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Abstract—The scale of scientific applications becomes in-
creasingly large not only in computation, but also in data.
Many of these applications also concern inter-related tasks with
data dependencies; hence, they are scientific workflows. The
efficient coordination of executing/running scientific workflows
is of great practical importance. The core of such coordi-
nation is scheduling and resource allocation. In this paper,
we present three scheduling heuristics for running large-scale,
data-intensive scientific workflows in clouds. In particular, the
three heuristic algorithms are designed to leverage slot queue
threshold, data locality and data prefetching, respectively.
We also demonstrate how these heuristics can be collectively
used to tackle different issues in running “data-intensive”
workflows in clouds although each of these heuristics can
be used independently. The practicality of our algorithms
has been realized by actually implementing and incorporating
them into our workflow execution system (DEWE). Using
Montage, an astronomical image mosaic engine, as an example
workflow, and Amazon EC2 as the cloud environment, we
evaluate the performance of our heuristics in terms primarily
of completion time (makespan). We also scrutinize workflow
execution showing different execution phases to identify their
impact on performance. Our algorithms scale well and reduce
makespan by up to 27%.

I. INTRODUCTION

Applications in science and engineering are increasingly

large-scale and complex. These applications are often com-

posed of multiple inter-dependent tasks (i.e., precedence

constraints) represented by directed acyclic graph (DAG

or simply workflow). Examples of scientific workflows are

Montage [1], CyberShake [2], [3], LIGO [4], [5], Epige-

nomics [6] and SIPHT [7]. As precedence constraints are

dictated by data dependencies and data size continues to

increase, the overhead of data transfers accounts for a

significant amount of completion time. For example, a

Montage workflow with the 6.0 degree data set, we used

in our experiments, contains 8,586 jobs, 1,444 input data

files, 22,850 intermediate files, and has a total data footprint

of 38GB. Thus, running data-intensive scientific workflows

with the explicit consideration of data locality and transmis-

sion overhead is of great practical importance.

There have been a myriad of studies on workflow schedul-

ing with the primary focus of high performance (makespan).

Although some recent works have considered data involve-

ment in scientific workflows, e.g., [8], [9], such as data

sharing options on Amazon EC2 and clustering workflows

using graph partitioning techniques, data-aware schedul-

ing in clouds is still in its infant state. Besides, existing

techniques and algorithms for running scientific workflows

are still limited in taking full advantage of the underlying

execution environment.

In this paper, we design three scheduling algorithms

that can be collectively used to run data-intensive scientific

workflows in clouds. Each of these algorithms is designed

to optimize a particular objective, such as load balancing,

minimization of data transfers or asynchronous data trans-

fers. Specifically, three algorithms are based on slot queue

threshold, data locality and data prefetching, respectively.

To evaluate the efficacy of our heuristic algorithms, we

have conducted extensive experiments in Amazon EC2 us-

ing a real scientific workflow application, Montage, with

several different data sets. We also dissect the execution

of workflows showing usage patterns of different resources,

e.g., CPU and I/O. The running of workflows in Amazon

EC2, including resource acquisition, data staging and actual

execution, has been managed by our workflow execution

framework, DEWE (Distributed, Elastic Workflow Execu-

tion)1. Based on our experimental results, our algorithms

are capable of reducing makespan on average by 11% and

up to 27% compared with a baseline round-robin algorithm.

The rest of this paper is organized as follows. In Section

II, we provide the background and related work. Section III

briefly describes our workflow management system (DEWE)

used in this study focusing on its job scheduling compo-

nent. Section IV presents and details our three scheduling

heuristics. Section V show experimental results. We draw

our conclusion in Section VI.

1DEWE including its source code and visualization toolkit used in this
study is available from https://bitbucket.org/lleslie/dwf/wiki/Home.
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Figure 1. An example Montage workflow.

II. BACKGROUND AND RELATED WORK

In this section, we describe scientific workflows and pro-

vide a brief review of related work on workflow scheduling.

A. Scientific Workflows

Applications in science and engineering are becoming

increasingly large-scale and complex. These applications are

often amalgamated in the form of workflows with a large

number of composite software modules and services, often

numbering in the hundreds or thousands.

More formally, a scientific workflow consists of a set

of precedence-constrained jobs represented by a directed

acyclic graph (DAG), G = 〈V,E〉 comprising a set V of

vertices, V = {v0, v1, ..., vn}, and a set E of edges, each of

which connects two jobs. The graph in Figure 1 depicts a

Montage workflow with vertices for jobs and edges for data

dependences or precedence constraints. Sibling vertices/jobs

are most likely to run in parallel and get assigned onto

different resources, i.e., they are executed in a distributed

manner. A job is regarded as ready to run (or simply as a

‘ready job’). The readiness of job vi is determined by its

predecessors (parent jobs), i.e., the one that completes the

communication at the latest time.

