (static or dynamic), version (IPV4 or IPV6), renting
cost, message encryption cost, URL, data transfer-in
cost, data transfer-out cost, connection hour, availability,
performance statistics, SLa, security, privacy, and integrity

allocation of IP addresses, URL, ports,
availability zone, VPN to CPU resources,
and monitor

PaaS

Feature (Web server, database server, load balancer,
authorization server, and so on), virtualization format (such
as Xen and VMware), environment (host operating system,
implementation language such as java, .Net, PHP, or Ruby
on Rails), legal and regulatory issues, security, reliability,
integrity, licensing terms and costs, initialization scripts,
availability, performance statistics, and SLa

Start, stop, restart, select, allocate hardware
resources, integrate with other appliances,
install script, monitor, create, migrate, scale-
in, scale-out, login, log-out, install software,
replicate, synchronize, backup, delete,
encrypt data, decrypt data, authorize, and
authenticate

SaaS

Feature (email, customer relationship management,
ERP, social networking, document management, and
crowdsourcing), legal and regulatory issues, security, privacy,
integrity, reliability, licensing terms and costs, availability,
performance statistics, SLa, and data portability

Customize, accounting, billing, select, data
porting, authentication, and authorization

Cloud Resource Orchestration Programming

May/jUNE 2015 7

techniques that cope with large-scale heteroge-
neous cloud environments remains a deeply chal-
lenging problem.

Allocating cloud resources energy-efficiently.
In recent years, energy-efficient allocation12 of
hardware resources to applications has emerged
as a critical requirement, due to the worldwide
focus on minimizing the carbon footprint. Efforts
have focused on fabricating energy-efficient
hardware, such as low-power, energy-efficient
CPUs and solid-state drives to minimize energy
consumption. The research community has also
focused on software-based approaches to mini-
mize energy consumption, such as resource allo-
cation and task consolidation. That said, what
remains a difficult and open research problem
is the development of energy-efficient IaaS
resource orchestration techniques that take into
account application-specific service-level agree-
ments (SLAs) while making resource allocation
decisions for software resources.

Data security and privacy. The most significant
difference between cloud security and traditional
security controls stems from the fact that users
spanning different corporations and trust lev-
els often interact with the same set of computing
resources. The security and availability of general
cloud resources is dependent upon the security of
basic APIs. From authentication and access con-
trol to encryption and activity monitoring, we
must design these interfaces to protect against
both accidental and malicious attempts to circum-
vent policy. For example, consider BLOB storage
resources that have limited data security and pri-
vacy features, such as simple access control based
on trusted credentials. BLOBs only support fine-
grained security and privacy features to protect
its end users from the following risks: data expo-
sure (confidentiality), data tampering (integrity),
and denial of access to data (availability). Recent
research efforts have focused on developing addi-
tional third-party security infrastructures14 to
ensure the security, privacy, and integrity of data
— not only while being transmitted over network
links but also while at rest on BLOB resources.

Interoperability. To improve resilience, an intuitive
solution is to deploy applications across multiple
IaaS providers. Unfortunately, most of the exist-
ing providers aren’t compatible with each other.
They tend to have proprietary APIs, which aren’t

explicitly designed for cross-cloud interoperability.
To tackle such heterogeneities, there’s a require-
ment to enforce standardization across layers of
the cloud resource stack. Recent developments —
including Delta Cloud, jclouds, and Dasein Cloud
(see http://dasein-cloud.sourceforge.net) — sim-
plify this task by implementing a single API that
abstracts APIs related to multiple clouds such as
AWS EC2 and GoGrid. We can orchestrate funda-
mental cloud resources such as CPU, appliances,
and storage via SOAP/RESTful APIs. However,
orchestrating monitoring, load balancing, and
auto-scaling RO operations to handle uncertain-
ties in application and resource behaviors across
clouds via a unified API still isn’t viable, and hence
remains an open research problem. The Topology
and Orchestration Specification for Cloud Applica-
tions (TOSCA; see www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=tosca#overview)
is an interoperability specification that provides
building blocks to support cross-stack orchestra-
tion of cloud resources.

PaaS
The PaaS layer features a rich pool of software
appliances that facilitate the end-to-end lifecy-
cle of developing, testing, deploying, and host-
ing applications. The following software resource
categories are relevant at this layer.

