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he Internet of Things (IoT) promises to create a world 
where everyday objects (things) are connected to the In-
ternet, either directly or through intermediate devices, 
and communicate with each other with minimum hu-
man intervention.1 The ultimate goal is to create “a bet-
ter world for human beings,” where the objects around 

us know what we like, what we want, and what we need, and then act 
accordingly without explicit instructions. IoT lets people and things be 
connected anytime, anyplace, with anything and anyone, ideally using 
any path/network and any service.2 

The current IoT marketplace clearly includes two broad categories 
of products and solutions.3 Most of the products target individual cus-
tomers (such as smart-home owners), who might expect comfort and 
convenience through some kind of automation. For example, WeMo 
is a Wi-Fi enabled switch that can be used to turn electronic devices 
on or off from anywhere.3 Another example is Nest, a thermostat that 
learns what temperatures users like and builds a context-aware person-
alized schedule to automatically control the household temperature.3 
The second product group focuses on supporting business activities by 
collecting and analyzing sensor data in enterprise and industrial do-
mains. The potential clients for these products are mostly companies, 
not individual customers. For example, SenseaAware supports real-
time shipment tracking.3 Context information such as location, tem-
perature, light, relative humidity, and biometric pressure is collected 
and processed to enhance supply chain visibility. Another example, 
ParkSight, is a parking management technology designed for cities that 
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retrieves context information through sensors (mag-
netometers) embedded in parking slots.3

Although the distinction between these two 
categories can sometimes be vague, we can identify 
some unique characteristics. The main unique char-
acteristic is the target audience. In the first product 
category, potential clients are individual customers 
(that is, families). As a result, the data generated 
by the products should ideally belong to individual 
product owners. In contrast, the second product 
category targets enterprise customers. The data gen-
erated by this kind of solution might belong to the 
client company that bought the solution. 

There are two important facts to highlight from 
the above discussion. First, it’s important to under-
stand that different IoT solutions capture different 
types of sensor data in different contexts (such as 
households, factories, or roads). Some IoT products 
might capture more privacy-sensitive information (for 
example, individual-customer-focused products) and 
others might capture less (for example, enterprise- or 
industry-focused products). The second important 
fact is that these IoT products typically focus on 
achieving a single objective and data always move 
within the solution boundaries. Therefore, because 
the data doesn’t leave the product boundaries, the 
privacy risks related to these products are limited.

Despite these observations, a significant amount 
of useful knowledge and insight can always be de-
rived by combining, processing, and analyzing the 
data collected by different IoT products.4 For exam-
ple, analysis of data collected by multiple data own-
ers together can yield greater value than analyzing 
them separately. This type of data sharing approach 
is broadly referred to as sensing as a service.4 The 
sensing-as-a-service business model is driving open 
big data markets. However, despite the potential 
value of such data sharing and knowledge discov-
ery, such approaches can incur significant privacy 
risks. This article highlights the value of data shar-
ing through open big data markets powered by the 
sensing-as-a-service model and provides design di-
rections for ensuring end-to-end privacy. 

Toward Liberated IoT Big Data
The sensing-as-a-service business model supports 
data exchange between data owners and data con-
sumers.4 Data owners purchase IoT products and 

deploy them in their own environments. These IoT 
products sense, analyze, and perform actuation to 
make the data owners’ lives easier. As a by-product, 
the collected data is kept in access-restricted stor-
age (usually referred as a data silo). Data consumers 
are entities that would like to access other peoples’ 
data for some reason. For example, a data analyst in 
an energy company might want to know how many 
energy-inefficient legacy devices are used in a cer-
tain area. In this case, the data analyst isn’t inter-
ested in a particular household, but a whole set of 
households. (We’ll discuss different use case sce-
narios later in this article.) The presence of many 
data owners and potential data consumers creates 
an open data market. In this market, data might not 
be freely available for anyone to access; rather, only 
the metadata would be. Metadata would allow data 
consumers to understand what kind of data is stored 
in the silo. Interested data consumers must evalu-
ate available metadata schemes and negotiate with 
the relevant data owners to gain access to their data. 
The sensing-as-a-service model primarily uses data 
generated by IoT products. 

