
A Dynamic Key Length based Approach for Real-Time

Security Verification of Big Sensing Data Stream

Deepak Puthal*, Surya Nepal†, Rajiv Ranjan†, and Jinjun Chen*

*Faculty of Engineering and Information Technology

University of Technology, Sydney, Australia
†Digital Productivity Flagship

Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia

{deepak.puthal,jinjun.chen}@gmail.com,

{Surya.Nepal, Raj.Ranjan}@csiro.au

Abstract. The near real-time processing of continuous data flows in large scale

sensor networks has many applications in risk-critical domains ranging from

emergency management to industrial control systems. The problem is how to

ensure end-to-end security (e.g., confidentiality, integrity, and authenticity) of

such data stream for risk-critical applications. We refer this as an online securi-

ty verification problem. Existing security techniques cannot deal with this prob-

lem because they were not designed to deal with high volume, high velocity da-

ta in real-time. Furthermore, they are inefficient as they introduce a significant

buffering delay during security verification, resulting in a requirement of large

buffer size for the stream processing server. To address this problem, we pro-

pose a Dynamic Key Length Based Security Framework (DLSeF) based on the

shared key derived from synchronized prime numbers; the key is dynamically

updated in short intervals to thwart Man in the Middle and other Network at-

tacks. Theoretical analyses and experimental results of DLSeF framework show

that it can significantly improve the efficiency of processing stream data by re-

ducing the security verification time without compromising the security.

Keywords: Security; Sensor Networks; Big Data Stream; Key Exchange.

1 Introduction

A variety of applications, such as emergency management, SCADA, remote health

monitoring, telecommunication fraud detection, and large scale sensor networks, re-

quire real-time processing of data stream, where the traditional store-and-process

method falls short of addressing the challenge [1]. These applications have been char-

acterized to produce high speed, real-time, sensitive and large volume data input, and

therefore require a new paradigm of data processing. The data in these applications

falls in the big data category, as its size is beyond the ability of typical database soft-

ware tools and applications to capture, store, manage and analyze in real time while

mailto:%7bSurya.Nepal,%20Raj.Ranjan%7d@csiro.au

ensuring end-to-end security [6]. More formally, the characteristics of big data are

defined by “4Vs” [10, 11] such as Volume, Velocity, Variety, and Veracity. The

streaming data from sensing source meets these characteristics. Our focus in this pa-

per is thus on secure processing of high volume, high velocity data stream.

 Big data stream is continuous in nature and it is critical to perform real-time

analysis as: (i) the life time of the data is often very short (i.e., the data can be ac-

cessed only once) [2, 3] and (ii) the data is utilized for detecting events (e.g., flooding

of highways, collapse of railway bridge, etc.) in real-time in many risk-critical appli-

cations (e.g., emergency management). Since big data stream has high volume and

velocity, it is not economically viable to store and then process (as done in the batch

computing model). Hence, stream processing engines (e.g. Spark, Storm, S4) have

evolved in the recent past that have capability to undertake real-time big data pro-

cessing. Stream processing engines offer two significant advantages: firstly, they

circumvent the need to store large volume of data and secondly, they enable real-time

computation over data as needed by emerging applications such as emergency man-

agement and industrial control systems. Further, integration of stream processing

engines with elastic cloud computing resources has further revolutionized the big data

stream computation as the stream processing engines can now be easily scaled [2, 4,

5] in response to changing volume and velocity.

Though, the stream data processing has been studied in the past several years with-

in the database research community, the focus has been on query processing [13],

distribution [14] and data integration. Data security related issues, however, have

been largely ignored. Since many emerging risk-critical applications, as discussed

above, need to process big streaming data while ensuring end-to-end security. For

example, consider emergency management applications that collect soil, weather, and

water data through field sensors. Data from these sensors are processed in real-time to

detect emergency events such as sudden flooding and landslides on railways and

highways. In these applications, compromised data can lead to wrong decision mak-

ing and in some cases even loss of lives and critical public infrastructure. Hence, the

problem is how to ensure end-to-end security (i.e., confidentiality, integrity, and au-

thenticity) of such data stream in near real-time processing. We refer this as an online

security verification problem.

The problem in processing big data becomes extremely challenging when millions

of small sensors in self-organizing wireless networks are streaming data through in-

termediaries to the data stream manager. In these cases, intermediaries as well as the

sensors are prone to different kinds of security attacks such as Man in the Middle

Attack. In addition, these sensors have limited processing power, storage, and energy;

hence, there is a requirement to develop light-weight security verification schemes.

Furthermore, data streams need to be processed on-the-fly in a correct sequence. In

this paper, we address these issues by designing an efficient approach for online secu-

rity verification of big data streams.

