
DPBSV- An Efficient and Secure Scheme for Big

Sensing Data Stream

Deepak Puthal*, Surya Nepal†, Rajiv Ranjan†, and Jinjun Chen*
*Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), Australia

†Digital Productivity Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia

E-mail: {deepak.puthal, jinjun.chen}@gmail.com, {Surya.Nepal, Rajiv.Ranjan}@csiro.au

Abstract— Stream processing has become an important

paradigm for the massive real-time processing of continuous

data flows in large scale sensor networks. While dealing with

big data stream in sensor networks, Stream Processing

Engines (SPEs) must always verify the authenticity, and

integrity of the data as the medium of communication is

untrusted, where malicious attackers can access and modify

the data. Existing technologies for data security verification

are not suitable for data streaming applications, as the

verification in real time introduces significant overheads. In

this paper, we propose a Dynamic Prime Number Based

Security Verification (DPBSV) scheme for big data stream

processing. Our scheme is based on common shared key that

is updated dynamically by generating synchronized pair of

prime numbers. Theoretical analyses and experimental

results of our DPBSV scheme show that it can significantly

improve the efficiency as compared to existing approaches by

reducing the security verification overhead. Our approach

not only reduces the verification time, but also strengthens the

security of the data by constantly updating the shared keys.

Keywords—Security; Sensor Networks; Big Data Stream;

Key Exchange; Cloud Computing.

I. INTRODUCTION

A number of application scenarios (e.g.,
telecommunications, network security, large-scale sensor
networks, etc.) require real-time processing of data streams,
where the applicability of the traditional method “store-and-
process” is limited [20]. There are a wide range of
applications that require cloud-based data stream processing
(e.g., data from large scale sensors, information monitoring,
web exploring, data from social networks such as Twitter
and Facebook, surveillance data analysis, financial data
analysis, etc.) [12]. These applications produce high speed,
real time, and large volume data as input, and hence require
a novel paradigm for data processing. As a result, a new
computing paradigm based on Stream Processing Engines
(SPEs) has emerged. SPEs deal with the specific types of
challenges and are intended to process data streams with a
minimal delay [16, 17].

Some applications such as network monitoring and
fraud detection are producing data, which is beyond the
capability of traditional data processing infrastructures.
These applications require real-time processing of very
high-volume data streams (also known as big data stream).
The complexity of big data is defined through V4’s: 1)
volume –referring to terabytes, petabytes, or even exabytes
(10006 bytes) of stored data, 2) variety – referring to the
unstructured, semi-structured and structured data from
various sources like social media (e.g. Twitter, Facebook

etc.), sensors, surveillances, image or video, medical
records etc., 3) velocity – referring to the high speed at
which the data is in/out, and 4) veracity – referring to the
quality of data. These features present significant
opportunities and challenges for big data stream processing
[12]. Big data stream is continuous in nature and it is
important to perform the real-time analysis as the life time
of the data is often very short (applications can access the
data only once) [22, 25]. As the volume and velocity of the
data is large, storing huge volume of data for later analysis
is considered impractical; hence, the traditional store-and-
process batch computing model is not suitable.

 Though processing big data stream has emerged as one
of the important topics of research, the secure data stream
processing has received little attention from researchers.
Some of these data streams arise from the mission critical
applications (e.g., environmental monitoring, military
application, etc.), where data streams need to be secured [4].
The problem is further exacerbated when thousands to
millions of small sensors simultaneously produce data
streams for real-time analytics. The hard question is can we
efficiently undertake secure processing of thousands of data
streams while meeting mission critical data processing
constraints (e.g., minimizing data processing overheads). In
addition, compared to the conventional store-and-process,
these sensors have limited processing power, storage,
bandwidth, and energy [5]. Furthermore, data streams need
to be processed on-the-fly in a prescribed sequence.

One of the security threats is the man-in-the-middle
attack, in which a malicious attacker can access or modify
the data stream from sensors. This situation arises as it is not
possible to monitor a large number of sensors deployed in
the untrusted environment [5]. The common approach is to
apply cryptographic model for securing the data streams.
Keeping data encrypted is the most common and safe choice
to secure data in transmission subject to safeguarding of
encryption keys. There are two prominent cryptographic
encryption algorithms available: asymmetric and
symmetric. Asymmetric-key encryption algorithms (e.g.,
RSA, ElGamal, DSS, YAK, Rabin, etc.) perform a number
of exponential operations over a large finite field. Therefore,
they are approximately 1000 times slower than symmetric
key cryptography [7, 8]. Efficiency can become a serious
issue if asymmetric-key cryptology based infrastructure
such as the Public-Key Infrastructure PKI [29] is applied to
big data stream. Thus, symmetric-key encryption is the most
efficient cryptographic solution for such applications.
However, symmetric-key algorithms (e.g., DES, AES,
IDEA, RC4, etc.) do not scale when subjected to the real-
time, on-the-fly processing of big data streams.

In this paper, we present the design and development of
a Dynamic Prime-Number Based Security Verification
(DPBSV) scheme. Our scheme is based on the notion of
common shared key that is dynamically and periodically
updated by generating synchronized prime numbers. The
synchronized prime number enables to reduce the
communication overhead without compromising the
security. Our scheme is suitable for big data streams as it
verifies the security (confidentiality and integrity) on-the-
fly (with minimum delay), hence leading to reduced
communication overhead. The scheme uses much smaller
key length (64-bit) as against symmetric cryptographic
algorithms. This enables faster security verification
processing of streams at DSM (Data Stream Manager). The
same level of security is maintained by updating the shared
keys dynamically. Dynamic key generation is based on the
random prime numbers, which is initialized and
synchronized at sensors and DSM. We save on network
overhead as our scheme do not require DSM and sensor
node to communicate after the initial handshaking key step.