The completion time of a workflow application is denoted

as makespan, which is defined as the finish time of the exit

job (or the leaf node in the DAG).

B. Workflow Scheduling

The execution of scientific workflows is typically planned

and coordinated by schedulers/resource managers (e.g., [10],

[11]) particularly with distributed resources. At the core of

these schedulers are scheduling algorithms/policies.

Traditionally, workflow scheduling focuses on the mini-

mization of makespan (i.e., high performance) within tightly

coupled computer systems like compute clusters with an

exception of grids. Various scheduling approaches including

list scheduling and clustering are exploited, e.g., [12], [9].

Critical-path base scheduling is one particularly popular

approach to makespan minimization [13], [14]. Clustering-

based scheduling is another approach getting much attention

Figure 2. DEWE’s Job Scheduling.

Figure 3. DEWE File Manager.

in the recent past with the emergence of many data-intensive

workflows, such as Montage [9].

More recently with the adoption and prevalence of cloud

computing, the trade-off between costs and performance

has been extensively studied [15], [16], [17]. Most works

on workflow scheduling in clouds study the elasticity of

cloud resources, i.e., dynamic resource provisioning for cost

minimization in particular. Although there are some efforts

made on workflow execution with data awareness, e.g., [8],

[9], the efficiency of scheduling algorithms for data-intensive

scientific workflows is still limited particularly in clouds.

III. WORKFLOW SCHEDULING AND EXECUTION

In this section, we describe our workflow management

system (DEWE), used in our experiments, focusing on the

job scheduling components.

DEWE adopts the master-slave model using Worker
and Coordinator nodes (Figure 2). The Coordinator node

contains components for DAG creation (DAG Manager), job

scheduling and assignment (Job Dispatcher), slot manage-

ment and job execution (Slot Manager), file management

(File Manager), and Worker node management (Worker

Manager). Since our focuses are job scheduling and data

management, we give more details of Job Dispatcher and

File Manager.
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Figure 4. Slot Queue Threshold Algorithm (DASth).

The Job Dispatcher component in the Coordinator node

schedules and distributes jobs to DEWE nodes including

the coordinator node itself. The Slot Manager component

puts the received job from the dispatcher into a queue

corresponding to a slot (or a CPU core), and the slot handler

component takes the job out from the queue and sends it to

the slot (Figure 2). A job is assigned by the dispatcher to

a node slot from the list of registered DEWE node slots

managed in the coordinator node. This registration list of

active nodes can be dynamically changed, i.e., new DEWE

nodes can be added during the execution of a workflow.

Every DEWE node including the coordinator node runs

an instance of the File Manager to deal with data staging,

i.e., acquiring input files and storing output files for the job

execution and after the execution, respectively. When the

input files required for the job execution do not exist on the

node the job is assigned (local node), the File Manager on

the local node looks up the location list of files it maintains

and downloads the required input files from remote DEWE

nodes. The location list is distributed and synchronized

among the File Managers on all DEWE nodes. All input

files initially exist in the coordinator node and therefore, at

the start of a workflow execution every worker node needs

to download the input files from the coordinator node in

order to execute a job assigned to them. Since the input and

output files are left on the worker nodes after each workflow

execution, as the workflow progresses, each worker node is

likely to store many different files locally which are in turn

downloaded and used by other nodes for a job execution.

Figure 3 shows that, in workflow stage 1 (higher level of

workflow in DAG), Node 1 outputs File B after the execution

of a job. In stage 2, Nodes 2 and 3 download File B from

Node 1 for the execution of assigned jobs. In stage 4, Node

4 can acquire input file B from either Node 1, 2 or 3.

IV. DATA-AWARE SCHEDULING

In this section, we present three data-aware scheduling

(DAS) algorithms that concern slot queue threshold, data

locality and data prefetching, respectively; hence, the names,

DASth, DASlc and DASpf .

Figure 5. Data Locality Algorithm (DASlc).

A. Slot Queue Threshold

DASth is designed to evenly distribute the workloads of

jobs across all node slots. It assigns a job to a node slot

that has the minimum (least) number of jobs in the slot

queue among all node slots. This is expected to prevent

from a skewed workload distribution and avoid a slot from

completing the assigned jobs far later than the other slots.