The most common approach for ensuring data security is to apply the cryptograph-

ic methods. In the literature, there are two most common types of cryptographic en-

cryption methods: asymmetric and symmetric key encryption. Asymmetric key en-

cryption methods (e.g., RSA, ElGamal, DSS, YAK, Rabin, etc.) perform a number of

exponential operations over a large finite field. Therefore, they are 1000 times slower

than the symmetric key cryptography [15, 16]. Hence, efficiency become an issue if

asymmetric key such as the Public Key Infrastructure PKI [18] is applied to end-to-

end security of big data streams. Thus, the symmetric key encryption is the most effi-

cient cryptographic solution for such applications. However, existing symmetric key

methods (e.g., DES, AES, IDEA, RC4, etc.) fail to meet the requirements of real time

security verification. Hence, there is a need to develop an efficient and scalable ap-

proach for performing the online security verification of big data stream. The main

contributions of the paper can be summarized as follows:

 We have designed and developed a Dynamic Key Length Based Secure Frame-

work (DLSeF) to provide end-to-end security for big data stream processing. Our

approach is based on a common shared key that is generated by exploiting syn-

chronize prime number. The proposed method avoids excessive communication

between data sources and Data Stream Manager (DSM) for the rekey process.

Hence, this leads to reduction in the overall communication overhead. Due to the

reduced communication overhead, our approach is able to do security verification

on-the-fly (with minimum delay) with minimal computational overhead.

 Our proposed approach adopts dynamic key length from the set of 128-bit, 64-bit,

and 32-bit. This enables faster security verification at DSM without compromising

the security. Hence, our approach is suitable to process high volume of data with-

out any delay.

 We compare our proposed approach with the standard symmetric key solution

(AES) in order to evaluate the relative computational efficiency. The results show

that our approach performs better than the standard AES method.

The rest of this paper is organized as follows. Section 2 gives the background and

defines the problem space. Section 3 describes our proposed solution, DLSeF. Section

4 presents the formal security analysis of our approach. Section 5 evaluates the per-

formance and efficiency of the approach through extensive experiments. Section 6

concludes our work and points out to potential future directions.

2 Background and The Problem Definition

Data stream management system has been studied in the past several years with the

main focus on query processing, data distribution, and data integrity. The security

aspects have been largely overlooked. Nehme et al. [17] initially highlighted the need

of security framework in streaming data. They divided the security problem into two:

data security problem (also known as data security punctuation) and query security

problem (also known as query security punctuation). Data security punctuation deals

with the data security, whereas query security punctuation deals with the security and

access control during the query processing. They extensively work on access control

by focusing on both data security and query security punctuation in their papers [7,

17]. For example, FENCE, a continuous access control framework in dynamic data

stream environments, deals with both data and query security restrictions [7]. It gives

low overhead which is suitable for data stream environments. Similarly, ASSIST, an

application system based effective and efficient access control framework, is pro-

posed to protect streaming data from unauthorized access [8]. They have implemented

ASSIST on top of StreamInsight, a commercial stream processing engine. In this

paper, we are focusing on the data security punctuation, where our approach is to

protect the data efficiently from potential attacks from/on untrusted intermediaries

before the data reaches to the DSM.

Figure 1 shows an overall architecture for big data stream process from source

sensing devices to the data processing center including our proposed security frame-

work. We refer to [29] for further information on stream data processing in datacenter

cloud. In sensor networks, data packets from the source are transmitted to the sink

(data collector) through multiple intermediaries hops (e.g. routers and gate-

ways).Collected data at sink node is forward to the DSM as data stream which may

also pass through many untrusted intermediaries. The number of hops and intermedi-

aries depend on the network architecture designed for a particular application. The

intermediaries in the network may behave as a malicious attacker by modifying

and/or dropping the data packets. Hence, the traditional communication security tech-

niques [9, 12] are not sufficient to provide end-to-end security. In our framework both

the queries and data security related techniques are handled by DSM in coordination

with the on-field deployed sensors. It is important to note that the security verification

of streaming data has to be performed before the query processing phase and in near

real time (with minimal delay) with a fixed (small) buffer size. The processed data is

stored in the big data storage system supported by cloud infrastructure. Queries used

in DSM are defined as “continuous” since they are continuously applied to the

streaming data. Results (e.g. significant events) are pushed to the application user

each time the streaming data satisfies a predefined query predicate.

Fig. 1. High level of Architecture from Source Sensing Device to Big Data Processing Center.

The discussion in the above architecture clearly identifies the following most im-

portant features for security verification for big data stream processing. In summary,

they include: (a) security verification needs to be performed in real time (on-the-fly),

(b) framework has to deal with high volume of data at high velocity, (c) data items

should be read once in the prescribed sequence, and (d) original data is not available

for comparisons which is widely available in store-and-process batch processing par-

adigm. These features need to be enabled by the big data stream processing frame-

work in addition to meeting the end-to-end data security requirements.

