
Efficient Algorithms for Social Network Coverage

and Reach

Deepak Puthal*†, Surya Nepal†, Cecile Paris†, Rajiv Ranjan† and Jinjun Chen*
*Faculty of Engineering and Information Technology

University of Technology, Sydney

Australia

†Digital Productivity Flagship

Commonwealth Scientific and Industrial Research Organisation

Australia

E-mail: {firstname.lastname}@csiro.au, jinjun.chen@gmail.com

Abstract—Social networks, though started as a software tool

enabling people to connect with each other, have emerged in recent

times as platforms for businesses, individuals and government

agencies to conduct a number of activities ranging from marketing

to emergency situation management. As a result, a large number

of social network analytics tools have been developed for a variety

of applications. A snapshot of social networks at any particular

time, called a social graph, represents the connectivity of nodes and

potentially the flow of information amongst the nodes (or vertices)

in the graph. Understanding the flow of information in a social

graph plays an important role in social network applications. Two

specific problems related to information flow have implications in

many social network applications: (a) finding a minimum set of

nodes one has to know to recover the whole graph (also known as

the vertex cover problem) and (b) determining the minimum set of

nodes one required to reach all nodes in the graph within a specific

number of hops (we refer this as the vertex reach problem).

Finding an optimal solution to these problems is NP-Hard. In this

paper, we propose approximation based approaches and show that

our approaches outperform existing approaches using both a

theoretical analysis and experimental results.

Keywords— Approximation Algorithm; Complexity; Network

Coverage; Network Reach; Social Networks.

I. INTRODUCTION

Big data is an emerging multi-disciplinary research area

with the aim of analysing vast amount of data to extract

actionable information. The more precise meaning of big data

is given in [24] as: “Big Data is a term applied to data sets

whose size is beyond the ability of commonly used software tools

to capture, manage, and process the data within a tolerable

elapsed time. Big data size are constantly moving target

currently ranging from a few dozen terabytes to many petabytes

of data in a single data set”. An IDC report [28] predicts that,

from 2005 to 2020, the global data volume will grow by a factor

of 300, from 130 exabytes to 40,000 exabytes, representing a

double growth in every two years. It is clear that we are entering

in a data explosive era, evidenced by the volume of data from

various sources and its growing generation rate. Social networks

are amongst the major sources of big data. For example,

Facebook stored, accessed, and analysed more than 30 petabytes

of user-generated data. Over 32 billion searches were performed

per month on Twitter [27]. It is thus important to find efficient

and effective ways of analysing social network data.

A number of social network analytics tools have been

developed and used in different applications [25] [26]. A

snapshot of social networks at any particular time is called a

social graph. Social graphs derived from social network data

traces can be classified into two categories: articulated and

behavioural [25]. Articulated graphs are those that result from

people specifying their contacts through referencing [30]. There

are three common reasons for which people articulate their

connections: to have a list of contacts for personal use; to

publicly display their connections to others; and to filter content

on social media. The motivation for people to add someone to

their explicit connections varies widely, but the result is that

connections can include friends, colleagues, acquaintances,

celebrities, friends-of-friends, public figures, and interesting

strangers. In contrast, behavioural graphs are derived from

communication patterns, cell coordinates, and social media

interactions [31]. These might include people who send text

messages to each other; those who are tagged in photos together

on Facebook; people who email each other; and people who are

physically in the same space, at least according to their cell

phone. The approach proposed in this paper is agnostics with

respect to how the graphs were obtained.

One of the benefits of online social networks is their ability

to provide fast and extensive information dissemination. For

example, the news of Michael Jackson’s death spread faster in

social networks than it did in traditional mass media [22]. Social

networks thus provide fast access to large scale news data.

Social networks are in fact a major source of news for many

people today [30][32]. While the ease with which information

flows in social networks can be very beneficial, it can also have

disruptive effects, in particular with respect to misinformation –

see, for example, the spread misinformation on swine flu on

Twitter [23]. The questions of how to spread information widely

and how to limit the flow of misinformation in social networks

thus arise. Budak et al. (2011) have shown that this eventual

influence limitation problem is NP-hard for an exact solution in

large scale social networks [29]. There are two specific

problems related to information flow that have implications in

many social network applications: (a) finding a minimum set of

nodes, or vertices, (with their accompanying/incident edges)

one has to know to recover the whole social graph, a problem

also known as the vertex cover problem, and (b) determining a

minimum set of nodes required to reach all nodes in the social

graph within a specific number of hops, a problem also known

as reachability (we refer it as the vertex reach problem). While

finding an optimal solution to these problems is NP-Hard,

Budak et al. (2011) have shown that algorithms based on

heuristics (including even a simple heuristic based on the degree

of centrality) work better than the traditional greedy algorithm

[29]. Motivated by this heuristic based approach and traditional

approximations based graph processing methods, this paper

aims to address these two problems by proposing the

approximation based algorithms.

