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Abstract— Stream processing has become an important 

paradigm for the massive real-time processing of continuous 

data flows in large scale sensor networks. While dealing with 

big data stream in sensor networks, Stream Processing 

Engines (SPEs) must always verify the authenticity, and 

integrity of the data as the medium of communication is 

untrusted, where malicious attackers can access and modify 

the data. Existing technologies for data security verification 

are not suitable for data streaming applications, as the 

verification in real time introduces significant overheads. In 

this paper, we propose a Dynamic Prime Number Based 

Security Verification (DPBSV) scheme for big data stream 

processing. Our scheme is based on common shared key that 

is updated dynamically by generating synchronized pair of 

prime numbers. Theoretical analyses and experimental 

results of our DPBSV scheme show that it can significantly 

improve the efficiency as compared to existing approaches by 

reducing the security verification overhead. Our approach 

not only reduces the verification time, but also strengthens the 

security of the data by constantly updating the shared keys.  

Keywords—Security; Sensor Networks; Big Data Stream; 

Key Exchange; Cloud Computing. 

I. INTRODUCTION 

A number of application scenarios (e.g., 
telecommunications, network security, large-scale sensor 
networks, etc.) require real-time processing of data streams, 
where the applicability of the traditional method “store-and-
process” is limited [20]. There are a wide range of 
applications that require cloud-based data stream processing 
(e.g., data from large scale sensors, information monitoring, 
web exploring, data from social networks such as Twitter 
and Facebook, surveillance data analysis, financial data 
analysis, etc.) [12]. These applications produce high speed, 
real time, and large volume data as input, and hence require 
a novel paradigm for data processing.  As a result, a new 
computing paradigm based on Stream Processing Engines 
(SPEs) has emerged. SPEs deal with the specific types of 
challenges and are intended to process data streams with a 
minimal delay [16, 17]. 

Some applications such as network monitoring and 
fraud detection are producing data, which is beyond the 
capability of traditional data processing infrastructures. 
These applications require real-time processing of very 
high-volume data streams (also known as big data stream).  
The complexity of big data is defined through V4’s: 1) 
volume –referring to terabytes, petabytes, or even exabytes 
(10006 bytes) of stored data, 2) variety – referring to the 
unstructured, semi-structured and structured data from 
various sources like social media (e.g. Twitter, Facebook 

etc.), sensors, surveillances, image or video, medical 
records etc., 3) velocity – referring to the high speed at 
which the data is in/out, and 4) veracity – referring to  the 
quality of data. These features present significant 
opportunities and challenges for big data stream processing 
[12]. Big data stream is continuous in nature and it is 
important to perform the real-time analysis as the life time 
of the data is often very short (applications can access the 
data only once) [22, 25]. As the volume and velocity of the 
data is large, storing huge volume of data for later analysis 
is considered impractical; hence, the traditional store-and-
process batch computing model is not suitable.  

 Though processing big data stream has emerged as one 
of the important topics of research, the secure data stream 
processing has received little attention from researchers. 
Some of these data streams arise from the mission critical 
applications (e.g., environmental monitoring, military 
application, etc.), where data streams need to be secured [4]. 
The problem is further exacerbated when thousands to 
millions of small sensors simultaneously produce data 
streams for real-time analytics. The hard question is can we 
efficiently undertake secure processing of thousands of data 
streams while meeting mission critical data processing 
constraints (e.g., minimizing data processing overheads). In 
addition, compared to the conventional store-and-process, 
these sensors have limited processing power, storage, 
bandwidth, and energy [5]. Furthermore, data streams need 
to be processed on-the-fly in a prescribed sequence.  

One of the security threats is the man-in-the-middle 
attack, in which a malicious attacker can access or modify 
the data stream from sensors. This situation arises as it is not 
possible to monitor a large number of sensors deployed in 
the untrusted environment [5]. The common approach is to 
apply cryptographic model for securing the data streams. 
Keeping data encrypted is the most common and safe choice 
to secure data in transmission subject to safeguarding of 
encryption keys. There are two prominent cryptographic 
encryption algorithms available: asymmetric and 
symmetric. Asymmetric-key encryption algorithms (e.g., 
RSA, ElGamal, DSS, YAK, Rabin, etc.) perform a number 
of exponential operations over a large finite field. Therefore, 
they are approximately 1000 times slower than symmetric 
key cryptography [7, 8]. Efficiency can become a serious 
issue if asymmetric-key cryptology based infrastructure 
such as the Public-Key Infrastructure PKI [29] is applied to 
big data stream. Thus, symmetric-key encryption is the most 
efficient cryptographic solution for such applications. 
However, symmetric-key algorithms (e.g., DES, AES, 
IDEA, RC4, etc.) do not scale when subjected to the real-
time, on-the-fly processing of big data streams.  