Data collected by different IoT products has a 
significant value when aggregated and processed 
on a large scale (for example, data collected from 
10,000 households, where each house has 10 dif-
ferent IoT products). We discuss the details of sens-
ing as a service elsewhere, and identify and analyze 
different types of data owners, consumers, and me-
diator service providers.4 Although we haven’t yet 
explicitly discussed the potential privacy issues, you 
can imagine how privacy violation could occur in 
this type of data sharing environment.

Motivation for End-to-End Privacy 
Protection
To understand the significance of privacy challenges 
in the IoT domain, it’s important to visualize how 
each concept presented so far would work in the real 
world. Figure 1 illustrates the use case.

Let’s introduce an example to help with our dis-
cussion. Jane is a restaurant manager who works 
different shifts. She lives alone in her own house. 
She has purchased (and deployed) three different 
IoT products in her house. The first is a context-
aware thermostat that controls indoor temperature 
based on user preferences. She also has a smart 
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coffee machine that automatically switches on and 
brews coffee when she gets up in the morning so by 
the time she arrives in the kitchen, coffee is ready 
for her. The third product is a smart activity moni-
tor that tracks her exercise patterns, food intake, 
step counts, goals, and so on. Jane purchased and 
deployed these three products separately, and they 
work independently.

Data could move within these IoT solutions in 
different ways, depending on their functionalities 
and user requirements. Consider IoT products such 
as smart thermostats. These products learn user 
preferences over time and attempt to automatically 
actuate the heaters to control temperature. For this 
kind of actuation, the data collected by the product 
doesn’t need to leave the house itself. Therefore, a 
small computer system built into the product (or us-
ing a Home Hub3) can process the data. These prod-
ucts use their own sensors to sense the environment 
and process the data within the household. Then, 
they actuate the actuators to perform certain tasks. 
We denote this type of dataflow in Figure 1 as A.

We can illustrate another type of dataflow us-
ing activity-monitoring health kits. These IoT prod-
ucts use their sensors to sense the environment and 
perform a certain amount of processing and actuat-
ing (for example, visualization and presentation, or 
notification). However, for further processing, some 
part of the data will need to be sent to the cloud ser-
vices maintained by the product manufacturer. The 
purpose and advantage of such dataflow is that IoT 
product manufacturers can process data retrieved 
from a large number of users and give useful in-
sights to the product owners in return. For example, 
if the data stays local, Jane will only be able to learn 
about her past, present, and future results based on 
her own data, which might not be very useful. How-
ever, if Jane lets her data be shared with the product 
manufacturer’s service, she can compare her per-
formance to similar users (for example, same age, 
weight, height, job, or workout patterns). Because 
the IoT product manufacturers access data from a 
large number of users, they can build more accurate, 
holistic, and comprehensive prediction models to 
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FIGURE 1. Open data market supported by the sensing-as-a-service model. Internet of Things-generated open data is ambient in 

every sphere of our lives, including smart logistics, smart homes, and remote healthcare. 
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support not only Jane but also others. This will cre-
ate a community of users who share mutually benefi-
cial IoT generated data. Jane would receive a benefit 
in return (money, a coupon, points on a shopping 
card, and so on) for giving her data to the IoT prod-
uct manufacturer. However, at the same time, such 
dataflows involve potential privacy risks. We denote 
this type of dataflow in Figure 1 as B.