Our proposed scheme is efficient in comparison to AES,
as it reduces the computational load and execution time
significantly. The main contributions of the paper can be
summarized as follows:

 We present a secure big data stream processing scheme.

 We design and develop an efficient Dynamic Prime-
Number Based Security Verification (DPBSV) scheme
for big data streams.

 We evaluate DPBSV scheme both theoretically and
empirically. Our analysis show that it is efficient when
applied to big data streams in comparison to standard
AES.
The rest of this paper is organized as follows. Section II

provides the background on big sensor data stream and

corresponding security related work. Section III provides a

motivating example in big data stream as well as detailed

analysis to our research problem. Section IV describes

DPBSV key exchange scheme. Section V presents the

security analysis of scheme formally. Section VI evaluates

the performance and efficiency of scheme through

experimental results. Section VII concludes the paper and

points out future work.

II. PROPOSED SECURE DATA STREAM ARCHITECTURE

A. Big Data Stream

Data stream processing is an emerging computing
paradigm which is particularly suitable for application
scenarios where huge amount of data (Big Data) must be
processed in real-time (with small delay). Unlike
traditional database systems where query processing is
done over archived (i.e. the data needs to be stored based
on a pre-defined schema prior to processing) data, SPE
processes real-time time streaming data on-the-fly. The
need for on-the-fly processing arises from the high-volume
and high velocity input data that cannot be persisted for
later analysis due practical reasons (e.g., data storage
overhead). DSM handles streams of tuples similar to how a
conventional database system handles relations. In
addition, DSM undertakes the security verification of the
data blocks on-the-fly.

Cloud computing has become platform of choice for
processing big data due to its on-demand elasticity

extremely low-latency and massively parallel processing
architecture [18]. It supports the most efficient way to obtain
actionable information from big data stream [21-24]. Figure
1 shows our cloud based architecture for big data stream
processing systems consisting of data sources, the cloud
data centers, and the DSM framework. We refer to [10] for
further information on stream data processing in datacenter
cloud. All the query and security related data processing
tasks are handled by the DSM components. It is important
to note that the security verification of streaming data has to
be performed in real-time with a fixed buffer size before the
actual stream query processing step. At last, the processed
data is stored in the cloud storage. Queries registered in
DSM are defined as “continuous” since they are
continuously applied to the streaming data flows. Results
are sent to the user each time the streaming data satisfies the
query predicate. The queries (including security verification
operation) are defined as a directed acyclic graph where
each node is an operator and edges define data flow.

It is clear from the above description that security
verification is one of the critical requirements for big data
stream processing. We not that security verification step as
proposed in our DSM framework adds to overall stream
processing time. Hence, the major challenge for DSM is to
reduce this additional security verification overhead. This is
critical for big data stream due to the high volume and
velocity. Hence, in our DSM approach security verification
is done on-the-fly (with minimal overhead).

B. Symmetric key cryptography based security verification

methodology

The Data Encryption Standard (DES) has been a
standard symmetric key algorithm since 1977. However, it
was cracked rather easily. In 2000, the Advanced
Encryption Standard (AES) [1] replaced the DES to meet
the ever-increasing requirements of data security. The
Advanced Encryption Standard (AES), also known as the
Rijndael algorithm, is a symmetric block cipher that can
encrypt data blocks of 128 bits using symmetric keys of 128,
192 or 256 bits [1, 2]. AES was introduced to replace the
Triple DES (3DES) algorithm. AES was acquainted with
supplant the Triple DES (3DES) algorithm utilized for a
decent measure of time all around. Hence, we have
compared our proposed solution against AES.

Symmetric keys are smaller in size than asymmetric
keys, so they have less computational burden. The 128-bit
symmetric key provides the same strength of protection as a
3,248-bit asymmetric key [8]. Since the aim is to perform
the security verification on-the-fly (real-time), the
symmetric key cryptography becomes a natural choice due
to its scalability. It is noted in the literature that symmetric
key cryptography is approximately 1000 times faster than
strong public key ciphers [7]. However, it is comparatively
easy to read/modify the symmetric key cryptography as it
has small key size [7]. To circumvent this problem, we
periodically apply a synchronized dynamic prime number
(Pi) generation algorithm at both source and DSM. This
algorithm leads to confusion for the malicious attackers.
The procedure Prime(Pi) is calculated and synchronized on
both source and DSM ends. This intelligent modification
makes the process overall security verification process
faster and prevents potential attacks. We explain this
algorithm in-detail later in this paper.

Figure 1. Overlay of our architecture from source sensing devices to cloud data processing center.

We assume that deployed source nodes operate in two
modes: trusted mode, and untrusted mode. In the trusted
mode, the nodes operate in a cryptographically secure space
and adversaries cannot penetrate this space. Nodes can
incorporate Trusted Platform Module (TPM) to design
trusted mode of operation. The TPM is a dedicated security
chip following the Trust Computing standard specification
for cryptographic microcontroller system [11]. TPM
provides a cost effective way of “hardening” of many of
recently deployed applications, those are previously based
on software encryption algorithms with keys kept on a
host’s disk [11]. It provides a hardware based trust, which
contains cryptographic functionality such as key generation,
store, and manage embedded in the chip. The detailed
architecture can be found in [11]. We assume that the
proposed Prime (Pi) and secret key calculation on source
nodes are conducted in the trusted mode.