In this paper, we present the design and development of 
a Dynamic Prime-Number Based Security Verification 
(DPBSV) scheme. Our scheme is based on the notion of 
common shared key that is dynamically and periodically 
updated by generating synchronized prime numbers. The 
synchronized prime number enables to reduce the 
communication overhead without compromising the 
security. Our scheme is suitable for big data streams as it 
verifies the security (confidentiality and integrity) on-the-
fly (with minimum delay), hence leading to reduced 
communication overhead.  The scheme uses much smaller 
key length (64-bit) as against symmetric cryptographic 
algorithms. This enables faster security verification 
processing of streams at DSM (Data Stream Manager). The 
same level of security is maintained by updating the shared 
keys dynamically. Dynamic key generation is based on the 
random prime numbers, which is initialized and 
synchronized at sensors and DSM. We save on network 
overhead as our scheme do not require DSM and sensor 
node to communicate after the initial handshaking key step.  

Our proposed scheme is efficient in comparison to AES, 
as it reduces the computational load and execution time 
significantly. The main contributions of the paper can be 
summarized as follows: 

 We present a secure big data stream processing scheme.  

 We design and develop an efficient Dynamic Prime-
Number Based Security Verification (DPBSV) scheme 
for big data streams. 

 We evaluate DPBSV scheme both theoretically and 
empirically. Our analysis show that it is efficient when 
applied to big data streams in comparison to standard 
AES.   
The rest of this paper is organized as follows. Section II 

provides the background on big sensor data stream and 

corresponding security related work. Section III provides a 

motivating example in big data stream as well as detailed 

analysis to our research problem. Section IV describes 

DPBSV key exchange scheme. Section V presents the 

security analysis of scheme formally. Section VI evaluates 

the performance and efficiency of scheme through 

experimental results. Section VII concludes the paper and 

points out future work. 

II. PROPOSED SECURE DATA STREAM ARCHITECTURE 

A. Big Data Stream  

Data stream processing is an emerging computing 
paradigm which is particularly suitable for application 
scenarios where huge amount of data (Big Data) must be 
processed in real-time (with small delay).  Unlike 
traditional database systems where query processing is 
done over archived (i.e. the data needs to be stored based 
on a pre-defined schema prior to processing) data, SPE 
processes real-time time streaming data on-the-fly. The 
need for on-the-fly processing arises from the high-volume 
and high velocity input data that cannot be persisted for 
later analysis due practical reasons (e.g., data storage 
overhead). DSM handles streams of tuples similar to how a 
conventional database system handles relations. In 
addition, DSM undertakes the security verification of the 
data blocks on-the-fly.  

Cloud computing has become platform of choice for 
processing big data due to its on-demand elasticity 

extremely low-latency and massively parallel processing 
architecture [18]. It supports the most efficient way to obtain 
actionable information from big data stream [21-24]. Figure 
1 shows our cloud based architecture for big data stream 
processing systems consisting of data sources, the cloud 
data centers, and the DSM framework. We refer to [10] for 
further information on stream data processing in datacenter 
cloud. All the query and security related data processing 
tasks are handled by the DSM components. It is important 
to note that the security verification of streaming data has to 
be performed in real-time with a fixed buffer size before the 
actual stream query processing step.  At last, the processed 
data is stored in the cloud storage. Queries registered in 
DSM are defined as “continuous” since they are 
continuously applied to the streaming data flows. Results 
are sent to the user each time the streaming data satisfies the 
query predicate. The queries (including security verification 
operation) are defined as a directed acyclic graph where 
each node is an operator and edges define data flow. 

It is clear from the above description that security 
verification is one of the critical requirements for big data 
stream processing. We not that security verification step as 
proposed in our DSM framework adds to overall stream 
processing time. Hence, the major challenge for DSM is to 
reduce this additional security verification overhead. This is 
critical for big data stream due to the high volume and 
velocity. Hence, in our DSM approach security verification 
is done on-the-fly (with minimal overhead).  

B. Symmetric key cryptography based security verification 

methodology 

The Data Encryption Standard (DES) has been a 
standard symmetric key algorithm since 1977. However, it 
was cracked rather easily. In 2000, the Advanced 
Encryption Standard (AES) [1] replaced the DES to meet 
the ever-increasing requirements of data security. The 
Advanced Encryption Standard (AES), also known as the 
Rijndael algorithm, is a symmetric block cipher that can 
encrypt data blocks of 128 bits using symmetric keys of 128, 
192 or 256 bits [1, 2]. AES was introduced to replace the 
Triple DES (3DES) algorithm. AES was acquainted with 
supplant the Triple DES (3DES) algorithm utilized for a 
decent measure of time all around. Hence, we have 
compared our proposed solution against AES.  

Symmetric keys are smaller in size than asymmetric 
keys, so they have less computational burden. The 128-bit 
symmetric key provides the same strength of protection as a 
3,248-bit asymmetric key [8]. Since the aim is to perform 
the security verification on-the-fly (real-time), the 
symmetric key cryptography becomes a natural choice due 
to its scalability. It is noted in the literature that symmetric 
key cryptography is approximately 1000 times faster than 
strong public key ciphers [7]. However, it is comparatively 
easy to read/modify the symmetric key cryptography as it 
has small key size [7]. To circumvent this problem, we 
periodically apply a synchronized dynamic prime number 
(Pi) generation algorithm at both source and DSM. This 
algorithm leads to confusion for the malicious attackers. 
The procedure Prime(Pi) is calculated and synchronized on 
both source and DSM ends. This intelligent modification 
makes the process overall security verification process 
faster and prevents potential attacks. We explain this 
algorithm in-detail later in this paper.  