In order for social networks to serve as reliable platforms for

disseminating critical information (and preventing

misinformation), it is necessary to be able to identify the

minimum number of (information) transmissions required to

reach each individual node in the network. In some applications,

it is important that all nodes and paths in the graph are

considered, and an appropriate forwarding path is selected based

the properties of the nodes, links, and paths correlation [33].

However, as data sets grow and applications require real time

processing, it becomes difficult to cover the entire graph or

reach each individual node in a social graph. One potential way

to solve this problem is to provide data to selected nodes, and

let the data flow to other nodes through the natural

communication behaviour. Towards this goal, this paper

proposes a near optimal way of finding nodes that can play a

role in social network applications to provide an efficient way

of disseminating information. In particular, we propose

approximation based approaches and compare their

performance with standard approximation algorithms. The basic

idea behind our approach is to introduce weights in the nodes of

a social graph based on their connectivity, to process the nodes

in the order of the weights and update these weights based again

on connectivity. The results of our experiments show that our

algorithms perform better than standard approximation

algorithms.

The rest of this paper is organised as follows. Section II

provides related work, on the vertex cover and vertex reach

problem in particular, as it is a well-known and well-studied

problem in computer science. Section III describes our proposed

approaches with their algorithms and corresponding theoretical

analysis. Section IV evaluates the performance and efficiency

of our approaches through experimental results. Section V

describes the potential applications of the proposed approaches.

The final section concludes our work and points to future work.

II. RELATED WORK

In this paper, we focus on two different problems: graph
coverage (aka vertex cover) and graph reach (aka reachability;
we refer as vertex reach). We use the terms vertex and node
interchangeably throughout the paper. The vertex cover problem
is to identify the set of vertices from which the whole graph can
be regenerated by knowing the edges (in and out) of those
vertices. The vertex reach problem is to identify the set of
vertices from which all other vertices of the graph can be reached
within a specified number of hops. Both these problems are NP-
Hard problem [1]. To address them, researchers have used
approximation algorithms that give a near optimal solution in
polynomial time complexity.

To explain the problem further, let’s consider the connected
undirected graph shown in Figure 1. In order to cover (or
regenerate) this graph, the set of vertices required is given by the
set {B, D, E}. Vertex B covers vertices B, A, C and edges BC
and BA; vertex D covers vertices D, C, E, F, G and edges DC,
DE, DF and DG; Finally, vertex E covers vertices C, D, E, F,
and more importantly, it covered edge EF (missing thus far), as
well as edges EC and ED. In the vertex cover problem, it is
important to note that all vertices and edges need to be covered.
In a similar way, the set of vertices required to have a solution
for the vertex reach problem is given by a set of vertices {A, D}
for a single hop. With a single hop, we can reach B through A,
and we can reach C, E, F, G through D. Note that this solution is
not unique. Another solution would be the set {B, D}. We now
describe existing approaches proposed in the literature to address
the vertex cover and reach problem.

Figure 1: A simple undirected graph used to illustrate the vertex cover and reach
problems.

Several approximation approaches have been proposed to
solve the vertex cover problem. Bar-Yehuda et al. [10] in 1985
proposed an algorithm based on associating weights to the
vertices, that is scores based on the number of edges that are
incident to the vertex. Their approach works by reducing the
weights of vertices in certain subgraph(s). This has the effect of
local approximations. Monien et al. (1985) [11] ran a vertex
cover algorithm for computing an independent set of vertices and
showed that its time complexity was bounded to 𝑂(|𝑉| × |𝐸|).
The vertex approximation factor of the vertex cover problem for

both Bar-Yehuda and Monien approaches is: 2 − Θ (
log log 𝑛

log 𝑛
).

Arora et al. proposed an algorithm in [12], which gave an

𝑂(√log 𝑛) -approximation algorithm for the Sparsest Cut, Edge

Expansion, Balanced Separator, and Graph Conductance
problems. Karakostas [8] in 2005 reduced the approximation

factor of vertex cover problem to 2 − Θ(
1

√log𝑛
). Further details

of Karakostas’ work is published in 2009 [9] with the same
complexity, as an improvement of the work done described in
[12], which depends on the approximation factor of the sparsest
cut and balanced cut problems and uses the existence of two large
and well-separated sets of nodes. In 2008, Khot et al. [13]
showed that the vertex cover is hard to approximate within any
constant factor better than 2, i.e., 2− ε. Kuhn and Mastrolilli [15]
in 2013 investigated the vertex cover problem for weighted
graphs when a locally bounded coloring is given. Finally, in
2015, Shah et al. [14] proposed an approximation algorithm to
solve the vertex cover problem by using Depth First Search
(DFS) algorithm. It takes O (2 (V + E)) time complexity, where
O (V + E) for DFS and O (V + E) for finding vertex cover.