III. MOTIVATION AND PROBLEM ANALYSIS

The above discussion on the DSM framework
architecture above clearly outlines the following most
important requirements as regards to the secure processing
of the big data stream:
1. Security verification needs to be performed in real time

(on-the-fly).
2. Verification framework has to deal with high volume

and high velocity data.
3. Data items can be read once in the prescribed sequence.
4. Unlike store-and-process paradigm, original data is not

available for comparisons in context of stream
processing paradigm.
Based on the above features of big data stream, we have

categorized existing security methods into two classes:
Communication Security [9, 19] and Server Side data
security [6, 26, 27]. Communication security deals with
handling security data in motion. On the other hand Server
Side is concerned with securing the data security when it is
at rest. The security threats and solutions proposed in the
literature are not suitable for secure processing of the big
data streams due to the following reasons.

The communication security techniques are mainly
proposed for networks communication. The network
communication related attacks are broadly divided into two
types: external and internal. To avoid such attacks, security

solutions have been proposed for each individual TCP/IP
layers. For the physical layer, proposed solutions include
spread spectrum communication, jamming reports, accurate
and complete design of the node physical package, etc.; for
the data link layer, proposed solutions include error
correcting codes, collision detection and avoidance
techniques, rate limiting etc.; for the network layer,
proposed solutions include link layer encryption and
authentication, multipath routing, identity verification and
authenticated broadcast, etc.; and for the transport layer,
proposed solutions include packet authentication [9, 19].
These solutions can avoid the communication threats but not
suitable for dealing with new challenges posed by high
volume and high velocity big data.

The server side data security is mainly proposed for
physical data center, when data is at rest and accessed
through applications. There are several potential attacks for
such data such as data interruption, interception, privacy
breach, impersonation, session hijacking, programming
flaws, software modification, software interruption,
defacement, disrupting communications, hardware
interruption, and hardware modification, etc. Several
solutions have been proposed to protect data and cloud
servers from such attacks such as privacy in multitenant
environment, data protection from disclosure, access
control, software security, service availability, access
control, application security, data security (e.g. data in
transit, data at rest, reminisce etc.), cloud management
control security, virtual cloud protection, hardware security,
and hardware reliability etc. [6, 13, 26, 27]. However, these
proposed solutions are tailored towards store-and-process
paradigm, hence not feasible for on-the-fly big data stream
processing.

Existing symmetric cryptographic based security
solutions for data security are based on either static shared
key or centralized dynamic key. In static shared key, we
need to have a long key to defend from a potential attacker.
Length of the key is always proportional to security
verification time. Based on the requirement of big data
stream processing (specified above), it is clear that security
verification should be done in real-time. For the dynamic
key management solution, centralized rekeying processing
and distribution of keys to all the sources is a time
consuming process. Big data stream is always continuous in

nature and often huge in volume. This makes it impossible
to pause the data movement while the rekeying, distribution,
and synchronization processes finish. To address this
problem, we are proposing a scheme for big data stream
security verification without the need of rekeying. The
benefits include reduction of the communication overhead
and increase in the efficiency of security verification
process at DSM.

Our proposed scheme is as follows: we use a common
shared key for both sensors and DSM. The key is updated
dynamically by generating synchronized prime numbers
without the need of having communication between them.
This reduces the communication overhead, as required by
Rekeying process of existing methods, without
compromising the security. Due to the reduced
communication overhead, our scheme performs the security
verification with minimum delay. The communication is
required at the beginning for the initial key establishment
and synchronization because DSM sends all the keys and
key generation properties to the sources in this step. There
is no further communication between the source sensor and
DSM after handshaking, which increases the efficiency of
the solution. Based on the shared key properties, individual
source updates their dynamic key independently.

IV. DYNAMIC PRIME-NUMBER BASED SECURITY

VERIFICATION– DPBSV

This section describes the DPBSV scheme. Similar to
any secret key based symmetric key cryptography, DPBSV
scheme consists of 4 independent components: system
setup, handshaking, rekeying, and security verification.
Table 1 provides the notations used in describing scheme.
We next describe the scheme in details.

Table 1. Notations

Acronym Description

𝑆𝑖 ith Sensor’s ID.

𝐾𝑖 ith Sensor’s Secret key.

𝐾𝑠𝑖 ith Sensor’s Session Key.

𝐾𝑒𝑛𝑐 Generated Key for the Authentication.

𝐾𝑆𝐻 Secret shared key of Sensors and DSM

𝐾/𝐾′ Encrypted with Sensor’s Secret key for

User Authentication.

𝐶/𝐶′/𝐶′′ Calculated hash Value.

𝑟 Random Number Generated by Sensors.

𝑡 Interval time to generate the prime number.

𝑃𝑖 Random prime Number.

𝐾𝑑 Secret key of the DSM.

𝐼𝐷 Encrypted Data for Integrity Check.

𝐴𝐷 Secret Key for Authenticity Check.

𝐸() Encryption Function.

𝐻() One-way Hash Function.

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Prime number generation Function.

KeyGen Key Generation procedure.

⊕ Bitwise X-OR operation.

∥ Concatenation Operation.

𝐷𝐴𝑇𝐴 Fresh Data at Sensor before Encryption.

