This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL

Game-Theoretic Market-Driven Smart Home
Scheduling Considering Energy Balancing

Yang Liu, Shiyan Hu, Senior Member, IEEE, Han Huang, Senior Member, IEEE,
Rajiv Ranjan, Member, IEEE, Albert Y. Zomaya, Fellow, IEEE, and Lizhe Wang, Senior Member, IEEE

Abstract—In a smart community infrastructure that consists of
multiple smart homes, smart controllers schedule various home
appliances to balance energy consumption and reduce electric-
ity bills of customers. In this paper, the impact of the smart
home scheduling to the electricity market is analyzed with a
new smart-home-aware bi-level market model. In this model, the
customers schedule home appliances for bill reduction at the com-
munity level, whereas aggregators minimize the energy purchasing
expense from utilities at the market level, both of which consider
the smart home scheduling impacts. A game-theoretic algorithm
is proposed to solve this formulation that handles the bidirectional
influence between both levels. Comparing with the electricity mar-
ket without smart home scheduling, our proposed infrastructure
balances the energy load through reducing the peak-to-average
ratio by up to 35.9 %, whereas the average customer bill is reduced
by up to 34.3%.

Index Terms—Dynamic pricing, electricity market, energy bal-
ancing, game theory, smart home scheduling.

1. INTRODUCTION

MART home scheduling provides management over the

home appliances in the smart grid infrastructure. All the
home appliances in a smart home are connected to a smart home
scheduler and the power line, which is further connected to the
local distribution network, as shown in Fig. 1. The data depicted
in Fig. 2 indicate that the energy price at different time slots
would be significantly different even in a single day. For this
reason, the smart home scheduler controls home appliances and
operates them at the time slots when energy is not expensive,
thus reducing the monetary cost. This enables the customers
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Fig. 1. Inasmart home, the home appliances are connected to the smart home
scheduler by communication network and connected to the distribution system
by power line.
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Fig. 2. Dynamic energy price provided by Ameren [4].

to shift heavy consumption load from peak price time slots to
nonpeak price time slots [1]. With an appropriately designed
pricing scheme, both the monetary costs of the customers and
the peak-to-average ratio (PAR) of energy demand could be
significantly reduced [2]. This implicitly helps balance the
energy generation and reduces the generation capacity, which
lessens the need of large-scale power plants, thus saving a large
amount of construction cost. As shown from the U.S. Energy
Information Administration, the total capital cost of building
an advanced pulverized coal plant with a nominal capacity
of 650 MW is about 2.1 billion U.S. dollars [3]. Utilizing
smart home scheduling techniques could largely reduce peak
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energy demand, leading to the significant investment savings in
building power generation units.

Research on smart home scheduling focuses on both single
customer smart home and multiple customer smart homes. In
terms of single customer smart home scheduling, Chen et al.
formulated a linear programming problem for smart home
scheduling considering the uncertainty of energy consumption
in [1]. In [5], Kim and Poor proposed a Markov chain model of
the scheduling problem and developed the backtrack algorithm
to solve it based on a decision threshold. In [6], a dynamic
programming algorithm was proposed to schedule home ap-
pliances for a single customer considering multiple power
levels. In [7], a mixed-integer programming method was used
to handle the constraints such as uninterruptable setting and
sequential operations in the smart home scheduling problem. In
[8], L; regulation was deployed to transform a mixed-integer
problem into a convex programming problem in order to find
the solution of smart home scheduling more efficiently. All of
these works focus on smart home scheduling for a single cus-
tomer. However, in a community, there are multiple customers,
and all the customers compete to use energy in nonpeak price
time slots, which could result in the accumulation of energy
load in these time slots. For this reason, interactions among
multiple customers need to be considered.

Most of the existing multiple customer smart home schedul-
ing techniques are based on game theory, which include [2],
[9], and [10]. In addition, Ibars et al. formulated the distributed
load management problem as a congestion game and proposed a
dynamic pricing strategy to discourage the energy consumption
at peak hours in [11]. In [12], the vehicle-to-aggregator game
was modeled to regulate the frequency in the power grid as a
potential service in the future vehicle-to-grid market. In [13]
and [14], pricing strategies were deployed by local aggregators
to control the energy load. Since the residential energy load
is shifted by smart home scheduling, an impact propagates to
the electricity market, which is never studied in the existing
literatures.