Appliances. Appliances15 are pre-configured, self-
contained, virtualization-enabled, and pre-built
software resource units (database, Web server, appli-
cation server, Apache Hadoop, Apache Storm, load
balancers, and so on) that we can integrate with
other compatible appliances for designing complex
applications. Primarily, it’s the goal of the resource
orchestrator to select, assemble, deploy, and man-
age a set of appliances (refer to https://solution-
exchange.vmware.com/store/category_groups/
virtual-appliances) delivering a particular applica-
tion functionality.

For instance, several reusable appliances (see
http://cloud.dzone.com/news/sql-vs-nosql-cloud-
which) emerged in the area of Big Data process-
ing (refer to http://cloud.dzone.com/articles/
small-cross-section-big-data), including SQL and
NoSQL appliances.16 SQL appliances (see http://
aws.amazon.com/rds) provide traditional rela-
tional database systems (such as MySQL, SQL
Server, PostGres, and Oracle). NoSQL appliances
(for example, Neo4j, CouchDB, MongoDB, Cas-
sandra, and Amazon Dynamo) offer efficient

Cloud Computing

8 www.computer.org/internet/ IEEE INTERNET COMPUTING

support for unstructured data management and
limited-to-no support for atomicity, consistency,
isolation, and durability (ACID) transaction prin-
ciples of SQL-like database systems.

In addition, to process Big Data produced
by social media, mobile devices, the Internet of
Things, business transactions, and content distri-
bution, there has been a paradigm change from the
traditional “one shot” machine-learning approach
to elastic and virtualized cloud-based machine
learning (ML) and data-processing appliances that
are able to mine continuous, high-volume, open-
ended data streams.

Distributed ML appliances17 (such as Apache
Mahout, MLBase, GraphLab, R, FlexGP, Vowpal
Wabbit, MOA, and Pegasus) implement a wide
range of ML algorithms (for example, clustering,
decision trees, latent Dirichlet allocation, regres-
sion, and Bayesian) that are capable of mining
datasets in parallel by leveraging a distributed
set of machines.

Special data processing appliances — such as
Apache S4 (see http://incubator.apache.org/s4),
Twitter Storm, Amazon Kinesis, StreamBase, and
Apache Hadoop — enable programming of appli-
cations that rapidly process massive amounts
of data in parallel on large sets of machines. To
speed up the ML algorithms, these data process-
ing appliances simplify the process of distributing
the training and learning tasks across a parallel
set of resources.

We distinguish between basic and composite
appliances. A basic appliance (such as AWS Rela-
tional Database Service [RDS], Apache Mahout,
Apache Storm, and SQL Azure) delivers single-
abstract functionality that might not be sufficient
to design a fully functional application stack.
Examples include Web server, database, and
monitoring appliances. However, multiple basic
appliances might need to be integrated to create a
functional application. On the other hand, a com-
posite appliance encapsulates a number of soft-
ware resource units to support a standalone, fully
functional application. For instance, Bitnami’s
Redmine composite appliance encapsulates mul-
tiple software resource units, including MySQL
and Ruby on Rails.

We can classify appliances as customizable
and non-customizable. Bitnami and rPath offer
appliances that we can customize in terms of their
mapping to hardware resources. For instance, we
can map a Bitnami appliance (see http://wiki.bit-
nami.com/Applications) to one of the AWS CPU

resource types, depending on anticipated QoS
targets. Similarly, with customizable appliances,
users have the flexibility to mount EBS volumes,
if persistence of application data is a requirement.
On the other hand, providers such as AWS EC2
offer noncustomizable appliances that we can
integrate directly (without any further modifica-
tion to its hardware resource configuration) into
an application. For instance, AWS offers a load
balancer and a monitoring appliance such as
AWS CloudWatch (see http://aws.amazon.com/
cloudwatch) for integration with other appliances
(such as an app server appliance) to be hosted on
AWS EC2.

Programming PaaS-Layer Orchestration
Operations
Now, let’s discuss research issues in program-
ming orchestration operations at the PaaS layer.