Based on the above features of big data stream processing, we categorize existing

data security methods into two classes: communication security [9, 12] and server

side data security [26, 27]. Communication security deals with the data security be-

tween two nodes when it is in motion, and does not deals with the end-to-end security,

server side data security approaches focus on ensuring the security of data when it is

at rest in repository. They are not suitable to use in the big data stream. Furthermore,

symmetric cryptographic based security solutions are either static shared key or cen-

tralized dynamic key. In static shared key, we need to have a long key to defend from

potential attackers. It is well known that length of the key is always proportional to

the security verification time and hence longer keys leading elevated computation

time are not suitable for applications that need to do real-time processing over high

volume, high velocity data. For the dynamic key, centralize processor rekey and dis-

tribute keys to all the sources; this is a time consuming process. Moreover, big data

stream is always continuous in nature and impossible to put data in halt for rekeying

process. To address this problem, we propose a distributed and scalable approach for

big data stream security verification.

Our proposed approach works as follows: we use a common shared key for both

sensors and DSM. The key is updated dynamically by generating synchronize rela-

tive prime numbers without having further communication between them after hand-

shaking. This procedure reduces the communication overhead and increases the effi-

ciency of the solution, without compromising the security. Due to the reduced com-

munication overhead, our approach performs the security verification with minimum

delay. Based on the shared key properties, individual source sensor updates their dy-

namic key and key length independently.

3 Proposed Approach

Our approach is motivated by the concept of moving target defense. The basic idea

is that if we keep on moving the keys in spatial (dynamic key size) and temporal

(same key size, but different key) dimensions, we can achieve the required efficiency

without compromising the security. Our proposed approach, Dynamic Key Length

Based Security Framework (DLSeF), provides the robust security by changing both

key and key length dynamically. In our approach, if an intruder/attacker eventually

hacks the key, he/she cannot predict the key or its length for the next session. We

argue that it is very difficult for an intruder to guess the appropriate key and its length

as our approach dynamically changes the both across the sessions. Similar to any

secret key based symmetric key cryptography, our DLSeF approach consists of 4

independent components and related processes: system setup, handshaking, rekeying,

and security verification. As stream processing is expected to be performed in near

real time processing, we assume that data packets should not take more than few

hours to reach DSM, as the end-to-end delay is an important QoS parameter to meas-

ure the performance of sensor networks [28]. Table 1 provides the notations used in

modelling our approach. We next describe the approach.

Table 1. Notations used in our approach

Acronym Description

𝑆𝑖 ith Sensor’s ID.

𝐾𝑖 ith sensor’s secret key.

𝐾𝑠𝑖 ith sensor’s session key.

𝑘𝑙 Key length

𝐾1/𝐾2/𝐾3/𝐾4 Initial keys for authentication

𝐾𝑆𝐻 Secret shared key calculated by the sensor and DSM.

𝐾𝑆𝐻− Previous secret shared key maintain at DSM.

𝑃1/𝑃2/𝑃3/𝑃4 Communicated format during authentication

𝑟 Random number generated by the sensors.

𝑡 Interval time to generate the prime number.

𝑃𝑖 Random prime number.

𝐾𝑑 Secret key of the DSM.

𝐼𝐷 Encrypted data for integrity check.

𝐴𝐷 Secret key for authenticity check.

𝐸() Encryption function.

𝐻() One-way hash function.

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Random prime number generation function.

KeyGen Key generation procedure.

Key-Length () Key length selection procedure.

⊕ Bitwise X-OR operation.

∥ Concatenation operation.

𝐷𝐴𝑇𝐴 Fresh data at sensor before encryption.

3.1 DLSeF System setup

We have made a number of realistic and practical assumptions while designing and

modelling our approach. First, we assume that DSM has all deployed sensor’s identi-

ties (IDs) and secret keys because the network is untrusted. Sensors and DSM imple-

ment some common primitives such as hash function (H()), and common key (K1),

which are executed during the initial identification and system setup steps

The proposed authentication process includes five steps. The first three steps are

for the sensors and DSM where they authenticate with each other and the next two

steps are for the generating shared key. The shared key is utilized during the hand-

shaking process.

Step 1: A sensor (Si) generates a pseudorandom number r and encrypts it along

with its own secret key Ki. The encryption process uses the common shared key (K1),

which is initialized during the deployment. The output of encryption (EK1(r ∥ Ki)) is

denoted as P1. The output is then sent to DSM: Si → DSM: P1

Step 2: Upon receiving the message, the DSM decrypts P1 (i. e. DK1(P1)) and re-

trieves the corresponding source ID (𝑆𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝐾𝑖)). If the source sensor’s