In the sensing-as-a-service model, another type 
of dataflow lets data owners, like Jane, give access 
to their data to a third party other than the respec-
tive IoT product manufacturer. We denote this 
type of dataflow in Figure 1 as C. Figure 1 shows 
TastyCoffee, a manufacturer of coffee products 
that’s keen to know how people like Jane consume 
coffee (such as patterns and amounts). The com-
pany wants to know whether any external factors 
influence coffee consumption, such as weather, 
temperature, and workout patterns. For example, 
TastyCoffee would like to discover any consumer 
patterns (such as whether people tend to drink cof-
fee before a workout). Currently, the only way the 
company can discover this type of information is 
through user surveys and focus group studies. How-
ever, such methods are time consuming, often in-
accurate, and expensive. If TastyCoffee can access 
Jane’s silo (along with those of thousands of simi-
lar users), which consists of data recorded from all 
three of her IoT products (smart thermostat, smart 
coffee machine, and activity-monitoring products), 
it will be able to understand Jane’s activities (and 
those of thousands of similar users) better and op-
timize its product supply chain. Such optimization 
will allow TastyCoffee to reduce its costs and wast-
age, which would increase the company’s profits. 

Further, such data will help TastyCoffee im-
prove its product lines and introduce new products 
to the market rapidly, which will also strengthen its 
brand value. Because of the additional value Tasty-
Coffee might generate, it can offer a reward to the 
data owners to motivate them to give access to their 
data. From Jane’s perspective, the additional reward 
would motivate her to trade her data not only with 
TastyCoffee, but also with other interested parties. 
This type of data trading creates more privacy risks 
than the two methods presented earlier. 

In the TastyCoffee scenario, the data will be 
traded based on commercial interests. However, data 
trading in the sensing-as-a-service model could oc-
cur in a nonprofit way as well. For example, a medi-
cal research facility might be interested in accessing 
the same data as TastyCoffee, but with the intention 
of conducting research into people’s well-being by 
analyzing the correlations between coffee consump-

tion, exercise patterns, weather, and indoor tempera-
ture. In this scenario, the medical research center 
wouldn’t be able to produce any direct financial prof-
it, but it could use the research results to come up 
with actionable advice. For example, it might advise 
that consuming more than four cups of coffee re-
duces the impact of exercise by 20 percent (note that 
this is an entirely made-up fact we use to illustrate 
how an actionable advice might look; it isn’t medical 
advice based on any scientific results), and pass along 
this advice to the data owners as a return.

Consider another example involving IoT products 
that we initially categorized as enterprise and indus-
trial solutions. BigTrucker is a distribution company 
that handles goods on behalf of its clients (for ex-
ample, it transports their goods between states). The 
company’s trucks are augmented with sensors, which 
periodically sense the environment and report back 
to the BigTrucker management center. BigTrucker 
uses this IoT solution to monitor employees’ health 
(such as work conditions over time), vehicle status 
(such as maintenance estimation), and the quality of 
the goods transported. However, interstate road au-
thorities might be interested in accessing this data 
to understand environmental pollution and road 
conditions. Such data could help the authorities 
understand any environmental issues or infrastruc-
ture maintenance issues that need to be addressed 
urgently. Instead of deploying their own sensor net-
works and installing solar-based power supplies, 
authorities might request data from BigTrucker. In 
return, BigTrucker might receive financial compen-
sation. In this scenario, data is traded between two 
parties, but the privacy risks involved are low be-
cause of the data’s public and industrial nature.

As indicated by these scenarios, technology’s re-
sponsibility is to support data trading in open data 
markets while protecting the privacy of all stake-
holders. This is a main technological challenge we 
face today. In the remainder of this article, we sur-
vey existing privacy-preserving strategies and design 
techniques that can be used to facilitate end-to-end 
privacy for open IoT big data markets.