Selecting optimal appliances. This operation
requires an understanding of the technical
details, features, and interoperation ability of
competing appliances. In particular, the orches-
trator needs to evaluate whether an appliance
can deliver the requested functionality (such
as stream data processing, database server, and
source code management server). If a group of
appliances is going to be selected, then they
must meet integration constraints. Finally, an
appliance’s compatibility with the virtualization
technology of the target cloud must be consid-
ered during the selection process. Other impor-
tant selection criteria include the appliance’s host
operating system and its programming environ-
ment. To solve the appliance selection problem,
research efforts have focused on applying mul-
ticriteria decision making11 and semantic-based
services’ discovery techniques.18

Integrating appliances. An application can be com-
posed of several appliances. The deployment pro-
cedures and order of their executions are unique to
each application and cloud environment. Depen-
dencies between various appliances in an applica-
tion must be taken into account to ensure correct
deployments. In today’s interoperability solutions,
templates are used as an interoperation mechanism
to combine appliances. These templates capture
appliances’ unstructured information that’s notori-
ously difficult to use as a means to support infor-
mation with other compatible templates to render
composite offerings at the PaaS level. Today, no

Cloud Resource Orchestration Programming

May/jUNE 2015 9

description language exists to describe and com-
bine metadata descriptions of PaaS appliances in
a uniform manner. Instead, a plethora of such for-
malisms exists, with varying types of concerns and
different capabilities. Nor is there a consistent way
to model the dependencies between operational
and deployment dimensions to create end-to-end
combinations of modular cloud stack offerings to
meet application or consumer demands.

Comprehensive monitoring.19 Although the cloud
provider offers proprietary monitoring appli-
ances, such as CloudWatch by AWS and Fabric
Controller by Azure, they have the following
limitations: an inability to monitor application
components deployed across multiple cloud pro-
viders; and an inability to support QoS (such as
latency and availability) monitoring for individ-
ual software resources (for a Web, application, or
database server, for example). To improve this
situation, recent research efforts have focused on
developing monitoring techniques that can mon-
itor both hardware and software resources and
support a comprehensive list of QoS parameters
for each resource type.

Managing Big Data. While research groups have
focused on large-scale data management in tradi-
tional enterprise settings, cloud computing and its
available NoSQL and SQL appliances have their
own research challenges with regards to program-
ming orchestration operations (such as selection,
scale-in, scale-out, synchronize, replicate, and
backup). Supporting ad hoc querying on top of
NoSQL appliances and providing hard data-con-
sistency guarantees remains an open research
problem. Further, it’s not clear how NoSQL appli-
ances will perform for different classes of appli-
cations (for enterprises or streaming Big Data,
for example) and workload (decision support, I/O
intensive, and so on). Developing techniques that
can impart the intelligence16 of characterizing the
data density (density and distribution of data; or
composition of queries) to a cloud-based load-
balancing appliance (such as AWS Elastic Load
Balancer) for improving the QoS (including query
latency and database service throughput) remains
a popular research topic.

Cloud data security. Similar to BLOB storage
resources, data stored on NoSQL and SQL appli-
ances aren’t secured at a finer granularity level.
The application data managed by these appliances

are vulnerable to theft, because adversaries can
gain access to private data and malicious database
administrators might capture or leak data. Hence,
research efforts20 have focused on developing
techniques that efficiently support the following:
encryption and decryption of data without caus-
ing additional query and data-processing over-
head (time and space); and execution of a variety
of traditional SQL (equality checks, order compari-
sons, aggregates, and joins) or NoSQL queries over
encrypted data.

SaaS
SaaS integrates multiple, interoperable PaaS- and
IaaS-level cloud resources to deliver applications
to end users — for example, social network ser-
vices such as Facebook and Twitter. The orches-
tration operations for managing lifecycles of
SaaS-level resources are handled behind the
scenes by SaaS providers. A SaaS provider can
own or rent the underlying PaaS- and IaaS-level
resources. SaaS applications are accessed over the
Internet and typically are charged on a subscrip-
tion basis. Table 1 also shows the orchestration
operation relevant to SaaS.

Programming SaaS-Layer
Orchestration Operations
Next, we discuss research issues in program-
ming orchestration operations at the SaaS layer.

Managing Big Data. Social network applications
generate massive amounts of data. Timely acquisi-
tion and processing of data from social networks
play an important role in many application sce-
narios, such as emergency situation awareness,
customer sentiment analysis, and syndromic bio-
surveillance. However, the rate at which social
networks produce data (Twitter generates 40,000
messages per second) leads to many complex
orchestration challenges, whether it involves
aggregating data in real time or processing effi-
cient, QoS-aware data in real time for detecting an
event (such as a disease outbreak, flood, or earth-
quake) within a specified time constraint.