On the other hand, electricity market modeling is a well-
studied research topic. In [15], the electricity market in
Northern Europe was modeled considering various generation
resources and transmission protocols. In [16], the agent-based
simulation method was used via the Electricity Market Com-
plex Adaptive System to investigate the influence of price
probing strategies on the electricity price and generation profit.
In [17], a single buyer market model and a pool market model
are compared in terms of generation revenue. In [18], different
game-theory-based market models were compared in terms of
their market performance. The existing works on electricity
market modeling use statistical data rather than the actual
behavior on energy consumption of customers [19]. However,
there is no guarantee that the statistically estimated energy
consumption of customers can be actually achieved during
power system operation. It means that the feasibility of these
models cannot be guaranteed.

It is worth noting that demand-side management (DSM) and
smart home scheduling are different. As a top-down energy
load management technique, the traditional DSM, or precisely
direct load control (DLC), intends to balance the energy load
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Fig. 3. Suppose that a peak energy load is created between 7:00 P.M. and
9:00 P.M. due to a live TV football game. It cannot be shifted since it will
be missed otherwise.

through enabling the utilities to control the energy consumption
of the customers. However, as shown in Fig. 3, if most home
appliances can only be operated during a specific time period,
energy load will accumulate to peak there anyway, and the
majority of the energy consumption cannot be shifted at all.
It means that the strategies of market to schedule the energy
consumption are not applicable without considering the specific
requirements from customers. In contrast to DLC, smart home
scheduling provides a more desirable solution of this problem in
the bottom-up fashion. It encourages the customers to allocate
the energy consumption evenly over the time horizon through
dynamic pricing, which is widely accepted today. Therefore, an
electricity market model considering smart home is crucial in
analyzing the modern power system.

Energy scheduling is influenced by the market pricing strat-
egy, which, in turn, affects the electricity price. This forms a
feedback loop and imposes more challenge to the modeling
of electricity market. The bidirectional interaction between
utilities and end users need to be considered. Due to such a
feature of the electricity market, a feedback control system is
widely deployed to model the interaction between the suppliers
and the consumers. In [20], Voice et al. proposed a feedback-
loop-based strategy to manage the microstorage system, where
the suppliers use adaptive pricing to interact with the storage
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Fig. 4. Simplified power system model consisting of generators, utilities aggregators, and customers.

agents. In [13], Kishore and Snyder formulated a Stackelberg
game to model the competition between the customers and the
retailers for energy load controlling. In [21], Ramchurn et al.
designed the control mechanism for green energy considering
the feedback between the autonomous energy storage system
and the green energy supplier operation. In [22], Kok et al. com-
pared several existing techniques to use the end-user feedback
in smart grids, including automated decentralized control of
distributed generation and demand response and control for grid
stability and islanding operation. In contrast to these works, our
proposed electricity market model incorporates game theory
into the feedback loop to model the competition at both the
market and community levels.

To the best of our knowledge, this paper presents the first
study of the impact of smart home scheduling to electricity mar-
ket. A bi-level model is proposed, which takes into considera-
tion smart home scheduling and competitions among customers
at the community level and among multiple communities at the
market level. Our contributions are listed as follows.

1) This paper is the first work addressing the impact of smart
home scheduling to the electricity market.

2) A bi-level game is formulated, where each customer
competes to minimize its individual monetary cost in
the community-level game and each aggregator competes
to minimize the monetary cost of its community in the
market-level game. The bidirectional interaction between
the market level and the community level is also modeled.

3) To solve the game formulation, an energy demand
partition-based market purchasing algorithm is proposed,
and a top-level algorithm to modulate the market purchas-
ing and smart home scheduling is also proposed.

4) Simulations are conducted using a test case consisting
of two utilities and five communities, where each com-
munity contains 400 customers. The simulation results
demonstrate that comparing with the technique with-
out smart home scheduling, the average monetary cost
of each customer is reduced by 31.8% and 34.3% for
weekdays and weekends, respectively. The PAR is re-
duced by 35.9% and 24.9% for weekdays and weekends,
respectively. It is also observed that the generation is
balanced over the time horizon. The capacity of a power

generator is reduced by 29.8% and 24.9% for weekdays
and weekends, respectively.

