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n a cloud environment, computing resources and applications 
are provided as services over a network, typically the Internet. 
Cloud computing resources are largely hosted in commercial 
datacenters and colocation facilities and in hyperscale server 

farms operated by companies like Amazon, Apple, Google, Mi-
crosoft, and Facebook. These datacenters must be continuously 
monitored to ensure stable operation. Various monitoring tools are 
available to monitor different layers of an enterprise IT system—
from business functions to applications to infrastructure. How-
ever, determining what, when, and where to monitor is left to the 
system administrators. The intuition-driven monitoring strategy is 
therefore ad hoc, of variable quality, and not scalable to large sys-
tems. Furthermore, this approach fails to keep up with the con-
tinuous evolution of enterprise systems, especially in hybrid cloud 
computing environments, which integrate multiple public and pri-
vate datacenters.

Monitoring in a Hybrid Cloud
Hybrids are found in other domains, based on assort-
ed factors such as the economics of ownership ver-
sus pay-per-use in the presence of variable demand, 
performance differentials, and privacy and security-
related concerns in storing sensitive information in 
the public cloud.1 Although cloud providers assure 
their customers about data safety, some data owners 
still hesitate to give up some level of control of sensi-

tive information to service providers. Hybrid clouds 
aim to provide the best of public and private clouds. 
In addition to security, a private cloud could serve 
many important purposes. For example, if a private 
cloud can’t provide SLAs, an enterprise can leverage 
one or more public clouds by employing cloudburst-
ing techniques to manage SLAs. 

In cloudbursting, most of the computation is 
localized in a private cloud. When the computa-
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tion load increases, some computation elements are 
migrated to a public cloud using a suitable sched-
uling mechanism, where SLAs can be honored. 
Cloudbursting can also assist in localizing sensi-
tive computation to a private cloud, while compute-
intensive work can be relocated to a public cloud 
as needed. Having a public cloud could also assist 
in data recovery, checkpointing, and so on if the 
private cloud fails. By cleverly coordinating the 
migration of information and computation among 
several public clouds, along with controlling the 
flow of sensitive data, it is possible to shield in-
formation from unauthorized entities, and thus, 
effectively create a framework of secure computa-
tion on clouds.

Given the benefits of hybrid clouds, many 
medium-sized enterprises have started to weigh 
the opportunities of a hybrid cloud against a pure 
public cloud system. In this context, a datacenter’s 
monitoring mechanism is even more significant. 
Because faults can be independently domain lo-
calized, datacenters, network services, and re-
sources belonging to public clouds and those 
belonging to private clouds can be monitored in-
dependently. Problems that then arise include 
segregating two possible fault locations, diagnos-
ing unforeseen interactions emerging from the 
interplay of two complex systems, and seamlessly 
integrating public and private clouds in scenarios 
such as business continuity or cloudbursting to 
relocate computation while maintaining SLAs. 
These all drive a need for a unified management 
console and APIs for monitoring faults and system 
tuning in the event of a fault.2,3 

Converged infrastructure mapping for hybrid 
clouds is one of the main problems developers face 
in building an automated monitoring tool. Such a 
tool will also depend on the bursting technology the 
enterprise uses. However, when a mapping solution 
exists, conventional monitoring tools can be ported 
to monitor the hybrid clouds’ health. 

Challenges 
A complex interplay of factors present innumerable 
challenges to the development of a performance 
monitoring system for hybrid clouds. We brief 
some of the most important issues in the following 
sections.

Scale and Complexity
Much of the difficulty originates from the inherent 
scale and complexity of enterprise datacenter ap-
plications. Consider, for instance, an equity trading 
application run by a top-tier investment bank in the 
US. As Figure 1 illustrates, this single application 
comprises 469 nodes (software components) for pro-
cessing incoming stock trades, 2,072 communica-
tion links between components, and 39,567 unique 
paths through which incoming stock trades flow in 
the system. Some of the application’s critical soft-
ware components (such as a credit card transaction 
processing app) will be hosted in a private datacen-
ter, whereas noncritical components (such as front-
end webservers) will be hosted in public datacenters. 
Detecting problems (for example, in end-to-end re-
quest processing latency) and tracing the problem to 
one or more culprit software components is difficult 
in such hybrid deployments. 