 

Figure 1. Overlay of our architecture from source sensing devices to cloud data processing center.

We assume that deployed source nodes operate in two 
modes: trusted mode, and untrusted mode. In the trusted 
mode, the nodes operate in a cryptographically secure space 
and adversaries cannot penetrate this space. Nodes can 
incorporate Trusted Platform Module (TPM) to design 
trusted mode of operation. The TPM is a dedicated security 
chip following the Trust Computing standard specification 
for cryptographic microcontroller system [11]. TPM 
provides a cost effective way of “hardening” of many of 
recently deployed applications, those are previously based 
on software encryption algorithms with keys kept on a 
host’s disk [11]. It provides a hardware based trust, which 
contains cryptographic functionality such as key generation, 
store, and manage embedded in the chip. The detailed 
architecture can be found in [11]. We assume that the 
proposed Prime (Pi) and secret key calculation on source 
nodes are conducted in the trusted mode.  

III. MOTIVATION AND PROBLEM ANALYSIS 

The above discussion on the DSM framework 
architecture above clearly outlines the following most 
important requirements as regards to the secure processing 
of the big data stream:  
1. Security verification needs to be performed in real time 

(on-the-fly). 
2. Verification framework has to deal with high volume 

and high velocity data. 
3. Data items can be read once in the prescribed sequence.  
4. Unlike store-and-process paradigm, original data is not 

available for comparisons in context of stream 
processing paradigm.  
Based on the above features of big data stream, we have 

categorized existing security methods into two classes: 
Communication Security [9, 19] and Server Side data 
security [6, 26, 27]. Communication security deals with 
handling security data in motion. On the other hand Server 
Side is concerned with securing the data security when it is 
at rest. The security threats and solutions proposed in the 
literature are not suitable for secure processing of the big 
data streams due to the following reasons.    

The communication security techniques are mainly 
proposed for networks communication. The network 
communication related attacks are broadly divided into two 
types: external and internal. To avoid such attacks, security 

solutions have been proposed for each individual TCP/IP 
layers. For the physical layer, proposed solutions include 
spread spectrum communication, jamming reports, accurate 
and complete design of the node physical package, etc.; for 
the data link layer, proposed solutions include error 
correcting codes, collision detection and avoidance 
techniques, rate limiting etc.; for the network layer, 
proposed solutions include link layer encryption and 
authentication, multipath routing, identity verification and 
authenticated broadcast, etc.; and for the transport layer, 
proposed solutions include packet authentication [9, 19]. 
These solutions can avoid the communication threats but not 
suitable for dealing with new challenges posed by high 
volume and high velocity big data.  

The server side data security is mainly proposed for 
physical data center, when data is at rest and accessed 
through applications. There are several potential attacks for 
such data such as data interruption, interception, privacy 
breach, impersonation, session hijacking, programming 
flaws, software modification, software interruption, 
defacement, disrupting communications, hardware 
interruption, and hardware modification, etc. Several 
solutions have been proposed to protect data and cloud 
servers from such attacks such as privacy in multitenant 
environment, data protection from disclosure, access 
control, software security, service availability, access 
control, application security, data security (e.g. data in 
transit, data at rest, reminisce etc.), cloud management 
control security, virtual cloud protection, hardware security, 
and hardware reliability etc. [6, 13, 26, 27]. However, these 
proposed solutions are tailored towards store-and-process 
paradigm, hence not feasible for on-the-fly big data stream 
processing.   

Existing symmetric cryptographic based security 
solutions for data security are based on either static shared 
key or centralized dynamic key. In static shared key, we 
need to have a long key to defend from a potential attacker. 
Length of the key is always proportional to security 
verification time. Based on the requirement of big data 
stream processing (specified above), it is clear that security 
verification should be done in real-time. For the dynamic 
key management solution, centralized rekeying processing 
and distribution of keys to all the sources is a time 
consuming process. Big data stream is always continuous in 



nature and often huge in volume. This makes it impossible 
to pause the data movement while the rekeying, distribution, 
and synchronization processes finish.  To address this 
problem, we are proposing a scheme for big data stream 
security verification without the need of rekeying. The 
benefits include reduction of the communication overhead 
and increase in the efficiency of security verification 
process at DSM.  

Our proposed scheme is as follows: we use a common 
shared key for both sensors and DSM.  The key is updated 
dynamically by generating synchronized prime numbers 
without the need of having communication between them. 
This reduces the communication overhead, as required by 
Rekeying process of existing methods, without 
compromising the security. Due to the reduced 
communication overhead, our scheme performs the security 
verification with minimum delay. The communication is 
required at the beginning for the initial key establishment 
and synchronization because DSM sends all the keys and 
key generation properties to the sources in this step. There 
is no further communication between the source sensor and 
DSM after handshaking, which increases the efficiency of 
the solution. Based on the shared key properties, individual 
source updates their dynamic key independently.   