This paper is organized as follows. In Section II, the pre-
liminaries of the smart home scheduling infrastructure are pre-
sented. In Section III, the proposed electricity market models
and corresponding algorithms are described. In Section IV, the
results of simulations are presented and analyzed. A summary
of work is given in Section V.

II. PRELIMINARY

A power system consisting of customers, aggregators, util-
ities, and generators is depicted in Fig. 4. Let the community
level refer to the interaction between customers and aggrega-
tors, and let the market level refer to the interactions among
aggregators, utilities, and generators.

A. Community Level

1) Aggregators: The aggregator provides management over
the community. In the community level, the aggregator receives
the electricity price from the market and delivers it to the
customers. It also collects the energy demand request of each
customer and broadcasts it to all others.

2) Customers: The customers are equipped with smart home
schedulers, which also exchange information with the aggrega-
tor. The mechanisms of the smart home scheduler are provided
in Section III. The home appliances of the customers can
generally be divided into three categories as follows. 1) The
first category contains home appliances with multiple power
levels that are automatically schedulable such as washing ma-
chines, cloth driers, plug-in electric vehicles (PHEVs), and
dish washers. For this type of home appliances, power levels
could be adjusted subject to the constraints on start time and
deadline, in which start time is the time point that a home
appliances can start to work and deadline is the time point
that a home appliance has to finish working. 2) The second
category contains manually controlled home appliances such
as TV sets and computers. 3) The third category contains
home appliances turned on all day long such as refrigerators.
The smart home scheduling technique controls these home
appliances with different strategies according to their features.
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B. Market Level

Here, the market activities are discussed, including the trad-
ing between utilities and generators and the trading between
utilities and aggregators. In terms of the trading between util-
ities and generators, two types of markets, including forward
market and wholesale market [23], are modeled. In different
types of markets, the utilities and generators have a different
trading price, which is also a reference for the utilities to set the
selling price to the aggregators.

1) Utilities Versus Generators: Utilities make profits
through purchasing electricity energy from generators and sell-
ing it to aggregators. In the forward market, each utility has a
contract with its local generator, according to which the utility
purchases a certain amount of energy from the local generator
with a fixed total price. The energy amount is defined as the
forward limit. If the requested amount exceeds the forward
limit, the utility purchases the rest of the energy demand in
the wholesale market, where the price is much higher. In that
situation, the utility can choose to purchase from either the
local generator or remote generators according to the locational
marginal price (LMP) [24].

2) Utilities Versus Aggregators: In the trading between util-
ities and aggregators, an aggregator purchases energy from
utilities to satisfy the total energy demand of the community.
Among all the available utilities, the aggregator chooses the
ones with the lowest prices to minimize the total monetary cost
of the community. The specific pricing strategy is presented in
Section III.

III. PROPOSED MODEL AND ALGORITHMS

Here, the analytical models in community and market levels
are proposed. In terms of smart home scheduling and market
trading, two optimization problems are formulated, respec-
tively, based on which the bi-level game is developed. A bi-level
algorithm consisting of a smart home scheduling algorithm
and a market purchasing algorithm is proposed to solve the
optimization problems. Throughout this paper, the index of
communities is denoted by n € {1,2,..., N}, the index of
utilities is denoted by m € {1,2,..., M}, and the index of time
slots is denoted by h € {1,2,..., H}. In the community n, the
index of customers is denoted by g € {1,2,...,Q,,}. Notations
are summarized in Table 1.

A. Community-Level Model

The community-level model used in this paper adopts the
one from our previous work [25]. For completeness, we include
some details as follows. In the community n, the total monetary
cost is defined as a convex function of the total load at each
time slot in order to discourage the accumulation of energy
load in any single time slot. There are various pricing models
in existing literature, including the quadratic pricing model in
[10], the linear pricing model in [1], the piecewise convex
pricing model in [26], and the piecewise linear pricing model
provided by British Columbia Hydro Corporation [10]. The
quadratic function C}, ,, = athi’n is adopted in this paper

IEEE SYSTEMS JOURNAL

TABLE 1
LIST OF NOTATIONS

Variable Name Variable Defination

anp The pricing parameter in community n at time slot 7
Lpn The total energy load in community n at time slot &
Chn The Total monetary cost of community » at time slot £
lg.n The energy consumption of customer ¢ at time slot 7
1s; Starting time of home appliance i

te; Ending time of home appliance i

Ay Home appliance set of customer ¢

& Power level set of home appliance i

xf’ Power level of home appliance i at time slot 7

wi Total required energy consumption of home appliance i
Rl Total revenue of utility m at time slot /
) Forward limit of utility m at time slot