The vertex reach problem has been studied under the
“reachability” problem, where the focus is to find an optimal path
to reach from one vertex to another vertex within a graph. He et
al. proposed an innovative approach, HLSS(Hierarchical
Labeling of SubStructures), for reachability. Their approach
identifies different types of substructures within a graph and
encodes them [34]. It works in two phases. The first phase
identifies and encodes strongly connected components, and the
second phase encodes the remaining reachability relationships.
Hwang et al. [35] computed a finite vertex graph for discrete
event system specification (DEVS) network. They use a subclass
of DEVS, called finite and deterministic DEVS (FD-DEVS) to
obtain the finite vertex reachability graph of a DEVS network.
Jin et al. [36] introduced a novel tree based index framework
which utilizes the directed maximal weighted spanning tree
algorithm and sampling techniques to maximally compress the
generalized transitive closure for the labeled graphs. They
demonstrated their approach by finding edges for several graph
data such as social networks, biological networks, and the
semantic web. It is important to note the difference between
reachability and vertex reach problem. The reachability problem
is to find out whether it is possible to reach from one vertex
within a graph to another, given a pair of vertex. The vertex reach
problem is to identify the set of vertices in the graph to reach all
vertices in the graph within a given number of hops. Our focus
in this paper is on the vertex reach problem.

III. PROPOSED APPROACH

A snapshot of nodes and relationships in social networks is

represented as a social graph (referred to as a graph or a social

network hereafter depending on the context). We represent the

graph as G = (V, E), where V is the number of vertices in the

graph and E the number of edges. Vertices and edges represent

the graph nodes and links between them. These sets of vertices

and edges can be implemented as an adjacency list or as an

adjacency matrix for both directed and undirected graphs. In this

paper, we consider two types of graphs: (a) sparse graphs, i.e.,

those for which |E| is much less than |V|2, i.e,. (E << V2), and (b)

dense graphs, that is those graphs for which |E| is close to |V|2 ,

i.e., (E ≃ V2).

We next define the vertex cover and vertex reach formally.

Definition of vertex cover: A vertex cover of a graph G =

(V, E) is a subset of vertices V` of V such that if edge (u, v) is

an edge of the graph G, then either u is in V or v is in V`. In a

more generic way, the vertex cover of a graph is a set of vertices

such that each edge in the graph is incident to at least one vertex

of the set.

Definition of vertex reach: A vertex reach of a graph G =

(V, E) is a subset of V such that if edge (u, v) is an edge of G

then one of the vertices (u or v) is in V. More generically, the

vertex reach of a graph is a set of vertices such that all vertices

in the graph are connected to at least one vertex of the set.

Finding the minimum set of nodes to cover or reach a

complete social graph (i.e., to cover all the nodes and edges or

reach all the nodes in the graph) is a NP-Hard problem, as

already mentioned. However, it is possible to find a near optimal

solution with reasonable time complexity, namely polynomial

time complexity. Our aim in this paper is to propose a method

that gives very near optimal solution for both the vertex cover

and the vertex reach problems.

There are two major factors to compute the efficiency of an

algorithm, i.e., its time complexity and its space complexity.

There are three different ways of representing complexity: worst

case, best case and average case, where the worst case is always

needed to evaluate the effectiveness of an algorithm. In what

follows, after we present our algorithms for both the vertex

cover and reach problems, we compute their complexity and

show that our approach outperforms the traditional vertex cover

algorithm, covering the entire network in less than double of

time for an optimal solution [1].

In the descriptions and evaluation described here, we have

considered simple undirected graphs [2]. We use an adjacency

list to represent the graph G, in order to reduce the space

complexity. We introduce a new field weight in the list which is

initialised at the beginning to store the degree of each individual

vertex, i.e., our representation is the list: {vertex; weight;

*next; *ref}. The connected nodes are represented as

linked-list.

A. An algorithm for the Approximate Vertex Cover Problem

Our proposed approximation vertex cover algorithm and its

workings are described in Algorithm I, and Figures 2 and 3,

respectively. The algorithm takes a graph G as input and returns

a set of vertices to cover the complete graph. The algorithm

works as follows:

As mentioned above, we represent the graph as a list instead

of a matrix to reduce the space complexity. We introduce one

more field weight for every node. In Algorithm I, we initialise

the weight as L[w], which is calculated using the number of

reference nodes from each individual nodes in the list and kept

as an array. We update the weight by decreasing the value as

shown in step 9 of Algorithm I. Let C+ be the vertex cover set,

which is empty at the beginning. The algorithm selects the

vertex with the highest weight, adds it C+ and updates the

weights of the remaining vertices as follows: the weight of the

selected vertex is set to 0, and the weights of all its one hop

neighbours are decreased by 1. The selection and weight update

steps are repeated until all nodes have a weight equal to 0. The

final set C+ gives a solution for the vertex cover problem.

