
he emergence of cloud computing has facilitated resource 
sharing beyond organizational boundaries and among 
various applications. This cloud resource sharing is pri-
marily driven by resource virtualization and utility com-

puting (the pay-as-you-go pricing model). The generic multilayered 
cloud service model is appealing to many parties—from small 
businesses looking for a low upfront infrastructure investment, to 
enterprises wanting to cut the cost of managing infrastructures, 
to research communities requiring large-scale data processing and 
computing power. In a cloud environment, computing resources 
(processors, storage devices, network bandwidth, and so on) and 
applications are provided as services over the Internet.

Fueled by an insatiable de-
mand for new Internet services 
and a shift to cloud computing 
services that are largely hosted 
in commercial datacenters and 
in the large data farms operat-
ed by companies like Amazon, 
Apple, Google, Microsoft, and 
Facebook, discussions increas-
ingly focus on the need to en-
sure application performance 
under various uncertainties. 
Through the infrastructure-

as-a-service (IaaS) and platform-as-a-service (PaaS) 
concepts, datacenters virtualize their hardware 
and software resources and rent it on demand. In 
the cloud computing approach, multiple datacen-

ter applications (such as content delivery networks, 
multitier Web, big data analytics, and large-scale 
scientific simulations) are hosted on a common set 
of servers. This allows for consolidation of applica-
tion workloads on a smaller number of servers that 
can be better utilized, because different workloads 
might have different resource utilization footprints 
as well as temporal variations.

Multiple providers in the current cloud land-
scape offer IaaS and PaaS resources under het-
erogeneous configurations. Hence, application 
owners face a daunting task when trying to select 
cloud services that can meet their constraints. Ac-
cording to recent estimations, there are hundreds 
of IaaS providers around the world. Even within a 
particular provider there are different variations 
of services. For example, Amazon Web Services 
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(AWS) has 674 offerings differenti-
ated by price, quality of service (QoS), 
and service-level agreement (SLA) 
features and location.1 Further, every 
quarter they add about four new ser-
vices, change business models (price 
and terms), and sometimes even add 
new locations. To select the best mix of 
IaaS and PaaS resource configurations 
from an abundance of possibilities, ap-
plication owners must simultaneously 
consider and optimize application-level 
performance SLAs while dealing with 
complex software and hardware con-
figuration dependencies; and managing 
heterogeneous sets of configurations 
(price, hardware features, software 
framework features, location, perfor-
mance, and so on) remains a hard chal-
lenge.2–4 For instance, it’s not enough 
to just select an optimal cloud storage 
resource configuration for a content-
delivery network application. Allocat-
ing corresponding CPU configurations 
(for example, type, speed, and cores) to 
content-delivery network media serv-
ers and encoding/decoding servers is 
essential to guaranteeing the ability 
to serve the content as fast as possible 
across a variety of devices. 

Cross-Layer Resource 
Configuration Selection 
To simplify understanding of the cross-
layer resource configuration selection 
problem, consider a social-network-driven 
stock recommendation big data applica-
tion deployed on an AWS datacenter, as 
illustrated in Figure 1. 

This application needs to process 
both historical and real-time data, hence 
its application architecture consists of 
multiple and heterogeneous big data 
processing frameworks. Therefore, the 
application combines streaming free-
form text data from the Twitter API with 
historical tweets (available via Twitter 
Firehose) stored in Amazon Simple Stor-

age Service (S3) hardware resources. In 
the example in Figure 1, 

•	 Apache Kafka is deployed as a 
high-throughput message-queuing 
framework; 

•	 Apache Storm is deployed as a 
stream-processing framework that 
in turn exploits Yahoo Scalable Ad-
vanced Massive Online Analysis 
(SAMOA) as a data mining frame-
work for classifying groups of tweets 
relevant to a particular stock; 

•	 Apache Hadoop is deployed for pro-
cessing historical tweets;

•	 Apache Mahout, which is hosted 
within the Apache Hadoop runtime 
environment, implements a Bayes-
ian classifier algorithm for tweet 
grouping and classification; and 

•	 the output of both batch and stream 
analytics subsystems is written to 
the Hadoop Distributed File System 
(HDFS). 