:"“;1 Reference profit of utility m at time slot &

pl Local buying cost of utility m at time slot

al Pricing parameter of utility m at time slot &

d, Energy selling of utility m at time slot &
d,’]_,,, Energy purchase of aggregator n from utility m at

time slot h
dp.. Energy demand of aggregator n at time slot /

[10]. At the time slot h, C}, 5, is the total monetary cost in the
community n, Ly, ,, is the total energy load, and ay, ,, is the unit
energy price, which converts energy consumption to monetary
cost. Among the customers in this community, the expense is
shared based on the individual energy consumption such that if
the energy consumption of the customer q is I,  at the time slot
h, the monetary cost is Cp, nlg.1/Li n-

For the customer ¢, denote the set of home appliances by A,.
For home appliance i € A,, denote the set of power levels by
&;. At the time slot h, the home appliance ¢ € .4, works in the
power level 2 € &;, which denotes the energy consumption in
a single time slot. The home appliance i is operated between
the earliest start time ts; and the latest end time te;, whereas
the required energy consumption is w;. Since each customer
aims to minimize its individual monetary cost, the optimization
problem of customer ¢ in community n is formulated as [25]

e &, 1

B. Market-Level Model

The market competition is modeled here. At each time slot,
the aggregators purchase electricity energy from the utilities
based on the energy demand of the customers.

1) Market Operation of Utility: The selling pricing of utili-
ties is based on the buying price from the generators. For this
reason, the revenue of the utilities could be divided into two
parts, including the estimated cost and the expected profit. For
the utility m, when the amount of energy sold is equal to the
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Fig. 5. Revenue and local buying cost of utility m versus energy demand
corresponding to (2).

forward limit d'¢f, , it is expected to make a profit as much as

bref, | which is called the reference profit. As shown in Fig. 5,

m,h’
pin is the buying cost on the forward contract, and a (dh )2 is
the estimated buying cost when the amount of purchased energy
exceeds the forward limit. Given the total energy demand dfm
the pricing function of utility m is defined as

dar, bre
. p:ln + -,ler]:efm,h7 d dref
Ry = moh dh pref (2)
(d}f )2 + Sm m,h7 d > dref

In order to make R}, a continuous function of d”,, set pl, =
al, (dfﬁfh)z. When energy demand d”,, < dffifh, the utility m
could purchase this amount of energy in the forward market
and sell it to the aggregators. The buying cost for the utility m
to keep the forward contract is p”, with the expected profit of
dhmbrefh / drEf When dh > d'f, | the utility m estimates the

m,h?
buying cost as a (dh )2, which is the generation cost of the
local generator. The expected profit is d”,, b, /dref, .

While the buying price from the generators within the for-
ward limit is always p! , beyond the forward limit, the trading
between utilities and generators is operated based on the LMP
with discrete bidding as discussed in [24]. Each generator posts
a price table based on the incremental price. A generator needs
to satisfy the total request of the local utility before supplying
the request of utilities in remote areas. The details are provided
in [24, Ch. 4.3.1.5].

2) Market Operation of Aggregator: In the market level, ag-
gregators purchase electricity energy from the utilities to meet
the energy demand of their communities. The amount of energy
purchased by aggregator n from utility m is denoted by dﬁﬁm
such that d”,, = > | d® . Similar to within a community,
if multiple aggregators purchase from utility m, they share the
total expense proportionally based on the trading amount with
m. The total demand of an aggregator is denoted by dﬁ’,, where
dh ="M dh .. With the aforementioned definitions, the
monetary cost mlmmization problem is formulated as

Cm b
min m
m 1 Zn 1 n m
s.t. Z L =d . 3)

C. Game Formulation

Here, the competitions in the community and market levels
are modeled as a bi-level game. At the community level,
each customer competes to reduce its individual monetary cost
through selecting the power levels. At the market level, each
aggregator competes to reduce the total monetary cost of its
community through planning purchasing from the utilities. The
complete game model is formulated as follows.