Leakage of Monitoring Data
Typically, public cloud service providers store moni-
toring data in a shared cloud storage service. For 
example, Amazon CloudWatch and Azure Fabric 
Controller maintain monitoring logs on their internal 

FIGURE 1. A trading application stack that includes 469 software 

components, 2,072 communication links, and 39,567 unique paths 

through which incoming stock trades flow. 
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servers. Notably, CloudWatch can be configured to 
store monitoring logs on Amazon S3 or SimpleDB 
services. However, these approaches might be unac-
ceptable to enterprise users who don’t want to leave 
footprints of the workload distribution (such as a 
customer’s geolocation) related to specific compu-
tations and/or data transfers performed by a public 
cloud-hosted software component. Thus, a probe-
based mechanism initiated from a secure private 
cloud would be ideal for making an informed guess 
on the possible problems encountered in a software 
component deployed on a public cloud instead of 
relying on the monitoring logs produced by public 
monitoring services.

Monetary Cost of Monitoring
Another way to avoid leakage of monitoring data is 
to transmit it to a secure location in a private cloud. 
The major problem here is transferring a large vol-
ume of data from a public to a private cloud. Consid-
ering the data leakage issue, optimizing monitoring 
costs becomes the most significant challenge in a hy-
brid cloud setup. A combination of probing and moni-
toring would, therefore, be a practical approach for 
a hybrid cloud environment. Aside from monitoring-
related issues, isolating a problem’s origin is chal-
lenging in a hybrid cloud. Whether the impact on a 
public cloud is symptomatic of certain issues in a pri-
vate cloud or it originated from complex interactions 
among public cloud components should be important 
in analyzing the root cause. In fact, it’s quite pos-
sible that a chatty application involving a significant 
amount of communication between clients and serv-
ers might impact performance on a public cloud. So, 
although the problem seems traceable to a public 
cloud, it actually originated in components located 
in a private cloud.

Networking of Monitoring Agents
Monitoring information in hybrid clouds can be 
gathered through deployment of monitoring agents 
across different cloud service types (such as a virtual 
machine, webserver, or database server) deployed 
across private and public datacenters. As continuous 
collection and reporting of monitoring data can over-
load a cloud node (such as a virtual machine) hosting 
the master monitoring agent, there is a need for an 
intelligent network of distributed monitoring agents 

that proactively communicate among themselves to 
gather monitoring information, and filtering out un-
necessary data. To ensure scalability, the monitoring 
agents also need to implement multiple network to-
pologies for improved agent integration and monitor-
ing information indexing in the form of self-balanced 
trees and distributed hash tables.4 Using decentral-
ized networking for agents allows for distributed pro-
cessing and storage of information, less search time 
for failed nodes, and improved robustness. However, 
we need more research aimed at understanding the 
scalability of these network topologies for different 
configurations (such as number of software compo-
nents, monitored performance metrics, and monitor-
ing frequency) in hybrid environments.4

Instrumentation Versus Intrusiveness
Typically, the effectiveness of monitoring and event 
management depends on the number and type of 
data collection monitors (probes) available in the 
system. Retrofitting an operational system with the 
instrumentation required to facilitate event man-
agement, however, is always a challenge. System 
operators and administrators are reluctant to intro-
duce probes into the production environment, espe-
cially if the probes are intrusive (and can potentially 
modify the system behavior). Further, probes origi-
nating from private datacenters targeting software 
components hosted in public datacenters could get 
blocked because of strict intrusion detection poli-
cies enforced by cloud providers. Thus, a practical 
fault localization strategy should enable event detec-
tion with minimum instrumentation of the hybrid 
application system. Much of the prior research in 
the area of fault localization has ignored this basic 
practical requirement. This prior work has yielded 
sophisticated alerting algorithms for fault detection 
and localization,5 while assuming that all of the data 
required by the algorithm for its decision making 
can be easily gathered and probed. Unfortunately, in 
most cases, collecting such data requires significant 
instrumentation across public and private datacen-
ter environments, which is a challenging problem.6 

Incomplete and Inaccurate Knowledge of  
the System
IT systems in today’s enterprises are distributed 
across geographies. Different segments are monitored 
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by different teams using different tools, making it 
difficult to maintain a unified view of the enterprise. 
Furthermore, IT systems are continuously adding and 
decommissioning business functions, software com-
ponents, and infrastructure components. This con-
tinuous evolution presents a challenge in keeping the 
system knowledge up to date in hybrid clouds.