Optimizing a QoS location-aware network. With
the growing popularity of online multimedia ser-
vices such as YouTube and Netflix, there’s a need
to orchestrate QoS-aware content delivery to end
users. Users of online multimedia services tend to
consume content based on their own interest, pop-
ularity, and content type. However, key challenges

Cloud Computing

10 www.computer.org/internet/ IEEE INTERNET COMPUTING

exist in detecting users’ hotspots such that a suit-
able cloud data center can be chosen to initiate
dynamic content migration.

Data portability with security and privacy. SaaS
providers such as SalesForce.com need to provide
service features that let users — such as small- and
medium-sized enterprises (SMEs) and governments
— migrate their existing application data to cloud
environments with minimal effort. All existing in-
house application data must be exported transpar-
ently, then formatted and parsed to suit the data
format supported by cloud-hosted SaaS installa-
tion. Porting in-house applications (including CRM
and email servers) remains a challenging issue for
SMEs and government organizations. This is mainly
due to a lack of technologies that can seamlessly
migrate existing security (authorization, authenti-
cation, and accounting) mechanisms to public SaaS
installations.

Distributed denial of service (DDoS). With the pay-
as-you-go cloud model, the conventional DDoS
attacks targeting SaaS can be transformed into a
new attack that can create significant economic
loss for the application owners. For example, a
high rate and volume of malicious service requests
lead to excessive cloud usage bills, due to unneces-
sary scaling of the CPU resources, as well as net-
work data transfer to and from the SaaS. To thwart
such attacks, Fahd Al-Haidari and his colleagues21
propose an early approach, where their Shield sys-
tem detects and mitigates distributed DoS attacks
against CPU resources. However, further research
is required to determine whether researchers can
apply similar techniques for thwarting attacks
against a variety of application models — in par-
ticular, those that must perform real-time analytics
over a data stream flowing from external sources
(such as mobile devices and sensors).

Issues Overlapping across IaaS, PaaS, and
SaaS Layers
Having looked at each service individually,
now we turn our attention to overlapping issues
across the service layers.

Holistic cloud interoperability. Cloud interoperation
requires, in addition to common APIs, clear separa-
tion of concerns (and control), flexible mappings of
cloud resources to services, and higher-level forms
of abstraction to automate the orchestration of
resources. It also requires creating a cloud solution

with one of its portions running on internal sys-
tems, and another portion delivered from the exter-
nal cloud environment in which there’s ongoing
data exchanges and process coordination between
the internal and external cloud environments. We
believe that holistic cloud interoperability to address
operational and deployment concerns mentioned at
different cloud stack layers is needed. Holistic cloud
interoperability fuses two interoperability issues.

The first, horizontal cloud interoperability, is
cross-cloud stack interoperability between the
same tiers in different cloud stacks — such as
cross-SaaS, cross-PaaS, or cross-IaaS interopera-
tion. For instance, a logistics application can com-
bine order management, inventory, and payroll
services from diverse providers at the SaaS level.
These are services that can be composed unam-
biguously and safely with other similar services at
the same horizontal levels of the cloud stack.

The first, vertical cloud interoperability, is
between downstream-compatible cloud tiers in dif-
ferent stacks — such as SaaS to PaaS and PaaS to
Iaas. For instance, an order-management service at
the SaaS level might appropriately interface with a
specialized Oracle sales forecasting data repository
from an external provider at the PaaS level. These
are services that can be composed unambiguously
and safely with other conformant services from
adjoining downstream levels in the cloud stack.
For instance, the payroll solution Oracle’s People-
Soft Enterprise ePay platform runs on an Android
smartphone operating platform so that we can use
it on mobile devices.

Dependencies of RO operations across IaaS and
PaaS layers. Table 1 shows that some RO oper-
ations are applicable to both IaaS and PaaS
resources — for instance, start, stop, restart, scale-
in, and scale-out operations. Though seman-
tically these operations are compatible, each
operation needs to cater to the type of resource
(such as IaaS or PaaS) under consideration while
programming the orchestration. For instance, the
“start” operation for a MySQL database appli-
ance (at the PaaS level) means first instantiating
a virtual CPU resource (by invoking an IaaS-level
API), followed by starting the database instance
via a specific command (such as start mysqld).
On the other hand, the “start” operation for an
Apache Tomcat Web server appliance will be sim-
ilar to a database appliance at the IaaS level but
different at the PaaS level (for example, cata-
lina start). Developing APIs to resolve such

Cloud Resource Orchestration Programming

May/jUNE 2015 11

dependencies across the layers automatically will
continue to be an active area of research.