Bi-Level Game Model

Community Level:

1) Players: Customers.
2) Payoff functions: —
3) Optimization problem:

Z C}L “h,ntq,h
min
Lh N

H Chponlk,n
h=0 Ly,

tei
s.t. E xf = w;
h=ts;
h _
E zi =lgn
€Ay
Qn
§ lq,h = Lhm
g=1
li
x; S 51

where C}, ,, = ahan,QLn
4) Decision Variables: x;
Market Level:

1) Players: Aggregators.

2) Payoff functions: — Z L(dh
3) Optimization problem:

/En 1 n’m) m

M dy,
min E : m
=1 VNV hn
m En*l dn,m
M h h
s.t. E Ay o = dp
m 1 k) k)
where
dh btef
h ,m m, h h ref
h pm + dref bl d47m S dm.h
R, = h ( ) d bt d s et
Aoy + dref ’ m,h

4) Decision Variables: d":

As mentioned in Section II-A, each customer aims to re-
duce the electricity bill through assigning the working power
levels of the home appliances given the electricity price in the
community level. Note that the scheduling of each customer
impacts the electricity bills of each other. This naturally leads
to the competition between them modeled by the community-
level game. Similarly, each aggregator determines the energy
purchasing from each utility to minimize the total monetary
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cost of the local community. It is formulated as a game since
the purchasing of each aggregator impacts each other as well.
The two levels interact based on the electricity pricing and
energy demand. The electricity pricing in each community is
determined by the aggregator resulting from the competition
of the market-level game. In return, the market-level game
is based on the real-time energy demand in each community,
which is the result of the competition in the community-level
game. For each level, a pure strategy Nash equilibrium exists.
The Nash equilibrium of the community-level game has been
proved by several existing works, including [10] and [27]. In
this paper, we prove the existence of Nash equilibrium of our
market-level game in two steps. In the first step, we show that
there exists a global optimal solution of d’ﬁl,m, which minimizes
the total monetary cost of all the aggregators. In the second
step, we show a closed-form solution of the pure strategy Nash
equilibrium for our problem.
1) Step 1: There exists a global optimal solution of dﬁ’m that
minimizes the total monetary cost of all the aggregators.
In our formulation, the aggregators determine the en-
ergy purchasing di;m to minimize the individual mone-
tary cost. Given the energy demand of each community
at each time slot h, the monetary cost of each aggregator
mis M (dh /SO dh ) Rp,. The total monetary
cost of all the aggregators is calculated as

N M dh M
Y Ry =Y Ru @
n=1m=1 n=1 dn,m m=1

while d  is constrained by
M
dodr,=dh . )
m=1

Note that R, is a convex function of dﬁm, the linear
combination of multiple such functions is also convex.

Since the constraint conditions are linear, there exists a

IEEE SYSTEMS JOURNAL

solution of df;’m that minimizes the total monetary cost
Z%zl R, due to the convexity of the problem.

2) Step 2: A closed-form solution of the pure strategy Nash

equilibrium is shown for the aforementioned problem.

In order to provide a closed-form solution, we solve the
market-level game based on the assumptions as follows
for simplicity.

a) The forward limit is set as dﬁﬁfh = 0. Without loss of
generality, we can handle the problem similarly when
dyef), # 0.

b) At time slot h, the two aggregators have the same
energy demand that d} = dj = =dy..

Based on the aforementioned assumptions, each ag-
gregator aims to minimize the individual monetary cost.
However, one can show that the solution of problem

sty dh, =dh (6)

is a Nash equilibrium of the market-level game. In order
to simplify the analytical presentation, assume N = 2 and
M = 2. However, the solution can be generalized to any
N and M. Using Lagrangian relaxation, the problem (6)
is rewritten as

min a (d?,+di )" +ab (4 y+db,)°
+ 2 (dl =l —db o) X (d5 . —db —db,) . (D)

It is easy to derive

as (df +dj )

d}1L,1 + dg,l = 't ab
dhg+dhy = SR (dh}f" +;1§7_)
’ ' ay + a
iy +diy =df.
iy +di, =dj . (8)

Thus, the energy purchasing dfl’m can minimize the total
monetary cost as long as the constraints (8) are satisfied.
A possible solution is

az (df. + dg)

i, =d, =
1,1 2,1 2 (aib + a%)
no_ oh _ M (dill + dg)
d1’2 — d2’2 — 2 (a}ll + ag’) (9)