IV. DYNAMIC PRIME-NUMBER BASED SECURITY  

VERIFICATION– DPBSV 

This section describes the DPBSV scheme. Similar to 
any secret key based symmetric key cryptography, DPBSV 
scheme consists of 4 independent components: system 
setup, handshaking, rekeying, and security verification. 
Table 1 provides the notations used in describing scheme. 
We next describe the scheme in details. 

Table 1. Notations 

Acronym Description 

𝑆𝑖   ith Sensor’s ID. 

𝐾𝑖 ith Sensor’s Secret key. 

𝐾𝑠𝑖  ith Sensor’s  Session Key. 

𝐾𝑒𝑛𝑐  Generated Key for the Authentication.   

𝐾𝑆𝐻 Secret shared key of Sensors and DSM 

𝐾/𝐾′ Encrypted with Sensor’s Secret key for 

User Authentication. 

𝐶/𝐶′/𝐶′′ Calculated hash Value. 

𝑟 Random Number Generated by Sensors. 

𝑡 Interval time to generate the prime number. 

𝑃𝑖  Random prime Number. 

𝐾𝑑 Secret key of the DSM. 

𝐼𝐷 Encrypted Data for Integrity Check. 

𝐴𝐷 Secret Key for Authenticity Check. 

𝐸( ) Encryption Function. 

𝐻( ) One-way Hash Function. 

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Prime number generation Function. 

KeyGen Key Generation procedure. 

⊕ Bitwise X-OR operation. 

∥ Concatenation Operation. 

𝐷𝐴𝑇𝐴 Fresh Data at Sensor before Encryption. 

A. DPBSV System setup 

We have made a number of realistic and practical 
assumptions while defining our scheme. First, we assume 
that DSM has all deployed sensor’s identities (IDs) and 
secret keys because the network is fully untrusted. We allow 
increased number of key exchanges between the sensors and 
DSM for the initial session key establishment process to 
achieve stronger security. Our aim is to make this session 
more secure because we transmit all the secret information 
of key generation to sensors. Second, we assume that each 
sensor node Si knows the identity of its DSM.  
Step 1: A sensor (Si) generates a random number r and 
sends it to the DSM with its identity as {Si, r}. There are n 
numbers of sensors deployed and those are S1, S2, S3, ..., Sn and 
Si is the id of ith sensor. In our scheme, sensors do not 
communicate between each other to reduce the 
communication overhead. Proposed scheme also updates 
the dynamic shared key on both ends to prevent potential 
attacks from traffic behavior analysis.  
1. Si → DSM: {Si, r}. 

Step 2: Once the DSM receives the request from a sensor, 

it retrieves the corresponding sensor’s secret key, i.e., 𝐾𝑖 ←
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆𝑖) first and then DSM selects a random 

session key 𝐾𝑠𝑖  i.e. 𝐾𝑠𝑖 ← 𝑟𝑎𝑑𝑜𝑚𝑑𝐾𝑒𝑦( ). In order to share 

this session key with corresponding sensor (Si), DSM 

generates a key based on a selected session key and 

corresponding sensor’s private key 𝐾𝑒𝑛𝑐 = 𝐾𝑠𝑖 ⊕ 𝐾𝑖 . 

Following the generated key (𝐾𝑒𝑛𝑐) DSM encrypts the 

generated key with the session key 𝐾 = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐) and 

it performs the hash function 𝐶 = 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟)  . 
Finally, DSM sends the value of C and 𝐾𝑒𝑛𝑐  to Si.  

𝐾𝑒𝑛𝑐 = 𝐾𝑠𝑖 ⊕ 𝐾𝑖 , from random selected session key 𝐾𝑠𝑖 .  
𝐾 = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐) 
𝐶 = 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟) 

2. Si ← DSM: { 𝐶, 𝐾𝑒𝑛𝑐}  

Step 3: Corresponding sensor gets its session key  𝐾𝑒𝑛𝑐 
based on its own secret key 𝐾𝑠𝑖 = 𝐾𝑒𝑛𝑐 ⊕ 𝐾𝑖  and finds out 
the value of 𝐾′ based on the value of 𝐾𝑠𝑖  and 𝐾𝑒𝑛𝑐 , i.e. 𝐾′ =
𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐). Next it computes the hash 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟) 
and checks whether or not it is equal to C. If the hashes are 
equal and 𝐾 = 𝐾′, Si can authenticate DSM. However, if it 
is not equal, then Si ends the protocol. Following the 
authentication, it transmits 𝐶′ = 𝐻(1 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟) to 
DSM as follows. 
𝐾𝑠𝑖 = 𝐾𝑒𝑛𝑐 ⊕ 𝐾𝑖  , to extract the session key for won.  
𝐾′ = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐) 
𝐶′ = 𝐻(1 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟) 
3. Si → DSM: { 𝐶′}. 
Step 4: After receiving 𝐶′, DSM compares it with 𝐻(1 ∥
𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟) to check whether or not they are equal. If they 
are equal, DSM authenticates Si. Otherwise, the protocol is 
terminated. After authentication by DSM and sensor, DSM 
and S can share the session key 𝐾𝑠𝑖  and 𝐶′′ = 𝐻(2 ∥ 𝐾𝑒𝑛𝑐 ∥
𝐾 ∥ 𝑟).    
𝐶′′ = 𝐻(2 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟) 