To query the analytics result (for ex-
ample, the top K most promising stock 
portfolios), Apache Hive is deployed 
to support search queries in Standard 
Query Language (SQL) format.  

As Figure 1 shows, there are two 
application management layers in a big 
data application platform.5,6 The first 
is a big data processing or PaaS frame-
work (Apache Hadoop, Apache Storm, 
Apache Mahout, and so on) layer that 
implements software-based data pro-
cessing primitives (for example, batch 
processing by Apache Hadoop or stream 
processing by Apache Storm). In the sec-
ond IaaS layer, cloud-based hardware or 
IaaS resources (for example, CPU, stor-
age, and network) provide hardware re-
source capacity to the higher-level PaaS 
frameworks. 

The hard challenge is determin-
ing the optimal approach to automati-
cally select IaaS resource and big data 
processing framework configurations 
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FIGURE 1. A stock recommendation application deployed over an Amazon Web 

Services datacenter.
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such that the anticipated application-
level performance SLA constraints (for 
example, minimize event-detection and 
decision-making delays, maximize ap-
plication and data availability, and max-
imize number of alerts sent per second) 
are consistently achieved, while maxi-
mizing cloud datacenter CPU utilization, 
CPU throughput, network throughput, 
storage throughput, and energy efficien-
cy. For example, in the configuration in 
Figure 1, there’s a need to  optimally se-
lect configurations for Apache Hadoop 
(number of map and reduce tasks, map 

and reduce slots per CPU, max RAM per 
slot, and so on) and AWS CPU resource 
configurations (I/O capacity, RAM, CPU 
speed, local storage, cost, and so on) 
driven by application-level performance 
SLA constraints (for example, analyze 
100 Gbytes of stock purchase tweets in x 
minutes subject to a maximum budget of 
y dollars). A similar cross-layer configu-
ration challenge exists for other big data 
processing frameworks, such as Apache 
Storm and Apache Hive. In summary, 
managing such layered SLA dependen-
cies across multiple big data processing 
frameworks is widely recognized as a 
challenging problem.6–9 

Some cloud computing datacenter 
providers are also offering software-
defined networks (SDNs) at the IaaS 
layer for deploying big data processing 
frameworks. In general, SDN deploy-

ments implement virtual switches and 
the software-level OpenFlow protocol 
to realize communication between the 
controller and forwarding devices. In 
SDN-enabled datacenters, the configu-
ration selection and placement of big 
data processing frameworks in virtual 
CPUs needs to be coordinated with the 
selection of network routes between 
physical servers.  

Existing big data application orches-
tration platforms (Apache YARN, Me-
sos, and Apache Spark) are designed for 
homogeneous clusters of IaaS resources. 

These platforms expect application ad-
ministrators to determine the number 
and configuration of allocated IaaS re-
source types and provide appropriate 
configuration parameters for each IaaS 
resource type and big data processing 
framework for running their analytics 
tasks. Branded price calculators, avail-
able from public cloud providers such 
as AWS (http://calculator.s3.amazonaws 
.com/index.html) and Azure (http://
www.windowsazure.com/en-us/pricing/
calculator) and academic projects such 
as Cloudorado (www.cloudorado.com), 
allow comparison of IaaS resource leas-
ing costs. However, these calculators 
can’t recommend or compare configura-
tions across big data processing frame-
works and hardware resources while 
ensuring application-level SLAs (such 
as minimizing event-detection delay).