C loud computing is a vast, complex, and evolv-
ing technology landscape, embracing a multi-

layered resource stack that must be orchestrated
in an intricate manner to ensure that the applica-
tion delivers an acceptable QoS level to the end
users. We characterized cloud resources in a mul-
tilayered stack based on their attributes, granu-
larity, and supported orchestration operations.
This work will help readers clearly understand
the core cloud computing concepts, interrelation-
ship between different resource types, and rel-
evant research challenges.

A taxonomy of cloud resources is discussed
elsewhere.22,23 In Lamia Youseff and her colleagues’
work, they list a unified ontology for describing
the cloud resource.24 They use composability as the
methodology for developing the resource ontol-
ogy. Although these works help in understanding
the issues of cloud computing, they fail to capture
the essence of programming resource orchestration
frameworks and associated research challenges.
Further, they don’t consider all of the resource
types that we captured here. Arguably, our work is
the first attempt at capturing orchestration opera-
tions and related research issues involved with
programming orchestration frameworks across all
layers of a cloud resource stack.

Acknowledgments
This article is a concise version of our technical report avail-

able at http://arxiv.org/abs/1204.2204. Additional references

appear in a “Web Extra” document available at doi:10.1109/

MIC.2015.20.

References
1. L. Wang et al., eds., Cloud Computing: Methodology, Sys-

tems, and Applications, CRC Press, 2011.

2. C. Liu et al., “Cloud Resource Orchestration: A Data-Cen-

tric Approach,” Proc. 5th Biennial Conf. Innovative Data

Systems Research, 2011, pp. 241–248.

3. A. Wieder et al., “Conductor: Orchestrating the Clouds,”

Proc. 4th Int’l Workshop on Large-Scale Distributed Sys-

tems and Middleware, 2010, pp. 44–48.

4. J. Schad et al., “Runtime Measurements in the Cloud:

Observing, Analyzing, and Reducing Variance,” Proc.

VLDB Endowment, vol. 3, nos. 1–2, 2010, pp. 460–471.

5. A. Iosup et al., “On the Performance Variability of Pro-

duction Cloud Services,” Proc. IEEE/ACM Int’l Symp.

Cluster, Cloud, and Grid Computing, 2011, pp. 104–113.

6. P. Barham et al., “Xen and the Art of Virtualization,”

Proc. 19th ACM Symp. Operating Systems Principles,

2003, pp. 164–177.

7. Microsoft, Windows Azure Storage Redundancy Options

and Read Access Geo Redundant Storage, blog, 11 Dec.

2013; http://blogs.msdn.com/b/windowsazurestorage/

archive/2013/12/04/introducing-read-access-geo-

replicated-storage-ra-grs-for-windows-azure-storage.

aspx.

8. B Calder et al., “Windows Azure Storage: A Highly Avail-

able Cloud Storage Service with Strong Consistency,” Proc.

23rd ACM Symp. Operating Systems Principles, 2011,

pp. 143–157; http://doi.acm.org/10.1145/2043556.2043571.

9. M. Hajjat et al., “Cloudward Bound: Planning for Benefi-

cial Migration of Enterprise Applications to the Cloud,”

Proc. ACM Sigcomm, 2010, pp. 243–254.

10. H. Wada et al., “Evolutionary Deployment Optimization

for Service Oriented Clouds,” J. Software: Practice and

Experience, Special Issue on Search-Base Software Eng.,

vol. 41, no. 5, 2011, pp. 469–493.

11. M. Menzel and R. Ranjan, “CloudGenius: Decision Sup-

port for Web Server Cloud Migration,” Proc. 21st Int’l

Conf. World Wide Web, 2012, pp. 979–988.

12. A. Beloglazov et al., “A Taxonomy and Survey of Energy-

Efficient Data Centers and Cloud Computing Systems,”

Advances in Computers, vol. 82, 2011, pp. 47–111.

13. L. Vaquero et al., “Dynamically Scaling Applications in

the Cloud,” Sigcomm Computer Comm. Rev., vol. 41, no. 1,

2011, pp. 45-52.