Need for a Paradigm Shift
Given the increasing scale and complexity of today’s 
IT systems, there’s a compelling need for a paradigm 
shift from a manual intuition-led approach to an 
automated analytics-driven approach to monitoring 
these systems. Analytics-led solutions can construct 
a unified, trustworthy, and up-to-date view of the 
entire enterprise, accurately model system behav-
ior, and answer the what-when-how of monitoring 
and event management. When designing a monitor-
ing strategy for hybrid clouds, an enterprise must 
consider a number of questions, including which 
components and metrics should be monitored, and 
how often; what’s the best way to ensure minimal 
monitoring overhead and minimal anomaly detec-
tion time; and how can we minimize intrusiveness 
arising due to active probing 

Insight 1: Need for a Comprehensive  
System-Wide Solution
Traditional solutions monitor components in isola-
tion. The strategy for monitoring a layer or a compo-
nent is thus configured while remaining completely 
agnostic to the policies across other dependent com-
ponents. This leads to incomplete and inconsistent 
monitoring solutions. For instance, consider a Web 
application that serves a critical business function, 
such as the example in Figure 2. The application’s 
correct functioning depends on the health of the 
underlying databases, operating systems, and stor-
age and network devices distributed across public 
and private datacenters. Exhaustive monitoring 
of an operating system at a fine granularity (say, 1 
ms) and minimal monitoring of a database at a very 
coarse granularity (say, 10 mins) makes the monitor-
ing data unusable for various operations demanding 
cross-layer analytics. System administrators often 
face this problem while debugging performance 
outages. System administrators often can’t debug a 
performance outage at an application because of the 

lack of monitoring data at sufficient levels of details. 
This leads to delayed resolution times and often in-
complete and inaccurate resolutions.

To make best use of monitoring information, 
it’s important to cut across the silos of applications, 
software, and infrastructure components and gener-
ate a comprehensive and consistent monitoring plan.

Insight 2: Need for Solutions that Adapt to 
System Changes 
Active probing and passive monitoring have histori-
cally been two important approaches for measure-
ment, monitoring, and managing complex systems.7 
However, these two approaches have traditionally 
been used in isolation. Passive monitoring techniques 

1 minute

• Transactions
• Response time
• Failures

10 minutes

• SQL exec time
• Bu�er gets
• Reads/writes

1 second

• CPU utilization
• Disk I/O

FIGURE 2. Different monitoring policies are used across layers of a 

business application and are agnostic across layers, making monitoring 

solutions incomplete and inconsistent.
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compute at-a-point (that is compute-component-
specific performance metric) metrics and can pro-
vide fine-grained metrics, but are agnostic to the 
end-to-end system performance. On the other hand, 
probing-based techniques compute end-to-end met-
rics but lack an in-depth view of components. These 
two techniques can complement each other to devel-
op effective solutions. 

Adaptive monitoring. Monitoring metrics need to be 
collected at various layers—from the hardware layer 
for metrics such as CPU and memory utilization, 
to the operating system and virtual machine layer, 
to the database and application layer. Fortunately, 
there are many tools for monitoring a wide variety of 
system components (see, for example, www-03.ibm 
.com/software/products/en/ibmtivolinetcoolomnibus). 
Most of these tools can monitor a large range of met-
rics and can be configured according to needs. How-
ever, the quality of the monitored data as well as 
these tools’ ability to monitor across multiple data-
centers are often suspect. Effective use of monitor-
ing tools demands an understanding of monitoring 
requirements, which system administrators often 

lack. Instead of a well-defined process for defining 
monitoring strategies, system administrators adopt 
an ad hoc, manual, and intuition-based approach. 
This leads to inconsistent and inadequate data col-
lection and retention policies. 