Algorithm I: Approximate Vertex Cover Algorithm for

Social Network Coverage

Required: In the List we introduce another field weight

The weight is number of nodes in reference of the node (ref)

1: C+ ← ϕ

2: L=List

3: L[w]= weight

4: (h, v) = highest weight of the list and respective vertex

5: if h ≠ 0 then

6: C+ ← C+ ∪ v

7: v[w] ← 0

8: for all vertices of List L[ref] ∈ {v} do

9: L[w] ← L[w]-1

10: end for

11: go to 4

12: else

13: return C+

14: end if

Figure 2: Illustration of the steps of the approximate vertex cover algorithm, as

performed on a sample graph. (a) The input graph G containing 7 vertices and
8 edges. (b) D is the first vertex (highest weight) chosen by algorithm. It is added

to C+ (shown in grey), and its weight is now set to zero. The weights of its one

hop neighbours are decreased by 1. (c) There are three vertices with the now
highest weight (B, C, E); An arbitrary vertex, C, is chosen and added to the set

C+. (d) The process is repeated and now vertex A is chosen and added to C+. (e)

The process continues; Vertex F is chosen and added to C+. The process is
complete are all weights are now 0. (f) The resultant vertex cover set with shaded

color.

Figure 2 shows the steps of vertex cover algorithm using our

example graph (from Figure 1). Figure 2(a) shows the sample

input graph with the weights of the vertices initialised to the

vertex’ number of edges. The highest weight vertex of the graph

is D, so it is selected to be added to the set C+ as shown in Figure

2(b). Its weight is set to 0 (zero), and its immediate neighbours

have their weight value decreased by 1. In the figure, vertex D

is shaded and its incident edges are dashed. Figure 2(c) shows

there are three vertices with what is now the highest weight, i.e.,

B, C, E. The algorithm arbitrarily chooses vertex C, adding it

to the set C+. The process iterates: Vertex A is chosen, its

weights and the weights of its neighbours updated (Figure 2(d)).

Finally, vertex F is chosen and the weights updated (Figure

2(e)). The resultant vertex cover is shown in Figure 2(f). Its

contains four vertices A, C, D, and F. Finally, the comparison of

the efficiency of our algorithm with both traditional and optimal

solutions is shown in Figure 3.

Figure 3: Comparison of Vertex-Cover results. (a) The original graph G. (b) The

optimal cover set for G. (c) Cover set obtained with the traditional method [1].
(d) Cover set obtained from our algorithm.

The space complexity our algorithm is Θ(V + E) as

described in [1], because we represent the graph as an adjacency

list. The time complexity of our algorithm is as follows. For step

4, the complexity is O(V). In the for-loop, i.e., from steps 8 to

10, the algorithm needs to search its reference vertices for each

individual vertex. The worst time complexity calculation of our

approach is: O(V ∗ (V − 1)) = O(V2). Thus, the worst time

complexity of the algorithm is Θ(V2).

We now show how our proposed approximate vertex algorithm

is a polynomial-time (2 − ε)-approximation algorithm. Cormen

et al.‘s APPROX-VERTEX-COVER [1] is a polynomial-time

2-approximation algorithm, for C a set of vertex and C* the

optimal vertex cover, i.e., |C| ≤ 2| C*|.In our approach, the

algorithms always picks one vertex and remove the edges

connected to that vertex. This means that, most of the times, the

algorithms does not consider both end points of an edge, which

is what occurs in Cormen et al.’s algorithm. For our proposed

method, we consider the resultant set of vertex as C+, then |C+|

= |C| −ε.

⇒ |C+| = (2 − ε) |C*|, 0 ≤ ε ≤ 1.

In some cases, C+ will approach the optimal set of vertices when

the value of ε is 1. If there is always only one highest weight

vertex in each iteration, then our proposed algorithm’s output

set of vertices will be the optimal solution.

It is important to note that Khot et al. [13] show that the

vertex cover might be hard to approximate to within 2− ε,

because it is a NP-Hard problem. Our proposed method

computes the vertex cover in 2− ε approximation.

B. A Solution for the Approximate Vertex Reach Problem

We follow a similar process to solve the vertex reach

problem. The vertex reach problem is to find a minimum

number of vertices to reach all the vertices of a given graph

within a specified number of hops – we use a single hop here.

Our approach is shown in Algorithm II and a simple illustration

of the algorithm is shown in Figure 4.