Technologies for Privacy Preservation
So far we’ve discussed why data trading between 
parties is important and how such activities can 
create significant value to all the stakeholders in-
volved. At the same time, we implicitly highlighted 
why the privacy risk involved in such data trading 
is high. Here, we discuss how we can ensure that 
stakeholder privacy is protected when trading data 
by using existing privacy-preserving strategies and 
design techniques.
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Definition of Privacy
Before surveying privacy protection strategies and 
design technique in details, let’s briefly define “pri-
vacy.” Privacy is a concept in disarray, and it’s diffi-
cult to articulate. “Privacy is far too vague a concept 
to guide adjudication and lawmaking, as abstract 
incantations of the importance of ‘privacy’ do not 
fare well when pitted against more concretely stated 
countervailing interests.”5 One widely accepted defi-
nition, presented by Alan Westin, describes informa-
tion privacy as “the claim of individuals, groups or 
institutions to determine for themselves when, how, 
and to what extent information about them is com-
municated to others.”6 Roger Clarke has mentioned 
that “privacy is the interest that individuals have in 
sustaining a ‘personal space,’ free from interference 
by other people and organisations.”7

Sometimes privacy is explained with the help of 
different dimensions. Privacy of the person, privacy 
of personal behavior, privacy of personal commu-
nications, and privacy of personal data are the four 
main dimensions of privacy.7 The Oxford Dictionary 
defines privacy as “a state in which one is not ob-
served or disturbed by other people” (www.oxford-
dictionaries.com/definition/english/privacy). More 
importantly, both the European Convention and the 
Universal Declaration of Human Rights have identi-
fied privacy as a human right. Further, the Charter 
of Fundamental Rights of the European Union de-
fines the “respect for private and family life” in its 
Article 7 and adds a specific article on “protection 
of personal data” in Article 8. Additionally, Article 
12 of the Universal Declaration of Human Rights 

protects an individual from “arbitrary interference 
with his privacy, family, home or correspondence,” 
and “attacks upon his honour and reputation” (www.
un.org/en/documents/udhr). This evidence strongly 
justifies the need to protect user privacy while we’re 
attempting to harness the power of data trading and 
knowledge discovery to generate stakeholder value.

In parallel to the security protection goals, three 
goals have been proposed as primary privacy protec-
tion goals: unlinkability, transparency, and inter-
venability.8 Unlinkability explains that data from 
multiple data sources shouldn’t be combined in such 
a way that together they would violate user privacy. 

Transparency means that stakeholders must be in-
formed about the data life cycle and what happens 
to each data item over time. This can be achieved 
through both technical and nontechnical means 
such as auditing, laws, and regulations. Data own-
ers should know what types of data will be accessed, 
what types of data sources will be combined, where 
the data will be processed, what kinds of analytics 
will be used, what kinds of results will be generated, 
and so on. A step forward, intervenability says that 
data owners should be able to intervene at any time 
during the data life cycle so they can withdraw or 
change their consent at any time. More importantly, 
data owners should have control over their data all 
the time.

Phases in the Data Life Cycle
During the life cycle, data moves through different 
phases, as illustrated in Figure 2. Note that these 
phases are somewhat vague in the real world and 
the order could change depending on the context. 
Today, IoT data processing is moving from cloud 
computing to fog computing. The fog computing 
paradigm extends cloud computing and services to 
the edge of the network.9 Similar to the cloud, fog 
provides data, computation, storage, and application 
services to users. The distinguishing fog charac-
teristics are proximity to users, dense geographical 
distribution, and support for mobility. Processing 
data at the edge device avoids data communica-
tion and networking costs. Further, fog computing 
could reduce the potential for privacy violation (by, 
for example, processing smart-home data within 
the house itself). However, edge devices might have 
limited computational capacity, limited energy, and, 
more importantly, limited data and knowledge about 
a given context. To derive more insightful and use-
ful knowledge, data might need to be combined and 
processed together. Therefore, in IoT, data process-
ing location is a balancing act. 