14. J. Yao et al., “TrustStore: Making Amazon S3 Trustworthy

with Services Composition,” Proc. 2010 10th IEEE/ACM Int’l

Conf. Cluster, Cloud, and Grid Computing, 2010, pp. 600–605.

15. M. Menzel et al., “A Configuration Crawler for Virtual

Appliances in Compute Clouds,” Proc. 2013 IEEE Int’l

Conf. Cloud Eng., 2013, pp. 201–209.

16. C. Curino et al., “Relational Cloud: A Database Service

for the Cloud,” Proc. 5th Biennial Conf. Innovative Data

Systems Research, 2011; http://web.mit.edu/ralucap/www/

cidr11.pdf.

17. Y. Low et al., “Distributed GraphLab: A Framework for

Machine Learning and Data Mining in the Cloud,” Proc.

VLDB Endowment, vol. 5, no. 8, 2012, pp. 716–727.

18. J. Kang and K.-M. Sim, “Ontology and Search Engine

for Cloud Computing System,” Proc. Int’l Conf. Sys-

tem Science and Eng., 2011, pp. 276–281; doi:10.1109/

ICSSE.2011.5961913.

19. K. Alhamazani et al., “An Overview of the Commercial Cloud

Monitoring Tools: Research Dimensions, Design Issues, and

State-of-the-Art,” Springer J. Computing, vol. 97, no. 4,

2015, pp. 357–377.

20. R. Popa et al., “CryptDB: Protecting Confidentiality with

Encrypted Query Processing,” Proc. 23rd ACM Symp.

Operating Systems Principles, 2011, pp. 85–100.

Cloud Computing

12 www.computer.org/internet/ IEEE INTERNET COMPUTING

21. F. Al-Haidari, M.H. Sqalli, and K. Salah, “Enhanced EDoS-

Shield for Mitigating EDoS Attacks Originating from Spoofed

IP Addresses,” Proc. 11th IEEE Int’l Conf. Trust, Security,

and Privacy in Computing and Comm., 2012, pp. 1167–1174.

22. C.N. Hoefer and G. Karagiannis, “Cloud Computing Ser-

vices: Taxonomy and Comparison,” J. Internet Services and

Applications, vol. 2, no. 2, 2011, pp. 81–94.

23. B.P. Rimal, C. Eunmi, and I. Lumb, “A Taxonomy and Survey

of Cloud Computing Systems,” Proc. 5th Int’l Joint Conf. INC,

IMS, and IDC, 2009, pp.44–51; doi:10.1109/NCM.2009.218.

24. L. Youseff, M. Butrico, and D. Da Silva, “Toward a Unified

Ontology of Cloud Computing,” Proc. Grid Computing Envi-

ronment Workshop, 2008; doi:10.1109/GCE.2008.4738443.

Rajiv Ranjan is a Julius Fellow, senior research scientist, and

project leader in the Information Engineering Laboratory

at CSIRO. His research interests include cloud and service

computing. Ranjan has a PhD in computer science and

software engineering from the University of Melbourne.

Contact him at raj.ranjan@csiro.au.

Boualem Benatallah is a professor at the University of New

South Wales Sydney. His research interests include Web

service protocol analysis and management, enterprise

services integration, large-scale and autonomous data

sharing, process modeling, and service-oriented architec-

tures for pervasive computing. Benatallah has a PhD in

computer science from Grenoble University, France. Con-

tact him at boualem@cse.unsw.edu.au.

Schahram Dustdar is a full professor of computer science

(informatics) and he heads the Distributed Systems Group

at the Vienna University of Technology. His research inter-

ests include Internet technologies. Dustdar is a member of

the Academy Europeana, an ACM Distinguished Scientist,

and recipient of the 2012 IBM Faculty Award. Contact him

at dustdar@dsg.tuwien.ac.at; dsg.tuwien.ac.at/.

Michael P. Papazoglou is the chair of Computer Science

Department and the executive director of the European

Research Institute in Service Science (ERISS) at the Uni-

versity of Tilburg, the Netherlands. He’s also the scien-

tific director of the EU Network of Excellence in Software

Services and Systems (S-Cube). His research interests

include federated and distributed information systems,

enterprise application integration, e-Business integration,

and service-oriented computing. Papazoglou has a PhD

in microcomputer systems engineering from the Univer-

sity of Dundee, Scotland. Contact him at mikep@uvt.nl.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