A. DPBSV System setup

We have made a number of realistic and practical
assumptions while defining our scheme. First, we assume
that DSM has all deployed sensor’s identities (IDs) and
secret keys because the network is fully untrusted. We allow
increased number of key exchanges between the sensors and
DSM for the initial session key establishment process to
achieve stronger security. Our aim is to make this session
more secure because we transmit all the secret information
of key generation to sensors. Second, we assume that each
sensor node Si knows the identity of its DSM.
Step 1: A sensor (Si) generates a random number r and
sends it to the DSM with its identity as {Si, r}. There are n
numbers of sensors deployed and those are S1, S2, S3, ..., Sn and
Si is the id of ith sensor. In our scheme, sensors do not
communicate between each other to reduce the
communication overhead. Proposed scheme also updates
the dynamic shared key on both ends to prevent potential
attacks from traffic behavior analysis.
1. Si → DSM: {Si, r}.

Step 2: Once the DSM receives the request from a sensor,

it retrieves the corresponding sensor’s secret key, i.e., 𝐾𝑖 ←
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆𝑖) first and then DSM selects a random

session key 𝐾𝑠𝑖 i.e. 𝐾𝑠𝑖 ← 𝑟𝑎𝑑𝑜𝑚𝑑𝐾𝑒𝑦(). In order to share

this session key with corresponding sensor (Si), DSM

generates a key based on a selected session key and

corresponding sensor’s private key 𝐾𝑒𝑛𝑐 = 𝐾𝑠𝑖 ⊕ 𝐾𝑖 .

Following the generated key (𝐾𝑒𝑛𝑐) DSM encrypts the

generated key with the session key 𝐾 = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐) and

it performs the hash function 𝐶 = 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟) .
Finally, DSM sends the value of C and 𝐾𝑒𝑛𝑐 to Si.

𝐾𝑒𝑛𝑐 = 𝐾𝑠𝑖 ⊕ 𝐾𝑖 , from random selected session key 𝐾𝑠𝑖 .
𝐾 = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐)
𝐶 = 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟)

2. Si ← DSM: { 𝐶, 𝐾𝑒𝑛𝑐}

Step 3: Corresponding sensor gets its session key 𝐾𝑒𝑛𝑐
based on its own secret key 𝐾𝑠𝑖 = 𝐾𝑒𝑛𝑐 ⊕ 𝐾𝑖 and finds out
the value of 𝐾′ based on the value of 𝐾𝑠𝑖 and 𝐾𝑒𝑛𝑐 , i.e. 𝐾′ =
𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐). Next it computes the hash 𝐻(𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟)
and checks whether or not it is equal to C. If the hashes are
equal and 𝐾 = 𝐾′, Si can authenticate DSM. However, if it
is not equal, then Si ends the protocol. Following the
authentication, it transmits 𝐶′ = 𝐻(1 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟) to
DSM as follows.
𝐾𝑠𝑖 = 𝐾𝑒𝑛𝑐 ⊕ 𝐾𝑖 , to extract the session key for won.
𝐾′ = 𝐸𝑘(𝐾𝑠𝑖 , 𝐾𝑒𝑛𝑐)
𝐶′ = 𝐻(1 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾′ ∥ 𝑟)
3. Si → DSM: { 𝐶′}.
Step 4: After receiving 𝐶′, DSM compares it with 𝐻(1 ∥
𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟) to check whether or not they are equal. If they
are equal, DSM authenticates Si. Otherwise, the protocol is
terminated. After authentication by DSM and sensor, DSM
and S can share the session key 𝐾𝑠𝑖 and 𝐶′′ = 𝐻(2 ∥ 𝐾𝑒𝑛𝑐 ∥
𝐾 ∥ 𝑟).
𝐶′′ = 𝐻(2 ∥ 𝐾𝑒𝑛𝑐 ∥ 𝐾 ∥ 𝑟)

4. Si ← DSM: { 𝐶′′}

B. DPBSV Handshaking
DSM sends its all properties to sensors {S1, S2, S2, …,

Sn} based on their individual session key. Generally, the
larger the prime number of secret shares used in the pairwise

key establishment process, the better security will the
pairwise key achieve. However, using a larger prime
number for the secret shares requires a greater computation
time. In order to make the security verification lighter and
faster, we reduce the prime number size. The dynamic prime
number generation function is defined in Theorem 2
(described later in this paper). We calculate the prime
number on both sensor and DSM sides to reduce
communication overhead and minimize the chances of
disclosing the shared key.
Step 5: 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) computes the relative prime number on
both sides with a time interval t. In the handshaking process,
it transmits all its procedures to generate the key and prime
number such as (𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛).

5. Si ← DSM: {𝐾𝑑, 𝑡, 𝑃𝑖, 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖), 𝐾𝑆𝐻, 𝐾𝑒𝑦𝐺𝑒𝑛}

In this step, DSM sends all the parameters and properties
of KeyGen to source sensors. The transferred information
stored in trusted part of sensor (e.g., TPM).

C. DPBSV Rekeying

We propose a novel rekeying mechanism that calculates
prime numbers dynamically on both source sensors and
DSM independently. In the proposed scheme, small size of
the key leads to faster security verification. However, a
small key size can be relatively easy to crack. To counter
this issue, the key pair is periodically updated. In the event
of key compromise at sensors, DSM undertakes key
resynchronization process with the sensor as described next.
The source sensor executes the step 3 to reinitialize and
resynchronize key pair with the DSM. We assume that the
secret key information is managed by the senor in a trusted
fashion such as by employing the TPM hardware.