We’ve grouped some commonly used devices in 
the IoT domain into a few categories, as Figure 3 
illustrates. This isn’t a formal categorization based 
on any strict criteria. However, it approximates the 
differences between groups in terms of device ca-
pabilities. The devices belonging to each category 

Data
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Consent and data
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Data
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Data
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Results
distribution

FIGURE 2. Different phases in a data life cycle including acquisition, transfer, storage, processing, and 

distribution.
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have different capabilities depending on processing, 
memory, and communication. They also differ in 
price, with the more expensive devices toward the 
left side of the figure. Computational capabilities 
also increase toward the left. Category 6 represents 
cloud computing; the other categories might act as 
edge devices depending on the context.

As might now be apparent, data transfer, stor-
age, and data processing could occur iteratively as 
the data moves from right to left. However, the tech-
nologies behind these phases would remain mostly 
the same. Therefore, we combine them into the 
above-mentioned phases, even though their actual 
execution sequences can vary depending on the fog 
network’s formation in a given context.

Privacy-Preserving Strategies and Design 
Techniques
Jaap-Henk Hoepman proposed several privacy-
preserving strategies and design techniques.10 These 
techniques can be applied to protect the IoT-generated 
data. Here, we briefly introduce those strategies from 
an IoT perspective, referring to different situations.

The minimize design strategy says that data con-
sumers should only ask for the minimum amount of 
data they require to achieve their objective.11 Typi-
cally, when data consumers ask for more data, it cre-
ates more risk for the data owners. As a result, data 
owners might be reluctant to trade their data. Ad-
ditionally, data owners might expect a higher reward 
to match the additional risk incurred. This design 
strategy comes into play in the consent and data ac-
quisition phase. In the sensing-as-a-service domain, 
negotiation will need to take place to reduce the 
amount of data that’s being traded between parties 
by considering the associated risk and rewards. For 
example, if TastyCoffee wants to identify any pat-
tern of coffee consumption and weather, it shouldn’t 
request any data related to motion sensors deployed 
in Jane’s house. The smart coffee machine can com-

municate with motion sensors to identify whether 
Jane is awake. However, such information has no 
value to TastyCoffee. Further, anonymization (such 
as removing identity information) and use of pseud-
onyms (removing identity and introducing the indi-
vidual as a resident of Milton Keynes, for example) 
can also be used to minimize the amount of infor-
mation traded.12 

A pseudonym is an identifier of a subject used 
in place of the subject’s real name. Onion routing 
enables anonymous communication over a net-
work.13 The sender remains anonymous because 
each intermediary node knows only the location 
of the immediately preceding and following nodes. 
This technique can be used to perform anonymiz-
ing aggregation over a large number of households. 
Instead of requesting data from a large number of 
households and aggregating it in a centralized loca-
tion, onion techniques can be used to anonymously 
aggregate data on the fly.

The informal design strategy recommends em-
bracing transparency and openness. This strategy 
is also relevant to the consent and data acquisition 
phase. However, it requires information about other 
phases to build a profile for both data owners and 
data consumers. Profiling is one of the most impor-
tant tasks in open data markets because it supports 
data trading negotiations. Data owners should be in-
formed about which data is processed, for what pur-
pose, and by what means. It’s important to let data 
owners know how the information is protected, and 
to be transparent about the system’s security. This 
information will directly impact the data owner’s 
preferences to trade with a particular data con-
sumer. Because risk and reward are involved, trust 
plays a vital role in negotiating trades between data 
owners and data consumers. Approaches such as the 
Platform for Privacy Preferences (P3P, www.w3.org/
P3P) can be used to model the data owners’ privacy 
preferences, which could include their expectations 
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FIGURE 3. Internet of Things devices can be categorized into six groups based on their computational capabilities. These category 

groups include clouds, high- and low-end computational devices, sink nodes, sensor nodes, and networking devices. 
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about potential data consumers and their character-
istics (such as level of trust, security, and openness 
about the techniques used in different phases of the 
life cycle).