Algorithm II: Approximate Vertex Reach Algorithm for a

Social Network

Required: In the List we introduce another field weight

The weight is number of node in reference of the node (ref)

1: C++ ← ϕ

2: L=List

3: L[w]= weight

4: (h, v) = highest weight of the list and respective vertex

5: if h ≠ -1 then

6: C++ ← C++ ∪ v

7: v[w] ← -1

8: for all vertices of List L[ref]{k} ∈ {v} do

9: L[w] ← -1

10: for all vertex of List L[ref] ∈ {k} do

11: if L[w] ≠ -1 then

12: L[w] ← L[w] -1

13: end if

14: end for

15: end for

16: go to 4

17: else

18: return C++

19: end if

As the vertex reach is a NP-Hard problem, our approach

works on approximation. The reference weight initialization

process is the same as the one described for vertex cover

algorithm and it is shown in step 7 and 12 of Algorithm II. In

the main step of the algorithm, the vertex with the highest

weight is chosen in every iteration and all weights are updated

as follows: the weight of the chosen vertex and that of all its

immediate (one-hop) are set to -1; the weights of the neighbours

of the selected node’s neighbour are decreased by 1 if they are

not already equal to -1. The selected node is added to C++ and

the process repeats. Selected one hop neighbors from the list are

stored in set v and two hop neighbors from the list are stored in

set k as shown in step 8 and 10 of Algorithm II, respectively.

This process continues until the weight of every node is -1; the

final set C++provides a solution for the vertex reach problem.

The space complexity of the algorithm is Θ(V + E), which is

the same as for the vertex cover algorithm described earlier,

again because we represent the graph as an adjacency list. Also

as before, the time complexity of the Algorithm II’s step 4

search in the list is O(V). As there are two for-loops, one inside

the other for the number of vertex computation, the worst time

complexity of the algorithm will be Θ(V2).

Figure 4 shows the steps of vertex reach algorithm for our

sample graph. The weights are initialised, as shown in Figure

4(a). The vertex with the highest weight is D; it is thus first

selected, as shown in Figure 4(b) – shown shaded. Its weight is

set to -1, as is the weight of all the nodes directly connected to

D (edges are indicated by dashes in the figure); the weight of

D’s neighbour’s neighbours is decreased by 1; D is added to the

set C++. The process is repeated. At this stage, as shown in

Figure 4(c), there are two vertices with the same weight, i.e., A

and B. The algorithm arbitrarily chooses one, in this case vertex

B. It is added to the set C++ and all weights are updated again.

The process continues until all weights are set to -1. The

resultant set is shown in Figure 4(d). It contains two vertices B,

and D.

Figure 4: The operation of our approximate Vertex-Reach. (a) The input graph

G, with the weights of the vertices initialised. (b) D is the vertex with the highest
weight, and it is thus selected to be added to the set C++ . Its weight is set to -1,

as is the weight of all its immediate (one hop) neighbours, and the weights of its

two hop neighbours (neightbours’ neighbours) decrease by 1. (c) The process
repeats. A and B have same weight, and B is chosen arbitrarily. It is added to

C++. All weights are now -1, and the process stops. (d) The resultant Vertex-

Reach set.

IV. EXPERIMENT AND EVALUATION

In the earlier section, we have shown theoretically that our

algorithms take less space and time complexity compared to the

standard traditional method [1]. In this section, our focus is to

validate and demonstrate the performance of our algorithms

experimentally. To this end, we conducted experiments on both

dense and sparse graphs.

Consider a situation awareness application responding to the

emergency scenario using Twitter data [32], where we would

like to reach all members in the community to convey the

current information (vertex reach problem), and we would also

like to collect messages from their interactions to understand the

emotional situation of the community (vertex cover problem).

We thus want to identify the minimum sets of nodes required

for these goals. We build a network matrix from the Twitter data

interactions as the basis for the network analysis. We use

UCINET software [7] for the visual demonstration of the

analysis for our experiments where the nodes can be visually

represented in a readable way in a two dimensional space.

UCINET is a comprehensive program for analysing social

networks, and it has been often used for this purpose since the

early 1980s. The program contains network analysis routines

(e.g., centrality measures, dynamic cohesion measures,

positional analysis algorithms). The data sets given to UCINET

are shown as binary networks with ties having the values of 1

and 0, where 1 represents a link between two nodes and 0

represents no links between two nodes. The experimental data

set is randomly generated using the Excel software program and

imported to UCINET. We next describe the results of our

experiments.

A. Experiments with a Dense Graph

We first considered a dense graph with 25 nodes, and ran

both the vertex cover and the vertex reach algorithms. We next

describe the results of our experiments.