Overview of Multicriteria 
Optimization and Decision-
Making Approaches
The vast configuration diversity among 
the available cloud resources and big 
data processing frameworks makes it 
difficult for application administra-
tors to select configurations or even 
determine a valid background for their 
decisions. Consequently, allocating 
IaaS-level cloud resources to PaaS-level 
big data processing frameworks is no 
longer a traditional time-minimization 
or resource-maximization problem but 
involves additional simultaneous objec-
tives and configuration dependencies 
across multiple IaaS resources and big 
data processing frameworks. These in-
clude, but aren’t limited to,

•	 maximizing classification accuracy 
for Apache Mahout,

•	 minimizing response time for 
map and reduce tasks in Apache 
Hadoop,

•	 minimizing stream processing la-
tency in Apache Storm,

•	 maximizing network throughput for 
HDFS,

•	 maximizing CPU resource utiliza-
tion, and

•	 minimizing energy consumption for 
the datacenter. 

The ever-increasing heterogeneity of 
hardware being deployed in datacenters 
comprising multicore processors and co-
processors—general-purpose computing 
on graphics processing units (GPGPU), 
IntelMIC, and so on—further com-
plicates the decision-making problem. 
Clearly, selecting configurations at the 
IaaS and PaaS layers for big data appli-
cations is a multiobjective optimization 
problem that doesn’t have a single solu-
tion, but rather a set of tradeoff solutions 
(known as a Pareto front) corresponding 
to the SLA objective functions of each 

Allocating IaaS-level cloud resources 
to PaaS-level big data processing 

frameworks is no longer a traditional 
time-minimization or resource-

maximization problem.
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big data processing framework (see Fig-
ure 1). Given that big data processing 
frameworks (such as Apache YARN and 
Apache Storm) share the same cluster 
of virtualized resources in a datacenter, 
workload contention among the frame-
works further complicates computing 
the optimal configuration for meeting 
performance SLAs. For some big data 
workloads (high-volume batch process-
ing of historical tweets by Hadoop in 
Figure 1), storage requirements domi-
nate, whereas for others (transactional 
query processing by Apache Hive in 
Figure 1), computational requirements 
dominate, and for still others (real-time 
Twitter stream processing by Apache 
Storm in Figure 1), communication re-
quirements dominate. Hence, in such 
complex application deployment scenar-
ios, configuration selection techniques 
must have intelligence to help them 
determine which workloads should be 
combined on a common physical server 
(hosting multiple virtualized CPUs) to 
minimize resource contention due to 
workload interference. Such contention-
related intelligence can be obtained via 
offline benchmarking as well as real-
time SLA monitoring techniques—a 
very challenging problem. 

A decision problem typically in-
volves balancing multiple, and often 
conflicting, objective functions and 
constraints. Numerous research publi-
cations present different techniques to 
solve the configuration selection prob-
lem. Each technique is characterized by 
its search computational efficiency and 
flexibility in handling the diverse set 
of objectives and criteria. We classify 
these methods into three categories: 
constraint optimization, multicriteria 
evolutionary optimization (MCEO), and 
multicriteria decision analysis (MCDA).

Constraint Optimization
Constraint-optimization techniques such 

as linear programming can efficiently 
solve configuration selection problems 
where both the objective and the con-
straints are linear with respect to all 
decision variables.10 Problem instances 
involving nonlinear objectives and con-
straints can be solved by applying tech-
niques such as integer programming. 
However, in practice, neither of these 
techniques can handle the multiple 
conflicting objective functions (such as 
minimizing energy consumption while 
maximizing CPU utilization and HDFS 
network throughput). 

To handle multiple objective func-
tions, researchers have developed goal-
programming techniques that transform 
the multiobjective problem into a single-
objective optimization problem by as-
signing weights to objectives aggregated 
in an analytical function.10 These tech-
niques also support a combination of 
soft and hard (nongoal) constraints that 
can deviate, allowing for tradeoffs in 
achieving satisfactory solutions rather 
than focusing only on optimal solu-
tions. Unfortunately, goal programming 
also has shortcomings; for example, 
the weights are problem-dependent and 
need to be decided a priori via meth-
ods such as application benchmarking, 
and the weights can lead to undesirable 
solutions if the relationships between 
the objective functions aren’t clearly 
understood. 