ID matches with its own database, then the DSM computes the hash of the key to

generate another key for encryption K2 ← H(K1). The DSM then encrypts the pseu-

dorandom number (r) with the newly generated key as P2 ← EK2(r) and sends it to the

sensor for DSM authentication as follows: Si ← DSM: 𝑃2

Step 3: Corresponding sensor receives the encrypted pseudorandom number and

decrypts it to authenticate the DSM, i.e. r′ ← DK2(P2). It calculates the current secret

shared key using the hash of existing shared key i.e.K2 ← H(K1). If the received ran-

dom number is the same as the sensor had before (i.e. r = r′), the sensor sends an

acknowledgement (ACK) to DSM. The ACK is encrypted with the new key, which is

computed using hash of the current key (K3 ← H(K2)). The encrypted ACK is denot-

ed as P3 ← EK3(ACK), and sends to DSM as follows: Si → DSM: 𝑃3

Step 4: The DSM decrypts the ACK (ACK ← DK3(P3)) to confirm that the sensor is

now ready to establish the session. The current secret key is updated using the hash of

existing secret key i.e. K3 ← H(K2). After the confirmation of ACK, the DSM gener-

ates a random session key i.e. Ksi ← randomKey() for handshaking. The generated

session key (Ksi) is encrypted with the hash of the current key e.g. (K4← H(K3)) and

then sent to individual sensors as Si → DSM: { 𝑃4}, where P4 ← EK4(Ksi).

Step 5: The sensor decrypts P4 and extracts the session key for handshaking (Ksi ←

DK4(P4)). It follows the same procedure as before, i.e., the current shared key is up-

dated with the hash value of existing shared key (K4← H(K3)). We update the shared

key in every transaction to ensure the strength of security for handshaking.

3.2 DLSeF Handshaking

In the handshaking process, the DSM sends the key generation and synchronization

properties to sensors based on their individual session key (Ksi) established earlier.

Generally, a larger prime number is used to strengthen security process. However, a

larger prime number requires greater computation time. In order to make the rekeying

process efficient (lighter and faster), we recommend reducing the prime number size.

The challenge is how to maintain the security while avoiding large prime number

size. We achieve this by dynamically changing the key size as described next.

The dynamic prime number generation function is defined in Algorithm II. We

calculate the prime number and shared key on both sensing sources and DSM ends to

reduce communication overhead and minimize the chances of disclosing the shared

key. The computed shared keys have of multiple lengths (32 bit, 64 bit, and 128 bit)

which are varied across the sessions. Initial key length is set to 64 bit and is dynami-

cally updated as per the logic depicted in Algorithm I. After a certain time interval,

the next shared key is generated by applying Algorithm II where the size is deter-

mined by Algorithm I as follows:

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) periodically computes the relative prime number at both the sensor and

DSM ends after a time interval t, which are updated based on function

𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(). The shared secret key (𝐾𝑆𝐻) generation process needs 𝐾𝑑 , and 𝑃𝑖 . In

the handshaking process, DSM transmits all properties required to generate shared

key to sensors (𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛) as follows: Si ←

DSM: {𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛}

All of these above transferred information are stored in the trusted part of source

for future rekeying process (e.g., TPM) [25]).

3.3 DLSeF Rekeying

Our proposed approach not only calculates the dynamic prime number to update

the shared key without further communication after handshaking, but also proposes a

novel way of dynamically changing key length at source and DSM following the steps

described in Algorithm I. We change the key periodically in DLSeF Rekeying process

to ensure that the protocol remains secured. If there are any types of key or data com-

promise at a source, the corresponding sensor is desynchronized with DSM instantly.

Following that the source sensor need to reinitialize and synchronize with DSM as

described above. We assume that the secret information is stored in the trusted part of

the sensor (e.g. TPM) and it is sent by the sensor to DSM for synchronization. In

some cases, data packet can arrive at DSM after shared key is updated. Such data

packets are encrypted using previous shared key. We add a time stamp field to indi-

vidual data packet to identify the encrypted shared key. If the data is encrypted using

previous key then the DSM uses 𝐾𝑆𝐻− key for the security verification; otherwise, it

follows the normal process.

The above defined DLSeF Handshaking process makes sensors aware about the

Prime (Pi), KeyLength, and KeyGen. We now describe the complete secure data

transmission and verification process using those functions and keys. As mentioned

above, our approach uses the synchronized dynamic prime number generation Prime

(Pi) on both sides, i.e., sensors and DSM as shown in Fig. 1. At the end of the hand-

shaking process, sensors have their own secret keys, initial prime number and initial

shared key generated by the DSM. The next prime generation process is based on the

current prime number and the time interval as described in Algorithm II. The prime

number generation process (Algorithm II) always calls Algorithm I to fetch shared

key length information and associated time interval. Sensors generate the shared key

𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑)) using the prime number 𝑃𝑖, and DSM’s secret key 𝐸(P𝑖,𝐾𝑑). We use

the secret key of DSM to improve the robustness of the security verification process.

Each data block is associated with the authentication and integration tag and contains

two different parts. One is encrypted DATA based on shared key 𝐾𝑆𝐻 for integrity

checking (i.e., 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻), and the other part is for the authenticity checking

(i.e., 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻). The resulting data block ((DAT𝐴⊕𝐾𝑆𝐻) ∥ (𝑆𝑖⊕𝐾𝑆𝐻)) is sent to

DSM as follows: Si → DSM: {(𝐼𝐷∥𝐴𝐷)}.