The hide design strategy recommends hiding 
data from plain view. This strategy is useful in both 
data transfer and data storage phases. Different 
types of encryption techniques can be used during 
the data transmission from edge devices to cloud 
devices.13 Data can be stored in different types of 
devices along the way as necessary. The encryptions 
supported by each device could vary depending on 
the device’s computational capabilities. Today, en-
cryption techniques are typically employed in data 
transfer and data storage phases. However, homo-
morphic encryption techniques have recently been 
introduced as a potential method to conduct compu-
tations over encrypted data.14 When homomorphic 

encryption is used, data doesn’t need decryption to 
be processed. Homomorphic encryption techniques 
can be incorporated with onion routing to support 
end-to-end privacy and security. For example, indi-
vidual data silos could generate results based on the 
data consumers’ requests, and the result would be 
passed from one silo to another, where each silo can 
append its results to the incoming result using ho-
momorphic encryption. In this way, each silo would 
know its own results but would have no knowledge 
about the incoming data.

The separate strategy recommends storing data 
in a distributed manner. In the IoT, this is the de-
fault assumption. Data owners may store their data 
in personal silos where they’ll grant access to data 
consumers as a part of the trading process. This 
strategy is mostly related to the data storage phase 
but is also relevant to the data processing phase. 
There has been substantial research on distrib-
uted data storage, some are referred to as personal 
information hubs (PIHs). Examples include Hub of 
All Things (http://hubofallthings.com) and Lab of 
Things (www.lab-of-things.com). These edge devic-
es sit inside the data owner’s home. Broadly, PIHs 
can handle data processing using one of two meth-

ods. In the first, the PIH doesn’t allow data to move 
outside its physical boundaries; Dataware is an ex-
ample of this approach.15 This approach employs a 
data analytical component into the PIH and allow 
it to perform data processing tasks within the PIH 
boundaries. Only the result will be sent out from the 
PIH. In the other method, data is considered mov-
able and a limited amount of raw data will be sent 
out of the PIH. Data can then move to other silos or 
to the centralized cloud over the fog network, where 
data can be processed.

Another design strategy, aggregate, is more re-
lated to the data processing phase. This strategy rec-
ommends the release of only the aggregated results 
from data silos. Typically, data becomes less sensitive 
if it’s sufficiently coarse grained, and the size of the 
group over which it’s aggregated is sufficiently large. 
There are several ways to aggregate data, including 

aggregation within the PIH. In our pre-
vious example, instead of returning raw 
data to the data consumers, the PIH 
might return results saying that the data 
owner has used the coffee machine five 
times per day on average over the past 
three months (that is, aggregate over 
time). Such aggregated results don’t 
provide detailed information about the 
coffee machine’s usage. Another aggre-
gation method is based on location. A 

potential result after distributed processing of multi-
ple PIHs is, “40 percent of Milton Keynes households 
use energy-inefficient microwaves.” Aggregation is 
tricky. For example, too much aggregation could hin-
der the knowledge-discovery process and data con-
sumers won’t be able to derive useful knowledge. On 
the other hand, trading less aggregated data could be 
too risky for data owners, as data consumers would 
be able to derive sensitive information about user be-
haviors and work patterns. Therefore, balancing the 
ideal level of aggregation is a challenging task. Tech-
niques widely used in privacy-preserved aggregation 
are k-anonymity16 and differential privacy.17

The control design strategy suggests that data 
owners should have the rights and access to the nec-
essary tools to manage the data they trade to the data 
consumers. Again, this strategy is tricky because 
once data owners release results, it might not be 
possible to facilitate control functionalities that al-
low them to alter or remove their released data (that 
is, the results). Therefore, control in the IoT domain 
would be much more limited than privacy protection 
in traditional banking or healthcare domains. Spe-
cifically, if the PIHs are releasing aggregated and 
processed data, facilitating control would be impos-

Today, encryption techniques are 

typically employed in data transfer and 

data storage phases.
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sible. However, control strategy is significantly valid 
in the early phases, when the data owner can decide 
which data to trade to which data consumers under 
what circumstances, and so on. Further, even after 
the data trading negotiations are done and contracts 
are in place, data owners should be able to change or 
cancel the contracts at any time.