Multicriteria Evolutionary 
Optimization
MCEO techniques are capable of mod-
eling and optimizing several objective 
functions simultaneously, and can find 
global optimal solutions.11 This class of 
techniques includes various well-known 
biologically and physically inspired me-
taheuristics such as simulated anneal-
ing, genetic algorithms, particle swarm 
optimization, ant and bee colony op-
timization, and Tabu search. These 

techniques can handle search over an 
infinite number of feasible alternatives 
constrained by a finite number of quan-
titative configuration criteria. Unfortu-
nately, because MCEO techniques are 
unconstrained, they can lead to high 
computational complexity. Constrain-
ing these techniques’ running time re-
quires integrating penalty functions 
with objective functions during the opti-
mization process. With the evolution of 
parallel and distributed big data process-
ing frameworks such as Apache Hadoop, 
it’s possible to speed up these tech-
niques via massive parallelization. How-
ever, novel research will be required in 
terms of modeling and implementation 
of a parallel version of these techniques 
that incorporates multiple cross-layered 
SLA objective functions (see Figure 1). 

Multicriteria Decision Analysis
MCDA identifies combinations of con-
figurations for frameworks and resources 
at the PaaS (such as number of map and 
reduce tasks instances in Apache Ha-
doop) and IaaS (such as CPU type and 
speed for hosting instances of map and 
reduce tasks in Apache Hadoop) layers 
to achieve application-level performance 
SLA objectives (such as minimizing 
data analytics delay). Formally, MCDA 
consists of “a collection of formal ap-
proaches which seek to take explicit 
account of multiple criteria in helping 
individuals or groups explore decisions 
that matter.”12 In general, the cross-
layer configuration selection problem is 
MCDA, which can be briefly defined as 
a collection of techniques for providing 
the comparative analysis, ranking, and 
selection of the alternate combination 
of configurations12 that best meets the 
application-level SLA objectives. Such 
a combination of configurations can be 
selected from a finite (known a priori) or 
very large/infinite (unknown a priori) set 
of all possible alternatives. A particular 
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alternative’s “usefulness” is expressed by 
the application-level SLA objective func-
tion, the values of which depend on the 
payoff or decision matrix (static or dy-
namic) generated for the whole process.

 MCDA techniques can be broadly 
classified as analytic hierarchy process 
(AHP), multiattribute utility theory 
(MAUT), and outranking methods.1,12,13 

AHP is based on a pairwise com-
parison, with the criteria (cheapest CPU, 
cheapest storage, fastest map/reduce 
tasks, and so on) structured in a multi-
level hierarchal relationship. The objec-

tive is defined at the top level, and the 
lower levels correspond to super-criteria, 
subcriteria, and so on. In the AHP tree, 
the selection process starts at the leaf 
criterion and progresses toward the 
top-level goal (final objective function). 
Each level represents the selection hi-
erarchy corresponding to the weight or 
influence of different branches originat-
ing at that level. The analytic network 
process (ANP) is an extension of AHP 
that can be applied to solve decision-
making problems that can’t be struc-
tured hierarchically.

Unlike AHP, MAUT techniques are 
based on utility functions that quantify 
decision makers’ preferences. MAUT 
aims to generate a means of associating 
a real number with each alternative (so-
lution) to produce a preference order of 
alternatives consistent with the decision 

maker’s opinion. The attribute values 
aren’t fully determined in the alternative 
selection process, but can be influenced 
by some random factors. The conse-
quences of IaaS and PaaS configuration 
selection should therefore be defined as 
probability vectors. MAUT techniques 
combine various preferences in the form 
of multiattribute utility functions for 
each criteria, which are combined with 
attribute weighted functions. The ad-
vantage of using MAUT is that the prob-
lem is constructed as a single objective 
function after successful assessment of 

the utility function. Thus, it becomes 
easy to ensure the achievement of the 
best compromise solution based on the 
higher-level objective function. 

Outranking techniques are applied 
directly to partial preference functions, 
which are assumed to have been defined 
for each criterion. These preference 
functions could correspond to natural 
attributes on a cardinal scale, or could 
be constructed as ordinal scales. In this 
case, the preference functions must sat-
isfy only the ordinal preferential inde-
pendence condition. The key difference 
between MAUT and outranking tech-
niques is that MAUT selects the best 
choice whereas outranking produces a 
list of alternatives.