4. Si ← DSM: { 𝐶′′}  

B. DPBSV Handshaking 
DSM sends its all properties to sensors {S1, S2, S2, …, 

Sn} based on their individual session key. Generally, the 
larger the prime number of secret shares used in the pairwise 



key establishment process, the better security will the 
pairwise key achieve. However, using a larger prime 
number for the secret shares requires a greater computation 
time. In order to make the security verification lighter and 
faster, we reduce the prime number size. The dynamic prime 
number generation function is defined in Theorem 2 
(described later in this paper). We calculate the prime 
number on both sensor and DSM sides to reduce 
communication overhead and minimize the chances of 
disclosing the shared key.   
Step 5: 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) computes the relative prime number on 
both sides with a time interval t.  In the handshaking process, 
it transmits all its procedures to generate the key and prime 
number such as (𝐾𝑑 , 𝑡,  𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖),  𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛).  

5. Si ← DSM: {𝐾𝑑, 𝑡, 𝑃𝑖, 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖),  𝐾𝑆𝐻, 𝐾𝑒𝑦𝐺𝑒𝑛}   

In this step, DSM sends all the parameters and properties 
of KeyGen to source sensors. The transferred information 
stored in trusted part of sensor (e.g., TPM).    

C. DPBSV Rekeying  

We propose a novel rekeying mechanism that calculates 
prime numbers dynamically on both source sensors and 
DSM independently. In the proposed scheme, small size of 
the key leads to faster security verification. However, a 
small key size can be relatively easy to crack. To counter 
this issue, the key pair is periodically updated. In the event 
of key compromise at sensors, DSM undertakes key 
resynchronization process with the sensor as described next. 
The source sensor executes the step 3 to reinitialize and 
resynchronize key pair with the DSM. We assume that the 
secret key information is managed by the senor in a trusted 
fashion such as by employing the TPM hardware.  

In the following, we are presenting an alternative 
approach to rekeying and the corresponding analysis in 
terms of efficiency.  
Step 6: The above defined DPBSV Handshaking process 
relays information related to the Prime (Pi) and KeyGen to 
the sensors. We next describe the secure data transmission 
and verification process based on above functions and keys. 
As mentioned above, the proposed scheme applies the 
synchronized dynamic prime number generation Prime (Pi) 
on both sides, i.e., sensors and DSM.  At the end of the 
handshaking process, sensors have their own secret keys, 
initial prime number and initial shared key generated by the 
DSM. The next cycle of prime generation process is based 
on the value of the prime number and the specified time 
interval. Sensors generate the shared key 𝐾𝑆𝐻 =
𝐻(𝐸(𝑃𝑖 , 𝐾𝑑)) using the prime number 𝑃𝑖  and DSM secret 

key  𝐾𝑑. Each data block is associated with the 
authentication tag and contains two different parts. First is 
the encrypted DATA based on its secret key 𝐾𝑖 and shared 
key 𝐾𝑆𝐻 for integrity checking (i.e., 𝐼𝐷 = 𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕
𝐾𝑖 ), and the second  part is concerned with the authenticity 
checking (i.e., 𝐴𝐷 = 𝑆𝑖 ⊕ 𝐾𝑆𝐻). The resulting data block 

is: ((𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) ∥ (𝑆𝑖 ⊕ 𝐾𝑆𝐻)).  

𝐼𝐷 = 𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖  

𝐴𝐷 = 𝑆𝑖 ⊕ 𝐾𝑆𝐻   

6. Si → DSM: { 𝐻(𝐼𝐷 ∥ 𝐴𝐷)}. 

D. DPBSV Security Verification 

According to the features of big data stream, security 
verification should be performed in real time (with minimal 

delay). The following step shows the verification model.  
Next step explains how the DSM verifies the authenticity 
and integrity of each or selected data block. 
Step 7: The DSM verifies whether the data was modified 
while in transit and it was sent by an authenticated sensor 
node. The DSM first checks the authenticity and integrity of 
specific data block 𝐴𝐷. The approach selects next block to 
be checked for authenticity and integrity based on specified 
random interval such as 𝐼𝐷 (configurable variable). This 
random variable is calculated based on the corresponding 
prime number i.e. 𝑗 = 𝑃𝑖% 7. The calculated values vary 
from 0 to 6, i.e., the maximum interval of 6 blocks and if the 
value of j is 0, then it will verify every data block. For the 
authenticity check, the DSM decrypts 𝐴𝐷with shared 
key 𝑆𝑖 = 𝐴𝐷 ⊕ 𝐾𝑆𝐻. Once Si is obtained, the DSM checks 
its source database and extracts the corresponding secret key 
𝐾𝑖  for the integrity check according to the value of j. 
Given 𝐾𝑖 , the DSM decrypts data and checks MAC for 
integrity check 𝐷𝐴𝑇𝐴 = 𝐼𝐷 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖 .  

𝑆𝑖 = 𝐴𝐷 ⊕ 𝐾𝑆𝐻  
𝐷𝐴𝑇𝐴 = 𝐼𝐷 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖   

V. SECURITY ANALYSIS OF DPBSV 

In this section, we provide theoretical analysis of the 
proposed scheme and prove that it can ensure both 
authenticity and integrity of streaming data.  

A. Security Proof  

Assumption 1: No one can decrypt data that was encrypted 

by a symmetric-key algorithm, unless it has the 

session/shared key which was used to encrypt the data by 

the sensor.  

Assumption 2: DSM is deployed on a trusted server.  

Assumption 3: Sensor’s secret key, Prime (Pi) and secret 

key calculation procedures are deployed on the trusted 

hardware such as TPM, hence they are safe from intruders. 

Similar to most cryptological analysis of public-key 

communication protocols, we now define the attack models 

for the purpose of verifying the authenticity and integrity.  

Definition 1 (attack on authentication): A malicious 

attacker Ma is an adversary who is capable of monitoring, 

intercepting, and introducing itself as an authenticated 

source node which can send data streams to the DSM.  

Definition 2 (attack on integrity): A malicious attacker Mi 

is an adversary capable of monitoring the data stream and 

is able to modify the stream while it is in transit.  

Theorem 1: The security is not compromised by reducing 

the size of shared secret key (𝐾𝑆𝐻).      

Proof: We reduce the size of the prime number to make the 

key generation process faster and efficient. The ECRYPT 

II recommendations on key length say that 128-bit 

symmetric key provides the level of protection as a 3,248-

bit asymmetric key. Smaller keys can also provide desired 

security levels as long as it is not shared publically. 

Advanced processor (Intel i7 Processor) takes about 1.7 

nanoseconds to try out one key from one block. With this 

speed it would take about 1.3 × 1012 × the age of the 

universe to check all the keys from the possible key set [8] 

of asymmetric scheme. By reducing the size of the prime 

number; we speed up the security verification process at 

DSM (see Table 2). As shown in Table 2, 64 bit symmetric 



key takes 3136e +19 nanoseconds (more than a month), so 

we safely concluded that updating the prime number every 

week (i.e. t=168 hours) will not compromise the security 

of the system. Dynamic shared key is computed based on 

the prime number. Hence we conclude that attacker cannot 

crack the shared key within the interval time t. Further, the 

shared key is updated without exchanging information 

between the sensors and DSM. This leads to confusion for 

the adversaries who may try to intercept the data flow. The 

key has been already changed four times before an attacker 

knows the key and this knowledge is not known to the 

attackers.    

Table 2. Notations Symmetric key (AES) algorithm takes time to get all 

possible keys using most advanced Intel i7 Processor. 

Key Length 8 16 32 64 128 

Key domain 

size 

256 65536 4.295e

+09 

1.845e 

+19 

3.4028e 

+38 

Time (in 

nanosecond) 

1435 1e+05 7.301e

+09 

3136e 

+19 

5.7848e 

+35 

Theorem 2:  Dynamically generated prime number Pi in 

Algorithm I is always synchronized between the source 

sensors (Si) and DSM.     
Proof: The normal method to check the prime number is 

6k+1, ∀k∈ N+ (an integer). Here, we initially initialize the 

value of k based on this primary test formula. Our prime 
generation method is based on the nth prime number 
generation and from the extended idea of [3]. In our scheme, 
the input Pi is the currently used prime number (initialized 
by DSM) and the return Pi is the calculated new prime 
number. Intially Pi is intianized by DSM at DPBSV 
Handshaking process and the interval time is t.  

ALGORITHM I. DYNAMIC PRIME NUMBER GENERATION 

Prime (𝑷𝒊) 

1. 𝑃𝑖−1 = 𝑃𝑖 

2. Set 𝑘 ∶= ⌈
𝑃𝑖−1

6
⌉ 

3. Set 𝑚 ∶= 6𝑘 + 1 

4. If 𝑚 ≥ 107 then 

5. 𝑘 ∶= 𝑘
105⁄  

6. GO TO: 3 

7. If S(𝑚) = 1 then  

8. GO TO: 14 

9. Set 𝑚 ∶= 6𝑘 + 5 

10. If S(𝑚) = 1 then  

11. GO TO: 14 

12. 𝑘 ∶= ⌊𝑘3 + √𝑘⌋ 𝑚𝑜𝑑 17 + 𝑘 

13. GO TO: 3 

14. 𝑃𝑖 = 𝑚 

15. Return (𝑃𝑖) // calculated new prime number 

From the Algorithm I, we calculate the new prime 
number 𝑃𝑖  based on the previous one 𝑃𝑖−1. The complete 
process of the prime number calculation is based on the 
value of m and m is initialized from the value k. The value 
of k is constant at source because it is calculated from 
current prime number. This process is initialized during 
DPBSV Handshaking. Since the value of k is the same on 
both sides, the procedure Prime (Pi) returns identical values. 
In Algorithm I, the value of S(m) computed as below [3].  