In the following, we are presenting an alternative
approach to rekeying and the corresponding analysis in
terms of efficiency.
Step 6: The above defined DPBSV Handshaking process
relays information related to the Prime (Pi) and KeyGen to
the sensors. We next describe the secure data transmission
and verification process based on above functions and keys.
As mentioned above, the proposed scheme applies the
synchronized dynamic prime number generation Prime (Pi)
on both sides, i.e., sensors and DSM. At the end of the
handshaking process, sensors have their own secret keys,
initial prime number and initial shared key generated by the
DSM. The next cycle of prime generation process is based
on the value of the prime number and the specified time
interval. Sensors generate the shared key 𝐾𝑆𝐻 =
𝐻(𝐸(𝑃𝑖 , 𝐾𝑑)) using the prime number 𝑃𝑖 and DSM secret

key 𝐾𝑑. Each data block is associated with the
authentication tag and contains two different parts. First is
the encrypted DATA based on its secret key 𝐾𝑖 and shared
key 𝐾𝑆𝐻 for integrity checking (i.e., 𝐼𝐷 = 𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕
𝐾𝑖), and the second part is concerned with the authenticity
checking (i.e., 𝐴𝐷 = 𝑆𝑖 ⊕ 𝐾𝑆𝐻). The resulting data block

is: ((𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) ∥ (𝑆𝑖 ⊕ 𝐾𝑆𝐻)).

𝐼𝐷 = 𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖

𝐴𝐷 = 𝑆𝑖 ⊕ 𝐾𝑆𝐻

6. Si → DSM: { 𝐻(𝐼𝐷 ∥ 𝐴𝐷)}.

D. DPBSV Security Verification

According to the features of big data stream, security
verification should be performed in real time (with minimal

delay). The following step shows the verification model.
Next step explains how the DSM verifies the authenticity
and integrity of each or selected data block.
Step 7: The DSM verifies whether the data was modified
while in transit and it was sent by an authenticated sensor
node. The DSM first checks the authenticity and integrity of
specific data block 𝐴𝐷. The approach selects next block to
be checked for authenticity and integrity based on specified
random interval such as 𝐼𝐷 (configurable variable). This
random variable is calculated based on the corresponding
prime number i.e. 𝑗 = 𝑃𝑖% 7. The calculated values vary
from 0 to 6, i.e., the maximum interval of 6 blocks and if the
value of j is 0, then it will verify every data block. For the
authenticity check, the DSM decrypts 𝐴𝐷with shared
key 𝑆𝑖 = 𝐴𝐷 ⊕ 𝐾𝑆𝐻. Once Si is obtained, the DSM checks
its source database and extracts the corresponding secret key
𝐾𝑖 for the integrity check according to the value of j.
Given 𝐾𝑖 , the DSM decrypts data and checks MAC for
integrity check 𝐷𝐴𝑇𝐴 = 𝐼𝐷 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖 .

𝑆𝑖 = 𝐴𝐷 ⊕ 𝐾𝑆𝐻
𝐷𝐴𝑇𝐴 = 𝐼𝐷 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖

V. SECURITY ANALYSIS OF DPBSV

In this section, we provide theoretical analysis of the
proposed scheme and prove that it can ensure both
authenticity and integrity of streaming data.

A. Security Proof

Assumption 1: No one can decrypt data that was encrypted

by a symmetric-key algorithm, unless it has the

session/shared key which was used to encrypt the data by

the sensor.

Assumption 2: DSM is deployed on a trusted server.

Assumption 3: Sensor’s secret key, Prime (Pi) and secret

key calculation procedures are deployed on the trusted

hardware such as TPM, hence they are safe from intruders.

Similar to most cryptological analysis of public-key

communication protocols, we now define the attack models

for the purpose of verifying the authenticity and integrity.

Definition 1 (attack on authentication): A malicious

attacker Ma is an adversary who is capable of monitoring,

intercepting, and introducing itself as an authenticated

source node which can send data streams to the DSM.

Definition 2 (attack on integrity): A malicious attacker Mi

is an adversary capable of monitoring the data stream and

is able to modify the stream while it is in transit.

Theorem 1: The security is not compromised by reducing

the size of shared secret key (𝐾𝑆𝐻).

Proof: We reduce the size of the prime number to make the

key generation process faster and efficient. The ECRYPT

II recommendations on key length say that 128-bit

symmetric key provides the level of protection as a 3,248-

bit asymmetric key. Smaller keys can also provide desired

security levels as long as it is not shared publically.

Advanced processor (Intel i7 Processor) takes about 1.7

nanoseconds to try out one key from one block. With this

speed it would take about 1.3 × 1012 × the age of the

universe to check all the keys from the possible key set [8]

of asymmetric scheme. By reducing the size of the prime

number; we speed up the security verification process at

DSM (see Table 2). As shown in Table 2, 64 bit symmetric

key takes 3136e +19 nanoseconds (more than a month), so

we safely concluded that updating the prime number every

week (i.e. t=168 hours) will not compromise the security

of the system. Dynamic shared key is computed based on

the prime number. Hence we conclude that attacker cannot

crack the shared key within the interval time t. Further, the

shared key is updated without exchanging information

between the sensors and DSM. This leads to confusion for

the adversaries who may try to intercept the data flow. The

key has been already changed four times before an attacker

knows the key and this knowledge is not known to the

attackers.

Table 2. Notations Symmetric key (AES) algorithm takes time to get all

possible keys using most advanced Intel i7 Processor.