3.4 DLSeF Security Verification

In this step, the DSM first checks the authenticity in each individual data block 𝐴𝐷 and

then the integrity with randomly selected data blocks 𝐼𝐷. The random value is calcu-

lated based on the corresponding prime number i.e. 𝑗=𝑃𝑖% 5, when the key length is

32; 𝑗=𝑃𝑖% 9 when the key length is 64; and there is no integrity verification when the

key length is 128. DSM also checks the time stamp of each individual data block to

find the shared key used for encryption. For the authenticity check, the DSM decrypts

𝐴𝐷 with shared key 𝑆𝑖=𝐴𝐷⊕𝐾𝑆𝐻. Once Si is obtained, the DSM checks its source da-

tabase and extracts the corresponding secret key 𝐾𝑖 (𝐾𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆𝑖)). In the

integrity check process, the DSM decrypts the selected data such as 𝐷𝐴𝑇𝐴=𝐼𝐷⊕𝐾𝑆𝐻

to get the original data and checks MAC for the data integrity.

4 Security Analysis of DLSeF

In this section, we provide a theoretical analysis on our approach. We made the fol-

lowing assumptions: (a) any participant in our scheme cannot decrypt the data that

was encrypted by DLSeF algorithm unless it has the shared key which was used to

encrypt the data; (b) as DSM is located at the big data processing system side, we

assume that DSM is fully trusted and no one can attack it; and (c) sensors’ secret key,

Prime (Pi) and secret key calculation procedures reside inside the trusted part of the

sensor (such as the TPM) so that they are not accessible to the intruders.

Similar to most security analyses of communication protocols, we now define the

attack models for the purpose of verifying the authenticity and integrity.

Definition 1 (attack on authentication). A malicious attacker Ma can attack on the

authenticity if it is capable to monitor, intercept, and introduce itself as an authenti-

cated source node to send data in the data stream.

Definition 2 (attack on integrity). A malicious attacker Mi can attack on the integrity

of the data if it is an adversary capable to monitor the data stream regularly and try to

access and modify the data blocks before it reaches to DSM.

Theorem 1: The data security of data streams is not compromised by changing the

size of shared key (KSH).

Proof: The dynamic prime number generation generates and updates the key on both

source and DSM. The dynamic shared key length is either 32 bit or 64 bit or 128 bit.

The ECRYPT II recommendations on key length say that a 128-bit symmetric key

provides the same strength of protection as a 3,248-bit asymmetric key [16]. Even

smaller symmetric key provides more security as it is never shared publicly. Ad-

vanced processor (Intel i7 Processor) took about 1.7 nanoseconds to try out one key

from one block. With this speed it would take about 1.3 × 1012 × the age of the uni-

verse to check all the keys from the possible key set [16]. By reducing the size of the

prime number, we vary the key length to confuse the adversary, but achieve faster

security verification at DSM using the data reported in Table 2. Further, Table 2

shows that 128 bit symmetric key takes 3136e +19 nanoseconds (more than a month),

64 bit symmetric key takes 3136e +19 nanoseconds (more than a week), and so on.

We fixed the time interval (t) to generate prime number and updated the shared key as

follows: t=720 hours for 128-bit key length, t=168 hours for 64-bit length, and t=20

hours for 32 bit length key (see Algorithm I). Dynamic shared key is computed based

on the calculated prime number and associated properties initialized accordingly (See

Algorithm II). Based on these calculation, we conclude that an attacker cannot inter-

cept within the interval time t. The key has been already changed four times before an

attacker knows the key and this knowledge is not known to the attackers. Data blocks

arrived after 20 hours are discarded as they might be compromised.

ALGORITHM I. SYNCHRONIZATION OF DYNAMIC KEY LENGTH GENERATION

Key-Length (𝒙𝒏−𝟏)

1: 𝑥𝑛−1← 64 (For First Iteration)

2: 𝑥𝑛 ← 𝑥𝑛−1 + 𝑥𝑛−1 cos 𝑥𝑛−1

3: i←𝑥𝑛%3

4: If i = 0 then

5: Set kl ← 128

6: t ← 720 hours (1 month)

7: j ← no checking

8: Else If i = 1 then

9: Set kl ← 64

10: t ← 168 hours (1 week)

11: j ← Pi % 9

12: Else

13: Set kl ← 32

14: t ← 20 hours (1 day)

15: j ← Pi % 5

16: End If

17: End If

18: Return (𝑥𝑛) // use to initialize 𝑥𝑛−1for next iteration.

Table 2. Time taken by symmetric key (AES) algorithm to get all possible keys using the most

advanced Intel i7 Processor.

Key Length 8 16 32 64 128

Key domain size 256 65536 4.295e+09 1.845e +19 3.4028e+38

Time (in nanoseconds) 1435.2 1e+05 7.301e+09 3136e +19 5.7848e+35

Theorem 2: Relative prime number Pi is calculated in Algorithm II is always syn-

chronized between the source sensors (Si) and DSM.