1. Results of the Vertex Coverage

We first ran the traditional standard algorithm [1] and then

our proposed algorithm. Figure 5 shows the results of the

traditional vertex coverage algorithm for the 25 node randomly

generated dense graph. The resultant cover set contains the

nodes shown in red. It contains 22 nodes, meaning that these 22

nodes are required to cover 25 nodes of the original graph. The

result of our algorithm is shown in Figure 6, and again the

resultant cover set is shown in red. The set contains only 17

nodes.

Figure 5: Experimental results for the traditional vertex cover method [1],
showing the final cover set, which contains 22 nodes (shown in red).

Figure 6: Experimental results for our proposed method. The resultant cover set
contains 17 nodes (shown in red).

2. Results of the Vertex Reach

Figure 7 shows the dense graph used for vertex reach
experiment. Similar to the experiment for the vertex cover
problem, this graph contains 25 nodes. The result of our vertex
reach algorithm is also shown in Figure 7, with the selected nodes
in red. The resultant set contains 4 nodes, meaning that we can
reach all nodes of the graph through these four nodes. We note
that we cannot compare our algorithm with other methods as
there are none available (note the difference between reachability
and vertex reach problem).

Figure 7: Experimental results for our proposed method: the reach set contains 4
nodes (shown in red).

B. Experiments with a Sparse Graph

We now consider a sparse graph with 25 nodes but only 71

edges, as shown in Figure 8. Similar to previous sub-section, we

next describe the results for both the vertex cover and vertex

reach algorithms.

1. Results of the Vertex Coverage Algorithm

We ran the experiment on the random sparse graph of Figure
8, first using the traditional standard vertex cover algorithm and
then with our proposed algorithm. The results of the traditional
approach is shown in Figure 8(a), where the red nodes represent
the resultant set. It took 16 nodes to cover this sparse 25 node
graph. In comparison, our algorithm found a set with fewer nodes
(14) to cover the same network, as shown in red in Figure 8(b).

 (a) (b)

(C)

Figure 8: (a) Experimental results of the traditional vertex cover method over the
sparse graph. (b) Experimental results for our proposed vertex cover algorithm.
(c) Experimental results for our proposed vertex reach algorithm.

2. Results of the Vertex Reach

The input graph for the vertex reach experiment is the same
as vertex cover as shown in Figure 8: a sparse graph with 25
nodes and 71 edges. The result of the proposed vertex reach
algorithm is shown in Figure 8(c). The result set contain 7 nodes
to reach all the nodes of the graph that are shown in red.

C. Scalability

We have illustrated the performance of our proposed vertex
cover and vertex reach algorithms random graphs of 25 nodes,
with both dense and sparse connectivity. In a real life scenario,
considering the more than one billion Facebook users or 288
million active users in Twitter, we need to deal graphs with a
much larger number of nodes. In order to show that our proposed
approach is scalable to graphs with a large number of nodes, we
ran our algorithms (both vertex cover and vertex reach) as well
as the traditional method for vertex cover with graphs of varying
number of nodes up to 1,000,000 with intervals of 5000 nodes.
The result is shown in Figure 9. We see that our proposed method
always resulted in a vertex cover set with fewer nodes than that
of the traditional approach. We also see that the result of vertex
reach algorithm is consistently about 10% of the total number of
nodes in the graph. As the vertex reach algorithm is significant
for information flow, it means we only need to target 10% of all
people in a social network in order to reach the entire population
of the network.

Figure 9: Efficiency of our algorithms for reach and cover sets; the cover set
algorithm is also compared to the traditional method for network coverage.

V. APPLICATIONS

There are many applications for both vertex cover and vertex
reach solutions. In the introduction, we motivated the work
through the need to stop the propagation of misinformation in
Twitter. We now provide further applications beyond the
limitation of misinformation, although the list is by no means an
exclusive list of potential applications. We can broadly classify
the applications into two groups: sensor network applications
and social network applications.

A critical aspect of applications using wireless sensor
networks is network lifetime. Power-constrained wireless sensor
networks are usable as long as they can communicate sensed data
to a processing node. Sensing and communications consume
energy; therefore judicious power management and sensor
scheduling can effectively extend network lifetime. The vertex
cover solution can help choose a set of nodes to cover the
network which prolong the network life time [16][17]. The
vertex cover solution can also be used for network base routing
delays in tolerance network [3]. Other potential applications
include network traffic measurement, monitoring nodes for
bandwidth measurement and flow monitoring [4]. Finding
alternate path selections during routing is one of the major
applications that can utilise solutions for the vertex cover

problem [5]. Delay Tolerant Networks (DTNs) for social
network significantly disable the adequacy of information
scattering. To solve this, Geo et al. [21] formulate relay
selections for multicast as a unified knapsack problem by
exploiting node centrality and social community structures.
Solutions to the vertex cover problem can be used to solve DTNs
for social network.