With this solution, the individual monetary cost of each
aggregator is also minimized. Suppose that aggregator 1
aims to change the purchasing amount dfl and de to
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d’f’l +Ad and d'i2 — Ad, respectively. Thus, the individual
monetary costs before and after making this change are

Costy =af (d} ,+d5 ) d} y+al (d} ,+ds,) d, (10)
Costy =af (d} ;+db ,+Ad) (d} , +Ad)
+ay (df y+d5 5 —Ad) (df ,—Ad) (an
respectively.
Through changing the energy purchase by Ad, the
individual monetary cost is increased by

Cost) — Costy = (af +a%) Ad®+Ad (a}dy | —ald} ;)

+2Ad(ald} | — ald},)

= (a? +a}) Ad® > 0. (12)

Thus, each aggregator cannot unilaterally decrease

the individual monetary cost in this situation. Thus,

(dfy,dt o, db |, db,) is a pure strategy Nash equilibrium

of the market-level game. One can similarly extend this
proof for any value of N and M.

D. Community-Level Algorithm

At the community level, the customers schedule their home
appliances in order to minimize their individual monetary costs.
Given the electricity price, each customer solves the optimiza-
tion problem (1) to set power levels and operation time of
each home appliance. The dynamic programming algorithms
proposed in our previous work [25] are used to solve the smart
home scheduling problems among multiple customers.

E. Market-Level Algorithm

At the market level, each aggregator purchases electricity
energy from the utilities in order to minimize the monetary cost
and satisfy the total demand of its community. Since the total
selling price of a utility is based on the total energy demand, the
trading amount of one aggregator with a utility influences the
monetary cost of the other aggregators. A distributed market
purchasing algorithm is proposed to provide the solution of
purchasing for each aggregator. With the feedback from the
utilities, the aggregator n computes dﬁﬂn that minimizes the
monetary cost of its own community assuming the purchasing
of the other aggregators is fixed. This is repeated until there is
no change in the monetary costs of the aggregators. For each
utility, the pricing function R,, is a piecewise convex function
such that it is a quadratic function when the total energy demand
exceeds the forward limit, and it is linear otherwise. This
makes the objective function of each aggregator more complex.
To handle the optimization problem of aggregators flexibly,
an energy demand partition technique is used in the market
purchasing algorithm.

The energy demand partition-based market purchasing al-
gorithm is given in Algorithm 1. Within each iteration, the
aggregator n divides the total demand dfh into K, pieces,
where each piece is dﬁf /K,. The aggregator n maintains
[d} 1, d} o, ... d} ] as the decision array. Each time, the
aggregator chooses a utility to purchase the energy piece

ke {1,2,...,K,} to minimize the current monetary cost. As-
suming that the aggregator n purchases the kth piece of energy
from utility m, the pricing of utility m is changed according to
(2). Thus, the aggregator n chooses the current cheapest utility
to purchase the (k + 1)th piece of energy. This is repeated
until the total amount of energy demand is placed. A com-
plete description of the algorithm is presented in Algorithm 1.
In order to implement the aforementioned procedure, we in-
troduce a bidding array [dy, 1,dn 2, ..., dy ar) and temporary
monetary cost [tcq, tCo, . . ., tcps] as temporary variables.

The algorithm initializes in lines 1 and 2. In line 7, the
aggregator places the energy piece k to each utility and obtains
the corresponding temporary monetary cost tc,, in line 8.
In line 11, the aggregator chooses the utility /m with the min-
imum temporary monetary cost to purchase the energy piece k.
Subsequently, the decision array is updated in line 12.