Proof: The normal method to check the prime number is 6k+1, ∀k∈ N+ (an integer).

Here, we first initialize the value of k based on this primary test formula stated above.

Our prime number generation method is based on the nth prime number generation

concept and from the extended idea of [24]. In our approach, the input Pi is the

currently used prime number (initialized by DSM) and the return Pi is the calculated

new prime number. Intially Pi is intianized by DSM at DLSeF Handshaking process

and the interval time is t (see Algorithm I).

By applying the Algorithm II, we calculate the new prime number 𝑃𝑖 based on the

previous one 𝑃𝑖−1 . The complete process of the prime number calculation and

genertion is based on the value of m, wherem is initialized from k. The value of k is

kept constant at source because it is calculated from the current prime number. This is

initialized during DLSeF Handshaking. Since k is constant the procedure Prime (Pi)

returns identical values at both seniors and DSM. In Algorithm II, the value of S(x) is

computed as follows, if the computed value is 1 then x is a prime; otherwise it is not a

prime.

ALGORITHM II. DYNAMIC PRIME NUMBER GENERATION

Prime (𝑷𝒊)

1: 𝑃𝑖−1 = 𝑃𝑖

2: Set 𝑘 ∶= ⌈
𝑃𝑖−1

6
⌉

3: Set 𝑚 ∶= 6𝑘 + 1

4: If 𝑚 ≥ 107 then

5: 𝑘 ∶= 𝑘
105⁄

6: GO TO: 3

7: If S(𝑚) = 1 then

8: GO TO: 13

9: Set 𝑚 ∶= 6𝑘 + 5

10: If S(𝑚) = 1 then

11: GO TO: 13

12: 𝑘 ∶= ⌊𝑘3 + √𝑘⌋ 𝑚𝑜𝑑 17 + 𝑘

13: GO TO: 3

14: 𝑃𝑖 = 𝑚

15: Return (𝑃𝑖) // calculated new prime number

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘+1
⌋ −

𝑥

6𝑘+1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1 , S2(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ ⌊⌊
𝑥

6𝑘−1
⌋ −

𝑥

6𝑘−1
⌋

⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1

𝑆(𝑥) =
S1(x)+S2(x)

2

If 𝑆(𝑥) = 1 then x is prime, otherwise x is not a prime.

𝑥 ≢ 0 𝑚𝑜𝑑 𝑖 ∀ 1 ≤ i ≤ x − 1, if x is prime.

Put the value of x as a prime number, then derivations as follows:

⇒ ⌊⌊
x

6k+1
⌋ −

x

6k+1
⌋ = −1

Same as ⌊⌊
x

6k−1
⌋ −

x

6k−1
⌋ = −1

∀ k within the specified range i.e 107, then

S1(𝑥) =
(−1)

⌊
⌊√𝑥⌋

6
⌋+1

∑ (−1)
⌊
⌊√𝑥⌋

6
⌋+1

𝑘=1 = 1

Same S2(𝑥) is also 1 and then 𝑆(𝑥) =
S1(x)+S2(x)

2
= 1

Hence, the property of 𝑆(𝑥) is proved.

Theorem 3: An attacker Ma cannot read the secret information from a sensor node

(Si) or introduce itself as an authenticated node in DLSeF.

Proof: Following Definition 1 and considering the computational hardness of secure

module (such as TPM), we know that Ma cannot get the secret information for Pi gen-

eration, Ki and KeyGen. So there are no possibilities for the malicious node to trap

sensor, but Ma can introduce him/ herself as an authenticated node to send its infor-

mation. In our approach, a sensor (Si) sends((𝐼𝐷) ∥ (𝐴𝐷)), where the second part of

the data block (𝑆𝑖 ⊕ 𝐾𝑆𝐻) is used for authentication check. DSM decrypts this part of

the data block for authentication check. DSM retrieves Si after decryption and match-

es corresponding Si within its database. If the calculated Si matches with the DSM

database, it accepts; otherwise it rejects the node as source and it is not an authenti-

cated sensor node. Hence, we conclude that an attacker Ma cannot attack on big data

stream.

Theorem 4: An attacker Mi cannot read the shared key 𝐾𝑆𝐻 within the time interval t
in DLSeF model.

Proof: Following Definition 2, we know that an attacker Mi has full access to the

network to read the shared key 𝐾𝑆𝐻 , but Mi cannot get correct secret information such

as KSH. Considering the method described in Theorem 1, we know that Mi cannot get

the currently used KSH within the time interval t (see Table 2), because our proposed

approach calculates Pi randomly after time t and then uses the value Pi to generate KSH

as described in Theorem 1 and 2.

5 Experimental Evaluation

The proposed DLSeF security approach though deployed in big sensor data stream

in this paper is a generic approach and can be used in other application domains. In

order to evaluate the efficiency and effectiveness of the proposed architecture and

protocol, even under the adverse conditions, we experimented with two different ap-

proaches in two different simulation environments. We first verify the security ap-

proach using Scyther [22], and then measure the efficiency of the approach using JCE

(Java Cryptographic Environment) [23].