However, this may not evenly balance the actual workloads

among the node slots since a particular job could be much

heavier than the other jobs in terms of workload, e.g.,

computation and I/O. To this end, we adopt ‘Slot threshold’

to mitigate such an imbalance that in turn negative effect

performance and resource usage. The threshold limits the

number of jobs that can be assigned to the slot queues. When

all slot queues are filled up to the threshold, the unassigned

jobs simply wait in the wait list queue until a room on a slot

queue becomes available. Thereby, in this algorithm, even

the jobs with much heavier loads than the other jobs can

be assigned just up to the threshold in the worst case, and

then the balance in workloads on slots is likely to be kept

to some extent. Figure 4 shows that the jobs represented by

numbers 1 to 6 are retrieved from the wait list queue in

order, then assigned to slot queues with a threshold value of

7 (indicated by the dotted line).

B. Data Locality

DASlc is designed to explicitly consider the communi-

cation cost, or the downloading time of the input files for a

job execution. As the volume of data for scientific workflows

becomes increasingly large, moving job/computation to data

is rather obvious and intuitive. That is, a job should be

assigned to a node slot where the most of its input files

already exist locally on the node. In this algorithm, the

“best” node to assign a job is decided by the total size

of input files existing locally for the job execution. As

consequence, the slot queues on the coordinator node are

always filled up first due to its advantage in the file locality.

For each job, the assignment steps are as follows.

1) Choose the node that holds the most amount of input

files for the job; hence, the node is the “best” for the

job (or best node).
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Figure 6. Data Prefetching Algorithm (DASpf ).

2) If all slot queues on the node found in Step 1 are full

with other jobs, choose the next node that contains

the largest amount of input files; this step may be per-

formed iteratively until the node with its slot queues

being not completely full is found.

3) If all slot queues on all nodes are full, the job waits in

the wait list queue until a slot queue becomes available

and go back to Step 1.

4) Otherwise, assign the job to a slot on the chosen node.

Figure 5 illustrates the assignment of a new job which

requires five files (f1–f5) as input. Node C is the best node

in that it already has f5 (file size of 1000); however, as all

slot queues on Node C are already occupied by other jobs,

the second best node, B that holds f3 and f4 (a total of

600 in file size) is chosen for the new job.

C. Data Prefetching

DASpf is designed to make use of resources efficiently

by consolidating I/O-intensive jobs and CPU-intensive jobs

with the expectation of their resource usage being com-

plementary. In particular. while the former jobs are ac-

cessing I/O resources (e.g., disks and network devices) for

downloading input files, the latter jobs are accessing CPU

resources for computation. As the name indicates. DASpf

prefetches (downloads) the input files for a (waiting) job

while the other jobs are running on the slot, rather than

downloading the files and executes the job sequentially.

In Figure 6, the main application process on the assigned

node running a greenlet (gevent utility for pseudo-threading,

https://pypi.python.org/pypi/greenlet) takes out a job from

the load queue and downloads the input files for the job

before sending the job into the run queue. The main process

waits for the physical slot being available and when it

becomes available, it takes one job out from the run queue,

and executes it on the physical slot as a separate process

from the main process.

V. EVALUATION

In this section, we evaluate our scheduling algorithms

using Montage and DEWE on Amazon EC2. We compared

(combinations of) our algorithms with a naive round-robin

algorithm (RR) that simply dispatches jobs to nodes in turn.

Experiments were conducted using m1.xlarge Amazon

EC2 instances with Montage workflows of three different

data sets, 2.0, 4.0 and 6.0 degree data; the number of

instances in our experiments varies from 1 to 8.

A. Results

The performance metric is makespan (completion time).

As Amazon EC2 instances may exhibit some performance

variations, each experiment was run 3 times and results are

averaged. Note that we used a slot queue threshold of 5

as different thresholds (between 5 and 10) showed similar

results in our preliminary experiments.

Results are shown in Figures 7, 8 and 9, and summarized

in Table I with respect to different numbers of instances,

data sets and algorithms. Clearly, the collective solution with

all three of our algorithms (DAScombo) always outperforms

the other two algorithms by 15% and 7%, respectively, and

up to 27%. Besides, the number of instances used affects

performance. However, the slopes of curves for results of

RR and DASpf are not as smooth as that of DAScombo

as shown in Figures 7 and 8. This effect is due primarily

to not explicitly considering data locality that may incur

more communications/data transfers between instances; as

the number of instances increases, this may be worsened

unexpectedly.