The solutions to the vertex reach problem can be applied to
“spread of influence” problems in social networks. For example,
one such problem is determining to which k consumers a product
should be marketed to ensure its widespread adoption. In [18],
Kempe et al. show that the objective function of this problem is
submodular and, as a result, a greedy algorithm finds a solution
within a constant factor from the optimal. The same property is
observed by Leskovec et al. in [19]. In this work, the authors
determine which k blogs one should read to detect quickly the
outbreak of an important story. The dissemination of dynamic
content, such as news or traffic information, over a mobile social
network is another area where the solutions to the vertex reach
problem can be applied. Another application is to improve
coverage and increase capacity of mobile social network by
sharing the updated contents among users [20], where the vertex
reach and cover problem can be applied to improve the contacts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed efficient vertex cover and vertex

reach algorithms for social network applications. The proposed

solutions can be applied to other graph based algorithms. We

also showed through a theoretical analysis and an experimental

evaluation that our proposed vertex cover approach provides a

2 − ε approximation algorithm which results in a cover set with

fewer number of nodes than the solution obtained by the

standard vertex cover algorithm, with less space complexity.

Our proposed vertex reach solution reach individual nodes of

the network with less number of nodes. The resulting set for our

vertex reach algorithm contains about 10% to 15% of the total

nodes in the graph.

We plan to pursue a number of research avenues in future.

The foremost is the application of our algorithms to social

network applications such as limiting the flow of

misinformation and targeted campaigning. We also plan to

perform a study of our work on real life data sets. The proposed

vertex reach algorithm works for a single hop. We plan to

generalise the algorithm for a specified number of hops so that

we can use the reachability to reduce the number of target nodes.

The vertex reach algorithm also needs to consider the temporal

aspect of edges (e.g., freshness of the interactions) so that the

flow of information can be achieved within a certain time, which

is important for emergency scenarios.

VII. ACKNOWLEDGEMENT

This research is funded by Australia India Strategic Research
Grant titled "Innovative Solutions for Big Data and Disaster
Management Applications on Clouds (AISRF-08140) from the
Department of Industry, Australia.

REFERENCES

[1] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. Vol. 2. Cambridge: MIT press, 2001.
ISBN 0-262-03293-7.

[2] Liu, Chung Laung. Elements of discrete mathematics. Vol. 101. New
York: McGraw-Hill, 1985.

[3] Ding, Li, Bo Gu, Xiaoyan Hong, and Brandon Dixon. "Articulation node
based routing in delay tolerant networks." In Pervasive Computing and
Communications, 2009. PerCom 2009. IEEE International Conference on,
pp. 1-6. IEEE, 2009.

[4] Zeng, Yongguo, Dezheng Wang, Wei Liu, and Ao Xiong. "An
approximation algorithm for weak vertex cover problem in IP network
traffic measurement." InNetwork Infrastructure and Digital Content,
2009. IC-NIDC 2009. IEEE International Conference on, pp. 182-186.
IEEE, 2009.

[5] Akkaya, Kemal, and Mohamed Younis. "A survey on routing protocols for
wireless sensor networks." Ad hoc networks 3, no. 3 (2005): 325-349.

[6] Puthal, Deepak. "A Near Optimal Approximation Algorithm for Vertex-
Cover Problem." arXiv preprint arXiv:1309.4953, 2013.

[7] Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. "Ucinet
for Windows: Software for social network analysis." Harvard, MA:
Analytic Technologies, 2002.

[8] Karakostas, George. "A better approximation ratio for the vertex cover
problem." In Automata, languages and programming, pp. 1043-1050,
2005.

[9] Karakostas, George. "A better approximation ratio for the vertex cover
problem." ACM Transactions on Algorithms (TALG) Vol. 5(4), pp. 41.1-
41.8, 2009.

[10] Bar-Yehuda, Reuven, and Shimon Even. "A local-ratio theorem for
approximating the weighted vertex cover problem." North-Holland
Mathematics Studies 109, pp. 27-45, 1985.

[11] Monien, Burkhard, and Ewald Speckenmeyer. "Ramsey numbers and an
approximation algorithm for the vertex cover problem." Acta
Informatica vol. 22(1), pp. 115-123, 1985.

[12] Arora, Sanjeev, Satish Rao, and Umesh Vazirani. "Expander flows,
geometric embeddings and graph partitioning." Journal of the ACM
(JACM) Vol. 56(2), 2009.

[13] Khot, Subhash, and Oded Regev. "Vertex cover might be hard to
approximate to within 2− ε." Journal of Computer and System
Sciences vol. 74(3), pp. 335-349, 2008.