5.1 Security Verification

The protocols in our proposed approach is written in Scyther simulation environ-

ment using Security Protocol Description Language (.spdl). According to the features

of Scyther, we define the role of S and D, where S is the sender (i.e., sensor nodes)

and D is the recipient (i.e., DSM). In our scenario, S and D have all the required in-

formation that are exchanged during the handshake process. This enables S and D to

update their own shared key. S sends the data packets to D and D performs the securi-

ty verification. In our simulation, we introduce two types of attacks by adversaries. In

the first type of attacks, a malicious attacker change the data while it is being trans-

mitted from S to D through intermediaries (integrity attack). In the second type of

attacks (authentication attack), an adversary acquires the property of S and sends the

data packets to D pretending that it is from S. We experimented with 100 runs for

each claim and found out no attacks at D as shown in Fig. 2(a).

Experiment model: In practice, attacks may be more sophisticated and efficient

than brute force attacks. However, this does not affect the validity of the proposed

DLSeF approach as we are interested in efficient security verification without period-

ic key exchanges and successful attacks. Here, we model the process as described in

the previous section and vary the key size between 32 bits, 64 bits, and 128 bits (see

Table 2). We used Scyther, an automatic security protocols verification too,l to verify

our proposed model.

Results: We did our simulation using a different number of data blocks in each run.

Our experiment ranged from 10 to 100 instances with 10 intervals. We checked au-

thentication for each data block, whereas the integrity check is performed on the se-

lected data blocks. As the key generation process is saved in the trusted part of the

sensors, no one can get access to those information except the corresponding sensor.

Hence, we did not find any authentication attacks. For integrity attacks, it is hard to

get shared key (𝐾𝑆𝐻), as we are frequently changing the shared key (𝐾𝑆𝐻) and its

length based on the dynamic prime number 𝑃𝑖 on both source sensor (𝑆𝑖) and DSM. In

the experiment, we did not encounter any integrity attacks. Fig. 2(a) shows the result

of security verification experiments in Scyther environment. This shows that our ap-

proach is secured from integrity and authentication attacks.

Fig. 2. (a) Scyther simulation result of successful security verification at DSM. (b) Performance

of our approach compared in efficiency to 128 bit AES and 256 bit AES.

5.2 Performance Comparison

Experiment model: It is clear that the actual efficiency improvement brought by

our approach highly depends on the size of the key and rekeying without further

communication between sensor and DSM. We have performed experiments with dif-

ferent size of data blocks. The results of our experiments are given below.

We compare the performance of our proposed model DLSeF with advanced en-

cryption standard (AES), the standard symmetric key encryption algorithm [20, 21].

Our approach is efficient compared with two standard symmetric key algorithm such

as 128-bit AES and 256-bit AES. This performance comparison experiment was car-

ried out in JCE (Java Cryptographic Environment). We compared the processing time

with different data block size. This comparison is based on the features of JCE in java

virtual machine version 1.6 64 bit. JCE is the standard extension to the java platform

which provides a framework implementation for cryptographic method. We experi-

mented with many-to-one communication. All sensors node communicate to the sin-

gle node (DSM). All sensors have the similar properties whereas the destination node

is more powerful to initialize the process (DSM). The rekey process is executed at all

the nodes without any intercommunication. Processing time of data verification is

measured at DSM node. Our experimental results are shown in Fig. 2(b).

Results: The performance of our approach is better than the standard AES algo-

rithm when different sizes of the data blocks are considered. Fig. 2(b) shows the pro-

cessing time of the DLSeF approach in comparison with base 128-bit AES, and 256-

bit AES for different size of the data blocks. The performance comparison shows that

our proposed approach is efficient and faster than the baseline AES protocols.

From the above two experiments, we conclude that our proposed DLSeF approach

is secured (from both authenticity and integrity attacks), and efficient (compare to

standard symmetric algorithms such as 128-bit AES and 256-bit AES).

6 Conclusion and Future Works

In this paper, we have proposed a novel authenticated key exchange approach,

namely Dynamic Key Length Based Security Framework (DLSeF), which aims to

provide real-time security verification approach for big sensing data stream. Our ap-

proach has been designed based on the symmetric key cryptography and dynamic key

length. By theoretical analyses and experimental evaluations, we showed that our

DLSeF approach has provided significant improvement in the security processing

time, and prevented malicious attacks on authenticity and integrity. In our approach,

we decrease the communication and computation overhead by performing dynamic

key initialization at both sensor and DSM, which in effect eliminates the need of re-

keying and decreases the communication overhead. We plan to pursue a number of

research avenues in future. The foremost is to perform a comparative study of our

work with other techniques like RC4, RC6. We will further investigate the technique to

develop a moving target defense strategy for the Internet of Things.

References

1. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream pro-

cessing. ACM SIGMOD Record, 34(4), 42-47 (2005).