Another thing to note is the speed up particularly with 6.0

degree data (Figure 9). In other words, Montage workflows

with large data set (e.g., 6.0 degree data) spawns signifi-

cantly more jobs that can leverage the use of more instances.

B. Performance Breakdown

To identify the impact of different execution factors on

performance (i.e., makespan), we have analyzed workflow

execution in detail. In particular, for a given workflow, we

plotted the execution of each job in five stages shown in

different colors (Figures 10 and 11):

1) Job dependency wait (light blue). For a given job, its

job dependency wait is the waiting time for all the

parent jobs being completed.

2) Slot queue busy wait (green). Slot queue busy wait

only incurs with the Slot Queue Threshold algorithm

DASth, where all the slot queues to assign a job are

filled up to the threshold.

3) Assigned slot wait (gray). Assigned slot wait is the

waiting time after DEWE scheduler assigns a job to

a queue on a particular CPU before the job actually

starts to be executed on the assigned CPU. Assigned

slot wait could be caused either by waiting for the
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Table I
OVERALL RESULTS. MAKESPAN RESULTS ARE IN SECONDS.

Montage workflow data algorithm
the number of instances

average
1 2 3 4 5 6 7 8

2.0 degree
RR 571 522 530 495 482 520 474 460 507

DASpf 574 534 490 444 458 457 490 402 481

DAScombo 566 463 477 441 423 417 397 381 446

4.0 degree
RR 1498 1150 1076 1046 1011 909 948 1031 1084

DASpf 1491 1219 996 930 927 1065 898 927 1057

DAScombo 1491 1107 911 972 919 911 861 909 1010

6.0 degree
RR 4000 3345 3187 2381 2266 2109 1943 2019 2656

DASpf 4028 3326 3018 2287 2377 2093 1994 1856 2623

DAScombo 4056 3130 2848 2134 2135 2007 1889 1861 2508
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Figure 7. Montage workflow with 2.0 data.
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Figure 8. Montage workflow with 4.0 data.
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Figure 9. Montage workflow with 6.0 data.

completion of data staging (input/output files) or by

waiting for an available CPU.

4) Data staging (yellow). Before the execution of a job,

the files required for the execution, that do not exist

on the local node, are downloaded from remote nodes.

The input and output files for a job remain on the local

node once the job is executed, for the other nodes to

download if they need.

5) Job execution (blue). Job execution time is the actual

Montage API execution time. In addition to CPU time

for the execution, the job execution time includes the

time for file reading/writing.

We show the performance breakdown of DASpf and

DAScombo in Figures 10 and 11. For each figure, the

left chart is the result on a single DEWE node and the

right chart is the result on 6 nodes.2 As visually identified

for both algorithms, in a single node they have a similar

makespan with around 435 seconds, and data staging times

are almost zero because all input files exist locally. The

reduction of makespan between the single-node case and the

6-node case is realized in the time span before the execution

of mConcatFit job (in Montage workflow) even though

different types of waiting are reduced for each algorithm. As

301 mProjectPP jobs and 838 mDiffFit jobs exist in

the 2.0-Degree Montage workflow, this reduction indicates

that these jobs are effectively distributed across 6 nodes.

2Note that the actual runtimes in Figures 10 and 11 do not match those
in Table I because as stated earlier, results in Table I are averages of three
runs.

Besides, a negative influence of the job distribution is

observed in the 6-node case for both algorithms. The data

staging time has grown since the input files to be acquired

are dispersed across 6 nodes, and the naive RR algorithm

has suffered from much larger waiting time than DAScombo

in particular.

The performance enhancement of workflows with an

increasing number of nodes for both algorithms (DASpf

and DAScombo) is the result of the positive effect of the job

distribution which is much larger than the negative influence.

As a result, makespans of around 435 seconds on a single

node for both algorithms are improved by nearly 15% and

27% on 6 nodes with 368.20 and 318.50 seconds. The

primary source of such performance gains is from significant

reductions of data staging times.

VI. CONCLUSION

As cloud computing is increasingly adopted not only for

enterprise applications, but also for scientific applications,

we have addressed the effective execution of data-intensive

scientific workflows in the cloud. In particular, we have de-

veloped three data-aware scheduling algorithms that can be

collectively used. As the scale and complexity of scientific

workflows continues to increase particularly in data, running

these workflows with the explicit consideration of data

locality and the use of data prefetching are rather essential.

Our experimental results obtained using a real scientific

workflow (Montage) on Amazon EC2 clearly demonstrate

the efficacy of our algorithms and prove our claims.
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Figure 10. Performance breakdown of DASpf . Figure 11. Performance breakdown of DAScombo.
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