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘+1
⌋ −

𝑥

6𝑘+1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1   

S2(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘−1
⌋ −

𝑥

6𝑘−1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1
  

𝑆(𝑥) =
S1(x)+S2(x)

2
  

If 𝑆(𝑥) = 1 then x is prime, otherwise x is not a prime.  

𝑥 ≢ 0 𝑚𝑜𝑑 𝑖 ∀ 1 ≤ i ≤ x − 1, if x is prime 

Then put the value of x as a prime number, then  

⇒ ⌊⌊
x

6k+1
⌋ −

x

6k+1
⌋ = −1     

Same as ⌊⌊
x

6k−1
⌋ −

x

6k−1
⌋ = −1  

∀ k within the specified range i.e 107, then 

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ (−1)
⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1 =  1  

Same S2(𝑥) is also 1 and then 

 𝑆(𝑥) =
S1(x)+S2(x)

2
= 1 

Hence, the property of 𝑆(𝑥) is proved.   

Theorem 3: An attacker Ma cannot read the secret 

information from sensor node (Si) or introduce itself as an 

authenticated node in DPBSV. 

Proof: Following Definition 1, we know that an attacker Ma 

can gain access to the shared key 𝐾𝑆𝐻 by monitoring the 

network thoroughly, but Ma cannot get secret information 

such as Prime (Pi) and KeyGen. Considering the 

computational hardness of secure module (such as TPM), 

we know that Ma cannot get the secret information for Pi 

generation, Ki and KeyGen. So there are no possibilities for 

the malicious node to tap into the data stream, however Ma 

can introduce himself/ herself as the authenticated node and 

start sending false information to DSM. In our scheme, 

sensor (Si) sends((𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) ∥ (𝑆𝑖 ⊕ 𝐾𝑆𝐻)), 

where the second part of the data block (𝑆𝑖 ⊕ 𝐾𝑆𝐻) is used 

for authentication check. DSM decrypts this part of the data 

block for authentication check. DSM retrieves Si after 

decryption and matches the corresponding Si within its 

database. If the calculated Si matches with the DSM 

database, it accepts; otherwise it rejects the node as source 

and marks it is not an authenticated sensor node. All 

required secured information for prime number and key 

generation procedure are stored at trusted part of the sensor 

node (i.e., TPM). According to the features of TPM, the 

attacker cannot get the information from TPM as discussed 

before. Hence we conclude that attacker Ma cannot attack 

or get access to the big data stream. 

Theorem 4: An attacker Mi cannot read the shared key 𝐾𝑆𝐻 

within the time interval t in DPBSV model.  

Proof: Following Definition 2, we know that an attacker Mi 

has full access to the network to read the shared key 𝐾𝑆𝐻, 

but Mi cannot get correct secret information such as KSH. 

Considering the method described in Theorem 1, we know 

that Mi cannot get the currently used KSH  within the time 

interval t, because our proposed scheme calculate Pi 

randomly after time t and then use the value Pi sensor to 

generate KSH. For more details on computation analysis, 

readers can refer to Theorem 1. 



VI. EXPERIMENT AND EVALUATION  

In order to evaluate the efficiency and effectiveness of 

the proposed DPBSV scheme under the adverse conditions, 

we observe each individual data blocks for authentication 

check and selected data blocks for integrity attacks. The 

integrity attack verification interval is dynamic in nature 

and the data verification is done at the DSM only.  

To validate our proposed scheme, we experimented 

with two different approaches by using different simulation 

environments. We first verify the security scheme using 

Scyther [14], and then measure the efficiency of the scheme 

using JCE (Java Cryptographic Environment) [15].  

A. Security Verification  

The scheme is written in Scyther simulation 

environment using Security Protocol Description Language 

(.spdl). According   to the features of Scyther, we define the 

role of S and D, where S is the sender (i.e., sensor nodes) 

and D is the recipient (i.e., DSM). Next, S and D have all 

the required information that are exchanged during the 

handshake process. This enables D and S to update their 

shared key.  S sends the data packets to D and D performs 

the security verification. In our simulation, we introduce 

two types of attacks by the adversaries. The first type of 

attack is defined for the transmission between S and D 

(integrity) and the second attack is defined where an 

adversary acquires the property of S and sends the attack 

data packets to D (authentication). In our experiments, we 

evaluated all packets at D (DSM) for security verification. 

We experimented with 100 numbers of runs for each claim 

(also known as bounds) and found out the number of 

attacks at D as shown in Figure 2. Apart from these, we 

follow the default properties of Scyther.  