Key Length 8 16 32 64 128

Key domain

size

256 65536 4.295e

+09

1.845e

+19

3.4028e

+38

Time (in

nanosecond)

1435 1e+05 7.301e

+09

3136e

+19

5.7848e

+35

Theorem 2: Dynamically generated prime number Pi in

Algorithm I is always synchronized between the source

sensors (Si) and DSM.
Proof: The normal method to check the prime number is

6k+1, ∀k∈ N+ (an integer). Here, we initially initialize the

value of k based on this primary test formula. Our prime
generation method is based on the nth prime number
generation and from the extended idea of [3]. In our scheme,
the input Pi is the currently used prime number (initialized
by DSM) and the return Pi is the calculated new prime
number. Intially Pi is intianized by DSM at DPBSV
Handshaking process and the interval time is t.

ALGORITHM I. DYNAMIC PRIME NUMBER GENERATION

Prime (𝑷𝒊)

1. 𝑃𝑖−1 = 𝑃𝑖

2. Set 𝑘 ∶= ⌈
𝑃𝑖−1

6
⌉

3. Set 𝑚 ∶= 6𝑘 + 1

4. If 𝑚 ≥ 107 then

5. 𝑘 ∶= 𝑘
105⁄

6. GO TO: 3

7. If S(𝑚) = 1 then

8. GO TO: 14

9. Set 𝑚 ∶= 6𝑘 + 5

10. If S(𝑚) = 1 then

11. GO TO: 14

12. 𝑘 ∶= ⌊𝑘3 + √𝑘⌋ 𝑚𝑜𝑑 17 + 𝑘

13. GO TO: 3

14. 𝑃𝑖 = 𝑚

15. Return (𝑃𝑖) // calculated new prime number

From the Algorithm I, we calculate the new prime
number 𝑃𝑖 based on the previous one 𝑃𝑖−1. The complete
process of the prime number calculation is based on the
value of m and m is initialized from the value k. The value
of k is constant at source because it is calculated from
current prime number. This process is initialized during
DPBSV Handshaking. Since the value of k is the same on
both sides, the procedure Prime (Pi) returns identical values.
In Algorithm I, the value of S(m) computed as below [3].

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘+1
⌋ −

𝑥

6𝑘+1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1

S2(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘−1
⌋ −

𝑥

6𝑘−1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1

𝑆(𝑥) =
S1(x)+S2(x)

2

If 𝑆(𝑥) = 1 then x is prime, otherwise x is not a prime.

𝑥 ≢ 0 𝑚𝑜𝑑 𝑖 ∀ 1 ≤ i ≤ x − 1, if x is prime

Then put the value of x as a prime number, then

⇒ ⌊⌊
x

6k+1
⌋ −

x

6k+1
⌋ = −1

Same as ⌊⌊
x

6k−1
⌋ −

x

6k−1
⌋ = −1

∀ k within the specified range i.e 107, then

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ (−1)
⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1 = 1

Same S2(𝑥) is also 1 and then

 𝑆(𝑥) =
S1(x)+S2(x)

2
= 1

Hence, the property of 𝑆(𝑥) is proved.

Theorem 3: An attacker Ma cannot read the secret

information from sensor node (Si) or introduce itself as an

authenticated node in DPBSV.

Proof: Following Definition 1, we know that an attacker Ma

can gain access to the shared key 𝐾𝑆𝐻 by monitoring the

network thoroughly, but Ma cannot get secret information

such as Prime (Pi) and KeyGen. Considering the

computational hardness of secure module (such as TPM),

we know that Ma cannot get the secret information for Pi

generation, Ki and KeyGen. So there are no possibilities for

the malicious node to tap into the data stream, however Ma

can introduce himself/ herself as the authenticated node and

start sending false information to DSM. In our scheme,

sensor (Si) sends((𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) ∥ (𝑆𝑖 ⊕ 𝐾𝑆𝐻)),

where the second part of the data block (𝑆𝑖 ⊕ 𝐾𝑆𝐻) is used

for authentication check. DSM decrypts this part of the data

block for authentication check. DSM retrieves Si after

decryption and matches the corresponding Si within its

database. If the calculated Si matches with the DSM

database, it accepts; otherwise it rejects the node as source

and marks it is not an authenticated sensor node. All

required secured information for prime number and key

generation procedure are stored at trusted part of the sensor

node (i.e., TPM). According to the features of TPM, the

attacker cannot get the information from TPM as discussed

before. Hence we conclude that attacker Ma cannot attack

or get access to the big data stream.

Theorem 4: An attacker Mi cannot read the shared key 𝐾𝑆𝐻

within the time interval t in DPBSV model.

Proof: Following Definition 2, we know that an attacker Mi

has full access to the network to read the shared key 𝐾𝑆𝐻,

but Mi cannot get correct secret information such as KSH.

Considering the method described in Theorem 1, we know

that Mi cannot get the currently used KSH within the time

interval t, because our proposed scheme calculate Pi

randomly after time t and then use the value Pi sensor to

generate KSH. For more details on computation analysis,

readers can refer to Theorem 1.

VI. EXPERIMENT AND EVALUATION

In order to evaluate the efficiency and effectiveness of

the proposed DPBSV scheme under the adverse conditions,

we observe each individual data blocks for authentication

check and selected data blocks for integrity attacks. The

integrity attack verification interval is dynamic in nature

and the data verification is done at the DSM only.

To validate our proposed scheme, we experimented

with two different approaches by using different simulation

environments. We first verify the security scheme using

Scyther [14], and then measure the efficiency of the scheme

using JCE (Java Cryptographic Environment) [15].