The other two design strategies—enforce and 
demonstrate—are mostly nontechnical in nature 
and would potentially cover all different phases of 
the data life cycle. Enforce recommends that pri-
vacy policies be compatible with legal requirements. 
Demonstrate recommends establishing a data con-
troller to demonstrate compliance with the privacy 
policy and any applicable legal requirements. This 
controller should be an independent third-party or-
ganization that can examine a given technology sys-
tem (such as a given data consumer) and evaluate, 
audit, and log its behavior and level of compliance 
with privacy policies. 

Research Challenges and Future Direction
Although there are many research challenges in 
privacy-preserving data analysis in the IoT domain, 
we focus on three major challenges that must be ad-
dressed before realizing the open data market vision.

Next-Generation IoT Middleware for Data 
Analysis
Since the 1990s, several guidelines have been 
proposed for designing and developing privacy-
preserving software systems. Ann Cavoukian, for 
example, developed Privacy by Design to address 
the ever-growing and systemic effects of information 
and communication technologies, and large-scale 
networked data systems.18 Although these design 
principles aren’t specifically designed for the IoT 
domain, they encompass recommendations to build 
software systems that protect user privacy. Cavouki-
an proposed seven design principles: proactive not 
reactive (preventative not remedial), privacy as the 
default setting, privacy embedded into design, full 
functionality (positive-sum not zero-sum), end-to-
end security (full lifecycle protection), visibility and 
transparency (keep it open), and respect for user pri-
vacy (keep it user-centric). 

These design principles are still relevant in IoT 
domains as well. Further, the principles provide 
software designers, developers, and architects some 
direction on how to realize the vision of open data 
markets. In addition to the people who are direct-
ly involved in developing software, IoT envisions a 
strong community of data analysts who will be the 
force behind knowledge discovery. These people are 

in charge of deriving knowledge and insights from 
large volumes of data. In the sensing-as-a-service 
domain, they need to answer many questions on a 
daily basis—for example, what kind of data should 
be processed, what kind of analytics should be used, 
and where the data should be obtained. While an-
swering such questions, they also need to make sure 
that user privacy is respected at all times. This is 
a challenging task, especially because data owners’ 
privacy preferences and expectations vary. Further, 
accessing, transferring, storing, and processing data 
from each data source could require employment of 
a different privacy-preserving technique. It would be 
impossible for data analysts to handle such complex-
ity manually. Therefore, we believe that there should 
be a middleware platform that allows data analysts 
to focus on data analysis and knowledge discovery 
tasks, while the middleware autonomously (or at 
least semi-autonomously) handles privacy-preserving 
techniques appropriately. 

We’ve discussed various techniques that can 
be used to preserve user privacy during different 
phases of the data life cycle. It might already be 
clear that there are multiple methods to perform 
a given knowledge discovery task based on several 
factors (data movability, computational capability 
of edge devices, and so on). The IoT middleware 
platform should be able to autonomously combine 
different privacy-preserving techniques to support 
end-to-end privacy. Additionally, the middleware 
platform will need to help data analysts by provid-
ing useful tips (what kind of data is needed to dis-
cover certain knowledge or a particular pattern, 
what additional knowledge can be derived if more 
types of data are available, and so on) about which 
techniques to use if there’s more than one way to 
accomplish a given task. 

Conducting such composition tasks manually 
would be challenging, especially because of the 
numerous possibilities. For example, developers 
might write new data analytics components that 
could allow discovery of new knowledge. The ideal 
IoT middleware should be able to analyze these new 
data-analytical components and examine their po-
tential impact on user privacy as well as where such 
components can be deployed (for example, on edge 
devices or in the cloud). Such IoT middleware would 
eliminate this significant burden on data analysts 
and reduce human error that could lead to user pri-
vacy violations.