Consider an example of a logical partition 
(LPAR) of a mainframe box. Many commercial 
and open source tools monitor the performance of 
LPARs, capturing a wide variety of metrics. At a 
given instant, 1,640 metrics can be captured by the 
standard type 70 log produced for CPU activity at 
an LPAR. However, storage experts typically cap-
ture only a few representative performance metrics, 
collecting and analyzing a larger set of metrics only 
when a component becomes a performance bottle-
neck. Another example is an Oracle instance that 
can be configured to periodically generate automatic 
workload repository (AWS) reports (Figure 3). These 
reports capture the details of workloads, wait events, 
SQLs, tablespaces, and so on. For lack of a proper 
monitoring strategy, these reports are usually pro-
duced every 24 hours to capture daily statistics.

An aggressive or conservative monitoring ap-
proach can lead to either very large or very small vol-
umes of monitoring data. Both types of approaches 
suffer from drawbacks that make them impractical. 
A very large amount of monitoring data is difficult to 
store, maintain, and analyze. For instance, logging 10 
metrics at a rate of one sample per second will con-
sume about 720,000 Kbytes per hour, one sample ev-
ery five seconds will consume about 144,000 Kbytes 
per hour, and one sample every 10 minutes will con-
sume 1,200 Kbytes per hour. Very large volumes also 
carry the risk of burying interesting insights. On the 
other hand, a very small amount of monitoring data 
carries the risk of losing events of interest.

The key idea of adaptive monitoring is to use 
probes to understand the end-to-end performance 
and to infer the criticality of the probed compo-
nents from the insights gained from these probes.8 
The inferred criticality is then used to provide dy-
namic monitoring guidelines for these components. 
A poorly performing component needs monitoring at 
a finer level such that many metrics are collected at 
a high sampling rate. However, for a healthy compo-
nent, a very low sampling rate might be adequate. 
Thus, end-to-end probing-based solutions can be 
used to adapt at-a-point monitoring tools.

1,600 metrics
every 15 mins

20 metrics
every 60 mins

FIGURE 3. Both aggressive and conservative 

monitoring are impractical. Volume and frequency of 

data are very high in aggressive monitoring, but very 

low in conservative monitoring. 
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Adaptive probing. The ability to measure and ana-
lyze end-to-end metrics has encouraged the devel-
opment of various probing-based solutions for fault 
localization in networks. However, previous probing-
based solutions lack a node-level view.9,10 All prob-
ing decisions are based on the result of probes sent 
in the past and don’t use the information captured 
by passive monitors. The probes previously selected 
fail to balance the inherent tradeoff between probe 
traffic and localization time. Effective solutions can 
be designed using monitoring agents to adapt the 
probing policies. The adaptive probing-based solu-
tions built for fault localization can provide accurate 
fault localization, minimize fault localization time, 
and minimize the additional probe traffic created in 
the network.11

Previously proposed adaptive-probing solutions 
use the following two-step approach11:

1.	A small set of probes are sent periodically to de-
tect failures in the network. The probes detect 
failure but don’t localize the failed nodes. The se-
lection of probes and their frequency should aim 
to minimize probe traffic and detection time.

2.	On detection of a failure, additional probes are 
sent to localize the exact failure. The selection 
of probes should be such that fault localiza-
tion accuracy is high and localization time is 
minimized.

The information collected by monitors can 
help improve these detection and localization steps 
(Figure 5).  The metrics collected by the monitor-
ing agent at each node can be used to estimate a 
potential failure or change in a node’s steady state. 
It can then use the monitoring information to adapt 
the probing policies for detection and localization of 
failure to improve probe traffic, localization time, 
and localization accuracy. Initially, the monitoring 
data can be used to gain insights into the perfor-
mance properties of nodes and paths. The probes 
and probe frequencies are then determined on the 
basis of these monitoring insights. Selecting probes 
in this manner helps to keep both probe traffic and 
detection time low. Probe selection is further re-
fined and optimized on the basis of additional in-
sights gained from the results of past probes and 
monitoring agents. With this approach, localization 

time is kept low and the accuracy of fault localiza-
tion becomes high.