Attack model: Many types of cryptographic attacks can be 

considered. In our case, we focus on integrity attack and 

authentication attack as discussed above. In integrity 

attack, an attacker can only observe encrypted data 

blocks/packets being transmitted over  the network, that 

contain information about sensed data as shown in Figure 

1. The attacker can perform a brute force attack on captured 

packets by systematically testing every possible keys, and 

we assumed that he/she is able to determine when the attack 

is successful. In authentication attack, an attacker can 

observe source node, and try to get the behavior of the 

source node. We assume that he/she is able to determine the 

source node’s behavior. In such case, the attacker can 

introduce an authenticated node and act as the original 

source node. In our concept, we are using trusted module 

in sensor to store the secret information and procedure for 

key generation and encryption (such as TPM).  

Experiment model: In practice, attacks may be more 

sophisticated and efficient than brute force attacks. 

However, this does not affect the validity of the proposed 

DPBSV scheme as we are interested in efficient security 

verification without periodic key exchanges and successful 

attacks. Here, we model the process as described in the 

previous section and fixed the key size 64 bits (see Table 

2). We used Scyther an automatic security protocols 

verification tool to verify our proposed scheme.  

 
Figure 2. Scyther simulation environment with parameters and result page 

of success security verification at DSM. 

Results: We did our simulation using the variable 

numbers of data block in each run. Our experiment ranges 

from 10 to 100 instances with 10 intervals. We check 

authentication for each data block, whereas the integrity 

check is performed on the selected data blocks. As our 

secure information such as 𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖),  𝐾𝑆𝐻 ,
𝐾𝑒𝑦𝐺𝑒𝑛 are stored within the trusted module of the sensor, 

no one can get access to those information except the 

corresponding sensor. Without these information, attackers 

cannot authenticate encrypted data blocks. Hence, we did 

not find any attacks for authentication check. For integrity 

attacks, it is hard to get shared key (𝐾𝑆𝐻), as we are 

frequently changing the shared key (𝐾𝑆𝐻) based on the 

dynamic prime number 𝑃𝑖  on both source sensor (𝑆𝑖) and 

DSM. In the experiment, we did not encounter any attack 

in integrity check. Figure 2 shows the result of security 

verification experiments in Scyther environment. This 

shows that our scheme is secured from integrity and 

authentication attacks. From the observations above, we 

can conclude that our proposed scheme is secure. 

B. Performance Comparison 

Experiment model: It is clear that the actual efficiency 

improvement brought by our scheme highly depends on the 

size of key and rekeying without further communication 

between sensor and DSM. We have performed experiments 

with different size of data blocks. The results of our 

experiments are given below. 

We compare the performance of our proposed scheme 

DPBSV with advanced encryption standard (AES), the 

standard symmetric key encryption algorithm [1, 2]. Our 

scheme was compared with two standard symmetric key 

algorithms: 128-bit AES and 256-bit AES. This 

performance comparison experiment is carried out in JCE 

(Java Cryptographic Environment). We compared the 

processing time with different data block size. This 

comparison is based on the features of JCE in java virtual 

machine version 1.6 64 bit. JCE is the standard extension 

to the java platform which provides a framework 

implementation for cryptographic method. We 

experimented with many-to-one communication. All 

sensors node communicate to the single node (DSM). All 

sensors have the similar properties whereas the destination 

node has the properties of DSM (more powerful to initialize 

the process). The rekey process is executed at all the nodes 

without any intercommunication. Processing time of data 

verification is measured at DSM node. Our experimental 

results are shown in Figure 3; the result validates the 

theoretical analysis presented in section IV.  



 

Figure 3. Performance of proposed scheme compared in efficiency to 128 
bit AES and 256 bit AES. 

Results: The performance of our scheme is better than 

the standard AES algorithm when different sizes of the data 

blocks are considered. Figure 3 shows the processing time 

of the proposed DPBSV scheme in comparison with base 

128-bit AES and 256-bit AES for different size of the data 

blocks. The performance comparison shows that our 

proposed scheme is more efficient and faster than the 

baseline AES protocols.  

From the above two experiments, we conclude that our 

proposed DPBSV scheme is secured (from both 

authenticity and integrity attacks), and efficient (compare 

to standard symmetric solutions such as 128/256-bit AES).   

VII. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have proposed a novel authenticated 
key exchange scheme, namely Dynamic Prime-Number 
Based Security Verification (DPBSV), which aims to 
provide efficient and fast (on-the-fly) security verification 
scheme for big data stream. Our scheme has been designed 
based on the symmetric key cryptography and random 
prime number generation. By theoretical analyses and 
experimental evaluations, we showed that our DPBSV 
scheme has provided significant improvement in the 
processing time, and prevented malicious attacks on 
authenticity and integrity. In our scheme, we decrease the 
communication and computation overhead by dynamic key 
initialization at both sensor and DSM end, which in effect 
eliminates the need of rekeying and decreases the 
communication overhead. We plan to pursue a number of 
research avenues in future. The foremost is to perform a 
comparative study of our work with other techniques like 
RC4, RC6. We will further investigate using the technique to 
develop a moving target defense strategy for the Internet of 
Things.  
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