Jose Figueira and his colleagues13 
apply AHP to evaluate and compare 
general features (security, performance, 

scalability, and so on) of cloud datacen-
ter providers as defined by the Cloud 
Services Measurement Initiative Con-
sortium.14 Some authors have used AHP 
to develop approaches to select and rank 
SaaS applications such as salesforce au-
tomation products.15 A hybrid decision-
making technique proposed elsewhere 
combines multicriteria decision mak-
ing (AHP) and evolutionary optimiza-
tion techniques (genetic algorithms) for 
selecting the best CPU and webserver 
images relevant to public clouds (such 
as AWS).2 Another approach16 applies 
MAUT-based techniques to select SaaS 
applications driven by trustworthi-
ness.17 The selection criteria includes 
quality, cost, and reputation. Using 
the ELECTRE (elimination et choix 
traduisant la realité) outranking tech-
nique, other authors propose a cloud 
datacenter selection approach based on 
general features (not relevant to any ap-
plication type).18

However, to the best of our knowl-
edge, existing approaches based on 
constraint optimization, MCEO, and 
MCDA techniques can be used to select 
configurations of multiple big data pro-
cessing frameworks and IaaS resources 
(CPU, storage, and SDN networks) si-
multaneously while handling cross-layer 
SLA dependencies. 

Recent Efforts
Although we consider a stock recommen-
dation application here, the challenges 
are relevant to other big data application 
types as well. These applications include 
natural hazard management, credit card 
fraud detection, remote healthcare, and 
smart energy grids. 

Although interest in deploying big 
data applications on clouds is growing, 
the set of concepts needed to understand 
the decision-making problem across mul-
tiple layers is still emerging, rather than 
being well defined or understood. Re-

The analytic network process (ANP) 
is an extension of AHP that can be 
applied to solve decision-making 

problems that can’t be structured 
hierarchically. 
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cent efforts have attempted to automate 
the configuration selection of Hadoop 
frameworks over heterogeneous cluster 
resources. Gunho Lee and his colleagues 
proposed dynamically allocating hetero-
geneous cluster resources to a Hadoop 
framework based on single-performance 
SLA constraints on storage size con-
figuration.19 Karthik Kambatla and his 
colleagues proposed selecting the opti-
mal Hadoop configuration parameters 
over a given set of cluster resources by 
developing and profiling resource con-
sumption statistics.20 Similarly, others 
proposed selecting configurations of 
Hadoop frameworks and heterogeneous 
Amazon EC2 CPU resources under vari-
ous what-if scenarios (number of map 
and reduce tasks, size, and distribution 
of input data).21 In the Aroma system, 
the configuration of CPUs is specified, 
then Hadoop framework is implemented 
to meet data processing deadlines while 
minimizing CPU rental cost.22 

Progress in optimized configuration 
selection for Hadoop frameworks is sig-
nificant and sets a foundation for future 
research, which must focus on develop-
ing holistic decision-making frameworks 
that automate configuration selection 
across multiple IaaS resource types and 
big data processing frameworks to en-
sure application-level SLAs as required 
in many emerging application domains. 

eveloping cross-layer configuration 
selection techniques is difficult. 

The space of possible configurations for 
big data processing framework and IaaS 
resources grows exponentially with the 
increasing number of big data process-
ing framework types and cloud data-
center IaaS resource types. Computing 
optimal solutions is time consuming, 
and is therefore intractable given cur-
rent technology. The hard challenge 
will be to identify the most relevant 

configurations for each big data process-
ing framework and its dependencies on 
lower-level IaaS resource configurations. 
More complexities exist in modeling the 
objectives and criteria for individual 
big data processing frameworks and si-
multaneously computing configuration 
alternatives at design and run time in 
response to changes in data volume, ve-
locity, variety, and query types.
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