A. Security Verification

The scheme is written in Scyther simulation

environment using Security Protocol Description Language

(.spdl). According to the features of Scyther, we define the

role of S and D, where S is the sender (i.e., sensor nodes)

and D is the recipient (i.e., DSM). Next, S and D have all

the required information that are exchanged during the

handshake process. This enables D and S to update their

shared key. S sends the data packets to D and D performs

the security verification. In our simulation, we introduce

two types of attacks by the adversaries. The first type of

attack is defined for the transmission between S and D

(integrity) and the second attack is defined where an

adversary acquires the property of S and sends the attack

data packets to D (authentication). In our experiments, we

evaluated all packets at D (DSM) for security verification.

We experimented with 100 numbers of runs for each claim

(also known as bounds) and found out the number of

attacks at D as shown in Figure 2. Apart from these, we

follow the default properties of Scyther.

Attack model: Many types of cryptographic attacks can be

considered. In our case, we focus on integrity attack and

authentication attack as discussed above. In integrity

attack, an attacker can only observe encrypted data

blocks/packets being transmitted over the network, that

contain information about sensed data as shown in Figure

1. The attacker can perform a brute force attack on captured

packets by systematically testing every possible keys, and

we assumed that he/she is able to determine when the attack

is successful. In authentication attack, an attacker can

observe source node, and try to get the behavior of the

source node. We assume that he/she is able to determine the

source node’s behavior. In such case, the attacker can

introduce an authenticated node and act as the original

source node. In our concept, we are using trusted module

in sensor to store the secret information and procedure for

key generation and encryption (such as TPM).

Experiment model: In practice, attacks may be more

sophisticated and efficient than brute force attacks.

However, this does not affect the validity of the proposed

DPBSV scheme as we are interested in efficient security

verification without periodic key exchanges and successful

attacks. Here, we model the process as described in the

previous section and fixed the key size 64 bits (see Table

2). We used Scyther an automatic security protocols

verification tool to verify our proposed scheme.

Figure 2. Scyther simulation environment with parameters and result page

of success security verification at DSM.

Results: We did our simulation using the variable

numbers of data block in each run. Our experiment ranges

from 10 to 100 instances with 10 intervals. We check

authentication for each data block, whereas the integrity

check is performed on the selected data blocks. As our

secure information such as 𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖), 𝐾𝑆𝐻 ,
𝐾𝑒𝑦𝐺𝑒𝑛 are stored within the trusted module of the sensor,

no one can get access to those information except the

corresponding sensor. Without these information, attackers

cannot authenticate encrypted data blocks. Hence, we did

not find any attacks for authentication check. For integrity

attacks, it is hard to get shared key (𝐾𝑆𝐻), as we are

frequently changing the shared key (𝐾𝑆𝐻) based on the

dynamic prime number 𝑃𝑖 on both source sensor (𝑆𝑖) and

DSM. In the experiment, we did not encounter any attack

in integrity check. Figure 2 shows the result of security

verification experiments in Scyther environment. This

shows that our scheme is secured from integrity and

authentication attacks. From the observations above, we

can conclude that our proposed scheme is secure.

B. Performance Comparison

Experiment model: It is clear that the actual efficiency

improvement brought by our scheme highly depends on the

size of key and rekeying without further communication

between sensor and DSM. We have performed experiments

with different size of data blocks. The results of our

experiments are given below.

We compare the performance of our proposed scheme

DPBSV with advanced encryption standard (AES), the

standard symmetric key encryption algorithm [1, 2]. Our

scheme was compared with two standard symmetric key

algorithms: 128-bit AES and 256-bit AES. This

performance comparison experiment is carried out in JCE

(Java Cryptographic Environment). We compared the

processing time with different data block size. This

comparison is based on the features of JCE in java virtual

machine version 1.6 64 bit. JCE is the standard extension

to the java platform which provides a framework

implementation for cryptographic method. We

experimented with many-to-one communication. All

sensors node communicate to the single node (DSM). All

sensors have the similar properties whereas the destination

node has the properties of DSM (more powerful to initialize

the process). The rekey process is executed at all the nodes

without any intercommunication. Processing time of data

verification is measured at DSM node. Our experimental

results are shown in Figure 3; the result validates the

theoretical analysis presented in section IV.

Figure 3. Performance of proposed scheme compared in efficiency to 128
bit AES and 256 bit AES.

Results: The performance of our scheme is better than

the standard AES algorithm when different sizes of the data

blocks are considered. Figure 3 shows the processing time

of the proposed DPBSV scheme in comparison with base

128-bit AES and 256-bit AES for different size of the data

blocks. The performance comparison shows that our

proposed scheme is more efficient and faster than the

baseline AES protocols.

From the above two experiments, we conclude that our

proposed DPBSV scheme is secured (from both

authenticity and integrity attacks), and efficient (compare

to standard symmetric solutions such as 128/256-bit AES).

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a novel authenticated
key exchange scheme, namely Dynamic Prime-Number
Based Security Verification (DPBSV), which aims to
provide efficient and fast (on-the-fly) security verification
scheme for big data stream. Our scheme has been designed
based on the symmetric key cryptography and random
prime number generation. By theoretical analyses and
experimental evaluations, we showed that our DPBSV
scheme has provided significant improvement in the
processing time, and prevented malicious attacks on
authenticity and integrity. In our scheme, we decrease the
communication and computation overhead by dynamic key
initialization at both sensor and DSM end, which in effect
eliminates the need of rekeying and decreases the
communication overhead. We plan to pursue a number of
research avenues in future. The foremost is to perform a
comparative study of our work with other techniques like
RC4, RC6. We will further investigate using the technique to
develop a moving target defense strategy for the Internet of
Things.