Algorithm 1 Market Purchasing Algorithm

1: Initialize d?? ,,, = 0, dp m = d ,,
2: Utilities initialize price

3: loop

4: forn=1:Ndo

5 fork=1:K, do

6: form=1:Mdo

Ik d”,m = dﬁ,m + (dZ/KYL)

8 Get temporary monetary cost tc,, = Zi\il(dﬂl /
Zﬁle d,, ;) R; from utilities according to (2) and (3)

9: dpm =dl

10: end for

11: m = arg Inniln{tcm}

12: dt o =dpm

13: end for

14: end for

15: if No change in monetary costs then
16: Break loop

17: end if

18: end loop

F. Top-Level Algorithm

While the algorithms are provided to solve the smart home
scheduling problem and the market purchasing problem, re-
spectively, the bidirectional influence between the levels should
be considered. The electricity price is needed for the com-
munities to conduct smart home scheduling, and the energy
demand is needed for the trading operation in the market. A
top-level algorithm is proposed to link smart home scheduling
and market purchasing together, which is given in Algorithm 2.
In line 1, ap, y, is initialized. From line 3 to line 5, the dynamic
programming algorithm in [25] is called to solve the smart
home scheduling problem under the current pricing. In line 6,
Algorithm 1 is called to solve the market purchasing problem.
Since the aggregators can only obtain the total monetary cost
from the market, it is converted into unit price in line 7.
When the energy load of community n is Ly, and the to-
tal monetary cost is C},,, at time slot h,ay , is updated as
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Fig. 7. Proposed algorithm consists of the smart home scheduling algorithm
in the community level and the market purchasing algorithm in the market
level. The two levels are linked together as a loop to emulate the bidirectional
influence of each other.

ann = Chn/ L,% »» Which is to be used in the next iteration.
The complete algorithm flow is shown in Fig. 7.

Algorithm 2 Top-Level Algorithm

1: Initialize community level unit energy price ay, p,

2: loop

3: forn=1:Ndo

4: Call Dynamic Programming Algorithm in [25] to com-
pute scheduling in community n

5: end for
6: Call Algorithm 1 to get the pricing in the market
7: Update community level pricing according to aj,, =
Oh,’ﬂ/ L i27,,n
8: if Not converging then
9: Continue
10: else
11: Exit and keep the current solution
12: end if
13: end loop

IV. CASE STUDY

Here, simulations are conducted, and the impact of smart
homes to the electricity market is analyzed.

A. Simulation Setup

In our generated benchmark, there are two utilities and
five communities, where each community consists of 400 cus-
tomers. Each customer is equipped with both automatically
controlled home appliances and manually controlled home
appliances. The daily energy consumption and execution du-
ration of automatically controlled home appliances are given in
Table II, which is obtained from the data provided by [3], [10],
[28], and [29]. In the simulation, the execution period and en-
ergy consumption are randomly chosen from the corresponding

TABLE 11
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DAILY ENERGY CONSUMPTION AND RUN TIME OF AUTOMATICALLY
CONTROLLED HOME APPLIANCES

Home Appliance Daily Consumption | Execution Duration
Washing Machine 1.2kWh-2kWh 0.5h-1.5h
Dish Washer 1.2kWh-2kWh 0.5h-1h
Cloth Dryer 1.5kWh-3kWh 0.5h-1.5h
PHEV 9kWh-12kWh 4h-8h
Air Conditioner 2kWh-3kWh 1h-3h
Heater 2kWh-3kWh 1h-3h

6 Background Energy Consumption on Weekdays

0.3 .
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o
N

0 20 40 60 80 100
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Fig. 8. Background consumption on weekdays and weekends, which are
created by the manually controlled home appliances.

ranges provided in the table with a uniform distribution. For
each customer, the energy consumption of the manually con-
trolled home appliances is fixed, whereas the energy consump-
tion of automatically controlled home appliances is scheduled
by the smart scheduling algorithm. Since the energy consump-
tion profile created by the manually controlled home appliances
is not changeable, it is called background energy consumption.

Two different scenarios, including weekdays and weekends,
are considered in the benchmark. Generally speaking, people
use the home appliances more on weekends than weekdays.
For this reason, in the simulation, more home appliances are
operated on weekends, and the execution durations are longer
than weekdays. Fig. 8 depicts the average background energy
consumption of one customer on weekdays and weekends,
respectively. They are generated according to [3], [28], and
[30]. The peak energy consumption appears from evening to
night when most people are off work at home. There is also
a lower peak energy consumption during the daytime around
the noon. The energy consumption starts to increase from the
morning and reaches the peak around the noon.