Consent Acquisition and Negotiation
In the IoT, user consent involves acquiring the re-
quired level of permission from users and nonusers 
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who are affected by the devices or services. In tra-
ditional Web agreements, user consent is received 
through the privacy terms and policies presented to 
users in paragraphs of text. With the recent emer-
gence of social media and mobile apps, consent-
acquiring mechanisms have changed. Researchers 
have found that current methods of requesting user 
consent in social media platforms, such as Face-
book, are ineffective, and most users underestimate 
the authorization given to third-party applications.19 
In some cases, developers might not provide accu-
rate information to users for the consent decision. In 
other cases, developers might provide accurate in-
formation, but users might be unable to understand 
exactly what the consent entails because they lack 
technical knowledge. 

In the sensing-as-a-service domain, data own-
ers are a major user type. Therefore, a major privacy 
challenge in the IoT, especially in relation to open 
data markets, is to develop technologies that request 
consent from data owners in an efficient and ef-
fective manner. This is a challenging task because 
every data owner has only limited time and lim-
ited technical knowledge to engage in the process. 
The consent-acquisition process is also part of the 
negotiation process. Research work in combining 
principles and techniques from human–computer 
interaction and the cognitive sciences are in dire 
need. Further, the sensing-as-a-service domain en-
visions that data consumers will request data from 
data owners. Sometimes, it would be difficult for 
data owners to spend much time evaluating these 
data requests. Therefore, there should be a way to 
build privacy profiles of individual data owner that 
encapsulate their privacy preferences. Such profiling 
can be achieved by questioning data owners about 
their privacy preferences combined with informa-
tion about users’ behavior and their data trading 
over time. When a data request is received, autono-
mous systems must evaluate the request on the data 
owner’s behalf, performing a preliminary filtering to 
make the data owner’s life easier. 

Risk and Reward Modeling and Negotiation
After the preliminary filtering, the software sys-
tems on the PIH should provide the data owner with 
limited information, which might include risk and 
reward analysis in relation to a given data trading 
task. Data owners should have a complete picture of 
what’s going to happen to their data and what they’ll 
receive in return. Further, data owners should be 
able to negotiate with the data consumer regarding 
the amount of data to be traded and the related re-
wards. There are multiple ways to handle such ne-

gotiations, ranging from manual negotiations (that 
is, significant involvement of data owners) to auton-
omous negotiations. Data and consent acquisition 
should be a scalable process from both data own-
ers’ and data consumers’ perspectives. Toward this 
end, semi-autonomous and autonomous negotiation 
strategies must be developed. Such strategies could 
consider factors such as data owners’ preferences, 
how preferences have changed over time, and data 
consumers’ requirements. Modeling privacy risks 
and conducting negotiations is challenging.20

rivacy protection isn’t just an individual value, 
but also an essential element in the functioning 

of democratic societies. At the same time, open data 
markets that are expected to be created through the 
sensing-as-a-service model have a significant po-
tential to generate value for the society by reducing 
wastage and costs, while allowing more personalized 
services to customers. A number of research gaps in 
the field need to be addressed to realize the vision of 
sensing as a service by creating open data markets. 
Future research efforts by the community will need 
to focus on addressing these research challenges. 

Specifically, easy-to-use cloud-based privacy-
preserving data analytics platforms will enhance 
the ability of data analysts to focus on data analysis 
tasks instead of worrying about privacy violations. 
Developing novel techniques to advise, recommend, 
and teach data owners about potential risks, threats, 
and rewards in the sensing-as-a-service domain will 
encourage more data owners to participate in open 
data trading. From a nontechnological viewpoint, 
incentive mechanisms in conjunction with strict au-
diting would help preserve user privacy while sup-
porting useful knowledge discovery.
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