VIII. ACKNOWLEDGEMENT

This research is funded by Australia India Strategic
Research Grant titled "Innovative Solutions for Big Data
and Disaster Management Applications on Clouds (AISRF-
08140)" from the Department of Industry, Australia.

REFERENCES

[1] PUB, NIST FIPS. "197: Advanced encryption standard

(AES)." Federal Information Processing Standards

Publication 197, pp. 441-0311, 2001.

[2] S. Heron, "Advanced Encryption Standard (AES)." Network

Security 2009(12) pp. 8-12, 2009.

[3] I. Kaddoura and S. Abdul-Nabi, "On formula to compute primes and

the nth prime." Applied Mathematical science, 6(76), pp.3751-3757,

2012.
[4] R. V. Nehme, et al., "StreamShield: a stream-centric approach

towards security and privacy in data stream environments." In ACM

SIGMOD, pp. 1027-1030, 2009.
[5] I. F. Akyildiz, et al., "Wireless sensor networks: a survey." Computer

networks, 38(4), pp. 393-422, 2002.

[6] M. Benantar, R. H. High Jr, and M. K. Rathi, "Method and system
for maintaining client server security associations in a distributed

computing system." U.S. Patent 6,141,758, October 31, 2000.

[7] J. Burke, J. McDonald, and T. Austin, "Architectural support for fast
symmetric-key cryptography." ACM SIGOPS Operating Systems

Review 34(5), pp. 178-189, 2000.

[8] www.cloudflare.com (accessed on: 04.08.2014)
[9] D. Puthal, "Secure Data Collection and Critical Data Transmission

Technique in Mobile Sink Wireless Sensor Networks. " M.Tech

Thesis, National Institute of Technology, Rourkela, 2012.
[10] R. Ranjan, "Streaming Big Data Processing in Datacenter

Clouds." IEEE Cloud Computing, 1(1), pp. 78-83, 2014.

[11] S. Nepal, J. Zic, D. Liu, and J. Jang, "A mobile and portable trusted
computing platform." EURASIP Journal on Wireless

Communications and Networking, 2011(1), pp. 1-19, 2011.

[12] V. Gulisano, et al., "Streamcloud: An elastic and scalable data
streaming system.” IEEE Transactions on Parallel and Distributed

Systems," 23(12), pp. 2351-2365, 2012.
[13] B. R. Kandukuri, V. R. Paturi, and A. Rakshit, et al., "Cloud security

issues." IEEE International Conference on Services Computing,

(SCC'09), pp. 517-520, 2009.
[14] Scyther,[Online] ttp://www.cs.ox.ac.uk/people/cas.cremers/scyther/

[15] M. Pistoia, et al., "Enterprise Java 2 Security: Building Secure and

Robust J2EE Applications." Addison Wesley Professional, 2004.
[16] D. Carney, et al., "Monitoring streams: a new class of data

management applications." In Proceedings of the 28th international

conference on Very Large Data Bases, pp. 215-226, 2002.
[17] S. Chandrasekaran, et al., "TelegraphCQ: continuous dataflow

processing." In Proceedings of the ACM SIGMOD international

conference on Management of data, pp. 668-668, 2003
[18] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain., "Cloud

Computing Features, Issues, and Challenges: A Big Picture."

In International Conference on Computational Intelligence and
Networks (CINE), pp. 116-123, 2015.

[19] D. Puthal, and B. Sahoo. "Secure Data Collection & Critical Data

Transmission in Mobile Sink WSN: Secure and Energy efficient data
collection technique" LAP Lambert Academic Pubilishing:

Germany, 2012. ISBN: 978-3-659-16846-8.

[20] M. Stonebraker, U. Çetintemel, and S. Zdonik, "The 8 Requirements
of Real-Time Stream Procesing." ACM SIGMOD Record, 34(4), pp.

42-47, 2005.

[21] H. Demirkan and D. Delen, "Leveraging the capabilities of service-
oriented decision support systems: Putting analytics and big data in

cloud." Decision Support Systems,55(1), pp. 412-421, 2013.

[22] A. Bifet, "Mining big data in real time." Informatica (Slovenia),
37(1), pp. 15-20, 2013.

[23] J. Lu, and D. Li, "Bias correction in a small sample from big data."

IEEE Transactions on Knowledge and Data Engineering, 25(11),
pp. 2658-2663, 2013.

[24] J. M. Tien, "Big data: unleashing information." Journal of Systems

Science and Systems Engineering, 22(2), pp. 127-151, 2013.
[25] M. Dayarathna and T. Suzumura, "Automatic optimization of stream

programs via source program operator graph transformations."

Distributed and Parallel Databases, 31(4), pp. 543-599, 2013.
[26] D. Zissis, and D. Lekkas, "Addressing cloud computing security

issues." Future Generation Computer Systems 28(3) pp. 583-592,

2012.
[27] C. Liu, et al., "CCBKE-Session key negotiation for fast and secure

scheduling of scientific applications in cloud computing." Future

Generation Computer Systems 29(5) pp. 1300-1308, 2013.
[28] K. W. Park, S. S. Lim, and K. H. Park, "Computationally efficient

PKI-based single sign-on protocol, PKASSO for mobile

devices." IEEE Transactions on Computers, 57(6), pp. 821-834,
2008.