2. Bifet, A.: Mining Big Data in Real Time. Informatica (Slovenia), 37(1), 15-20 (2013).

3. Dayarathna, M., Suzumura, T.: Automatic optimization of stream programs via source pro-

gram operator graph transformations. Distributed and Parallel Databases, 31(4), 543-599

(2013).

4. Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision support

systems: Putting analytics and big data in cloud. Decision Support System 55(1), 412-421

(2013).

5. Tien, J. M.: Big data: Unleashing information. Journal of Systems Science and Systems En-

gineering, 22(2), 127-151 (2013).

6. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.: Big data:

The next frontier for innovation, competition, and productivity. (2011).

7. Nehme, R. V., Lim, H. S., Bertino, E.: FENCE: Continuous access control enforcement in

dynamic data stream environments. In Proceedings of the third ACM conference on Data

and application security and privacy, 243-254 (2013).

8. Cao, J., Kister, T., Xiang, S., Malhotra, B., Tan, W. J., Tan, K. L., Bressan, S.: Assist: Ac-

cess controlled ship identification streams. InTransactions on Large-Scale Data-and

Knowledge-Centered Systems XI, 1-25 Springer (2013).

9. Puthal, D.: Secure Data Collection and Critical Data Transmission Technique in Mobile

Sink Wireless Sensor Networks. M.Tech Thesis, National Institute of Technology, Rourke-

la, 2012.

10. Bahrami, M., Singhal, M.: The Role of Cloud Computing Architecture in Big Data.

In Information Granularity, Big Data, and Computational Intelligence, 275-295 (2015).

11. McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harvard business re-

view, (90), 59-69 (2012).

12. Puthal, D., Sahoo, B.: Secure Data Collection & Critical Data Transmission in Mobile Sink

WSN: Secure and Energy efficient data collection technique. LAP Lambert Academic Pub-

lishing: Germany, 2012.

13. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Foundations and Trends in

Databases, 1(1), 1-140 (2007).

14. Sutherland, T. M., Liu, B., Jbantova, M., Rundensteiner, E. A.: D-cape: distributed and self-

tuned continuous query processing. In Proceedings of the 14th ACM international confer-

ence on Information and knowledge management, 217-218 ACM (2005).

15. Burke, J., McDonald, J., Austin, T.: Architectural support for fast symmetric-key cryptog-

raphy. ACM SIGOPS Operating Systems Review, 34(5), 178-189 (2000).

16. www.cloudflare.com (accessed on: 04.08.2014)

17. Nehme, R. V., Lim, H. S., Bertino, E., Rundensteiner, E. A.: StreamShield: a stream-centric

approach towards security and privacy in data stream environments. In Proceedings of the

ACM SIGMOD International Conf. on Management of data, 1027-1030 ACM (2009).

18. Park, K. W., Lim, S. S., Park, K. H.: Computationally efficient PKI-based single sign-on

protocol, PKASSO for mobile devices. IEEE Trans. on Computers, 57(6), 821-834 (2008).

19. Stamp, J., Campbell, P., DePoy, J., Dillinger, J., Young, W.: Sustainable security for infra-

structure SCADA. Sandia National Laboratories, Albuquerque, New Mexico (www. sandia.

gov/scada/documents/SustainableSec urity. pdf) (2003).

20. Pub, N. F. 197: Advanced encryption standard (AES). Federal Information Processing

Standards Publication, 197, 441-0311 (2001).

21. Heron, S.: Advanced Encryption Standard (AES). Network Security, 2009(12), 8-12 (2009).

22. Scyther, [Online] http://www.cs.ox.ac.uk/people/cas.cremers/scyther/

23. Pistoia, M., Nagaratnam, N., Koved, L., Nadalin, A.: Enterprise Java 2 Security: Building

Secure and Robust J2EE Applications. Addison Wesley Longman Publishing, Inc. (2004).

24. Kaddoura, I., Abdul-Nabi, S.: On formula to compute primes and the nth prime. Applied

Mathematical science, 6(76), 3751-3757 (2012).

25. Nepal, S., Zic, J., Liu, D., Jang, J. A mobile and portable trusted computing plat-

form. EURASIP Jour. on Wireless Communication and Networking, 2011(1), 1-19 (2011).

26. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future Generation com-

puter systems, 28(3), 583-592 (2012).

27. Liu, C., Zhang, X., Yang, C., Chen, J.: CCBKE—Session key negotiation for fast and secure

scheduling of scientific applications in cloud computing. Future Generation Computer Sys-

tems, 29(5), 1300-1308 (2013).

28. Akkaya, K., Younis, M.: An energy-aware QoS routing protocol for wireless sensor net-

works. In Distributed Computing Systems, 23rd International Conf. on, 710-715. (2003).

29. Ranjan, R.: Streaming Big Data Processing in Datacenter Clouds. IEEE Cloud Computing,

1(1), 78–83 (2014).