[14] Shah, Kartik, Praveenkumar Reddy, and R. Selvakumar. "Vertex Cover
Problem—Revised Approximation Algorithm." In Artificial Intelligence
and Evolutionary Algorithms in Engineering Systems, pp. 9-16. Springer
India, 2015.

[15] Kuhn, Fabian, and Monaldo Mastrolilli. "Vertex cover in graphs with
locally few colors." Information and Computation Vol. 222, pp. 265-277,
2013.

[16] Huang, Chi-Fu, and Yu-Chee Tseng. "The coverage problem in a wireless
sensor network." Mobile Networks and Applications vol. 10(4), pp. 519-
528, 2005.

[17] Cardei, Mihaela, My T. Thai, Yingshu Li, and Weili Wu. "Energy-
efficient target coverage in wireless sensor networks." In INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 3, pp. 1976-1984. IEEE, 2005.

[18] Kempe, David, Jon Kleinberg, and Éva Tardos. "Maximizing the spread
of influence through a social network." In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 137-146. ACM, 2003.

[19] Leskovec, Jure, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. "Cost-effective outbreak
detection in networks." In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
420-429. ACM, 2007.

[20] Ioannidis, Stratis, Augustin Chaintreau, and Laurent Massoulie. "Optimal
and scalable distribution of content updates over a mobile social network."
InINFOCOM 2009, IEEE, pp. 1422-1430. IEEE, 2009.

[21] Gao, Wei, Qinghua Li, Bo Zhao, and Guohong Cao. "Multicasting in delay
tolerant networks: a social network perspective." In Proceedings of the

tenth ACM international symposium on Mobile ad hoc networking and
computing, pp. 299-308. ACM, 2009.

[22] Michael jackson on tmz, iran on twitter.
http://www.blogher.com/spreading-news.

[23] E. Morozov. Swine flu: Twitter’s power to misinform. Foreign Policy,
April 2009.

[24] Manovich, Lev. "Trending: the promises and the challenges of big social
data." 2011.

[25] Boyd, Danah, and Kate Crawford, "Six provocations for big data." A
Decade in Internet Time: Symposium on the Dynamics of the Internet and
Society, 2011.

[26] Hu, Han, Y. O. N. G. G. A. N. G. Wen, T. Chua, and X. U. E. L. O. N. G.
Li. "Towards Scalable Systems for Big Data Analytics: A Technology
Tutorial." IEEE Access, Vol. 2, pp. 652 – 687, 2014.

[27] Wikibon. A Comprehensive List of Big Data Statistics, 2013 [online].
Available: http://wikibon.org/blog/big-data-statistics/

[28] Gantz, John, and David Reinsel. "The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east." IDC iView:
IDC Analyze the Future 2007, pp. 1-16, 2012.

[29] Budak, Ceren, Divyakant Agrawal, and Amr El Abbadi. "Limiting the
spread of misinformation in social networks." In Proceedings of the 20th
international conference on World Wide Web, pp. 665-674. ACM, 2011.

[30] Boyd, Danah M. "Friendster and publicly articulated social networking."
Conference on Human Factors and Computing Systems, pp. 1279-1282,
2004.

[31] Meiss, Mark R., Filippo Menczer, and Alessandro Vespignani. "Structural
analysis of behavioral networks from the Internet." Journal of Physics A:
Mathematical and Theoretical, vol. 41(22), pp. 224-022, 2008.

[32] Cameron, Mark A., Robert Power, Bella Robinson, and Jie Yin.
"Emergency situation awareness from twitter for crisis management."
In Proceedings of the 21st international conference companion on World
Wide Web, pp. 695-698. ACM, 2012.

[33] Mtibaa, Abderrahmen, Augustin Chaintreau, Jason LeBrun, Earl Oliver,
Anna-Kaisa Pietilainen, and Christophe Diot. "Are you moved by your
social network application?." In Proceedings of the first workshop on
Online social networks, pp. 67-72. ACM, 2008.

[34] He, Hao, Haixun Wang, Jun Yang, and Philip S. Yu. "Compact
reachability labeling for graph-structured data." In Proceedings of the 14th
ACM international conference on Information and knowledge
management, pp. 594-601. ACM, 2005.

[35] Hwang, Moon Ho, and Bernard P. Zeigler. "Reachability graph of finite
and deterministic devs networks." IEEE Transactions on Automation
Science and Engineering.Vol. 6 (3), 2009.

[36] Jin, Ruoming, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang.
"Computing label-constraint reachability in graph databases."
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pp. 123-134, 2010.

[37] Fan, Wenfei, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu.
"Adding regular expressions to graph reachability and pattern queries."
In Data Engineering (ICDE), 2011 IEEE 27th International Conference
on, pp. 39-50, 2011.