For each utility, the parameters in (2) are set according to the
following rules. 1) The purchasing cost p,,, within the forward
limit is set according to the average energy demand at each time
slot and the generation cost. 2) The purchasing price a”, beyond
the forward limit is set according to the generation cost. For
utility 1, the parameters are set as pj = $30, b}} = $10, and
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Fig. 9. Average energy consumption of a customer on weekdays.
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Fig. 10. Average monetary cost of each customer on weekdays.

a® = 0.12$/kWh?. For utility 2, the parameters are set as p} =
$33, bge,fl = $10, and a% = 0.13%/kWh?. The scheduling time
is 24 h from 12 A.M. of the current day to 12 A.M. next day,
which is divided into 15-min time slots.

The simulation results for weekdays are presented as follows.
The average energy consumption profile for a customer is
shown in Fig. 9. With smart home scheduling, the energy con-
sumption is balanced over the time horizon. This reduces the
PAR by 35.9%, from 2.23 to 1.43, which is also the reduction
rate of the peak of the total generation requirement. Note that
the monetary cost at a time slot will be even higher as the energy
consumption accumulates. When smart home scheduling is
applied, the energy consumption of the automatically controlled
home appliances is scheduled at the time slots without heavy
background load. Thus, the energy load is shifted off the peak,
which results in balanced energy usage.

As shown in Fig. 10, the average monetary cost of each
customer is also evenly distributed due to the balancing of
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Fig. 11. Energy generation of generator 1 on weekdays.
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Fig. 12. Energy generation of generator 2 on weekdays.

the energy consumption. The monetary cost of all the cus-
tomers over the whole time horizon is reduced by 31.8%,
from $5.43 to $3.71. Since the total energy cost is independent
of smart home scheduling, the reduction of total monetary
is due to the mitigation of the high purchasing price in the
market.

The energy generation of the two generators over the time
horizon are shown in Figs. 11 and 12. The generated energy is
balanced among all time slots, which demonstrates that smart
home scheduling can implicitly help balance the energy gener-
ation. As obtained from Figs. 11 and 12, the peak generation
of generator 1 is reduced by 36.0%, from 271 to 174 kWh, and
the peak generation of generator 2 is reduced by 29.8%, from
272 to 191 kWh.

Our iterative algorithm is effective in balancing the energy
consumption from iteration to iteration. As an example, the
energy consumption of community 1 in four consecutive iter-
ations is summarized in Fig. 13, which clearly shows that the
energy consumption becomes more and more balanced during
the optimization.
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Fig. 13. Total energy consumption of community 1 in four consecutive iterations.
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Fig. 15. Average monetary cost of each customer on weekends.

B. Results for Weekends

Fig. 14 shows the average energy consumption of each cus-
tomer with and without smart home scheduling, respectively.
Similar to the result for weekdays, smart home scheduling helps
balance the energy load. However, comparing with Fig. 9, the
total energy consumption is increased because the home appli-
ances are operated longer. On weekends, the PAR is 1.23 with
smart home scheduling, whereas it is 1.62 without smart home
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Fig. 17. Energy generation of generator 2 on weekends.

scheduling, which is a 24.9% reduction. As shown in Fig. 15,
on weekends, the total monetary cost of customer is reduced by
34.3%, from $7.10 to $4.66, by smart home scheduling.

The energy generation of the two generators on weekends is
shown in Figs. 16 and 17. Similar to the results on weekdays,
the generation is more balanced resulting from smart home
scheduling. For generator 1, the peak generation is reduced
by 24.1%, from 253 to 192 kWh. For generator 2, the peak
generation is reduced by 24.9%, from 253 to 190 kWh.
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V. CONCLUSION

In a smart community infrastructure that consists of multiple
smart homes, smart controllers schedule various home appli-
ances to balance energy consumption and reduce the electricity
bills of customers. This paper analyzes the impact of the smart
home scheduling to the electricity market. It also proposes
a new smart-home-driven bi-level market model where the
customers schedule home appliances for bill reduction at the
community level, whereas aggregators minimize the energy
purchasing expense from utilities at the market level, both of
which consider the smart home scheduling impacts. A game-
theoretic algorithm is proposed to solve this formulation, which
handles the bidirectional influence between the community
level and the market level. As demonstrated by simulation
results, the average monetary cost of customers is reduced by
31.8% on weekdays and by 34.3% on weekends. In addition,
the PAR for the energy consumption is reduced by 35.9% on
weekdays and by 24.9% on weekends. Furthermore, the peak
generation requirement can be reduced by 29.8% on weekdays
and by 24.9% on weekends.
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