Insight 3: Need for Efficient Ways to Manage 
Scale 
Given the large scale of enterprise IT systems, 
the volume of monitoring data generated by the 
monitoring agents is huge. Very large volumes of 
data are difficult to store, maintain, and analyze. 
Adaptive monitoring and probing can fine-tune data 
collection frequencies, while various approaches 
can be used to efficiently manage and analyze large 
volumes of data.

Invariant detection. Many metrics are interde-
pendent and, as a result, the value of one can be 
inferred from the value of another. Invariant de-
tection refers to the approach of identifying the 
minimal set of metrics that can best represent all 
metrics of interest.
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FIGURE 4. Adaptive monitoring in an (a) aggressive 

and (b) conservative monitoring approach. Probes 

gather information about end-to-end performance, 

which is used to infer component criticality.
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Various researchers have worked on detecting 
invariants.12 A common approach is based on prin-
ciple component analysis (PCA).12 The basic idea is 
to compute principle components and score them by 
computing the orthogonal projections of data points 
onto these principle components. Principle compo-
nents can be derived using singular value decompo-
sition (SVD).12 SVD removes redundant components 
and selects the principle components that are im-
portant and representative of all data points. 

Multiresolution analysis. Enterprise applications 
use a number of compute, communication, and 
storage components. Instead of analyzing all the 
data of all the components at the finest time granu-
larity, multiresolution analysis allows the applica-
tion to analyze the data in stages, starting with a 
larger scope of analysis with coarse-grained filters 
of spatial and temporal dimensions, and iteratively 
narrowing the scope and using data at a finer gran-
ularity (Figure 6).

This approach is applicable in performance de-
bugging.13 Consider a root-cause analysis of a poorly 
performing application. A typical application is host-
ed on several application and database servers. To 
perform root-cause analysis, various aspects of these 
components need to be analyzed, such as CPU, 
memory, disk, heap, threadpool, SQLs, and tables. 
Analysis at this scope can involve a very large vol-
ume of historical data. Multiresolution analysis ap-
plies an iterative approach, narrowing the scope and 
increasing the resolution. The first round of analy-
sis uses computationally lightweight algorithms to 
collect a few representative metrics at each layer at 
coarse time granularity. After localizing the prob-
lem to one or more layers, an exhaustive drill-down 
analysis is performed in the localized domain using 
complex algorithms to collect additional metrics at a 
finer time granularity.

Noise reduction. A single enterprise often uses a 
wide variety of monitoring tools, each offering dif-
ferent scope and interfaces, and each configured 
with different policies. A silo view segregates events 
into layers of applications and infrastructure, lim-
iting insights into how events correlate to service 
degradation or disruptions. Alert solutions often 
result in a large volume of false or missed alerts. 
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FIGURE 5. Two-step approach in adaptive-probing 

using monitoring data: (a) failure detection, and  

(b) failure localization. 
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FIGURE 6. Multiresolution analysis begins at a larger scope of analysis 

using coarse-grained filters, and iteratively narrows the scope to analyze 

data at a finer granularity.
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With the increased noise, identifying and resolving 
problems before they impact users is a significant 
challenge.

To avoid being overwhelmed with noise, con-
textual information, such as relationships and 
dependencies between resources, can be used to 
accurately identify which events are true threats to 
business functions and which can be safely ignored. 
Enterprises can use analytics to model normal be-
havior and system interdependencies to configure le-
gitimate alerts, suppress duplicate alerts, and group 
correlated alerts (Figure 7).

Insight 4: Need to Be Proactive over Reactive 
Most alerts are reactive in nature and fail to give 
sufficient time to take corrective actions—allowing 
only for quick work-arounds and fixes. Instead of the 
traditional post facto alert approach, we need pro-
active alerting solutions. The ability to predict and 
generate preventive alerts would allow for preventive 
measures to avoid the problem in the first place.

Various approaches can be applied to generate 
predictive alerts. For example, an enterprise could 
use traditional forecasting algorithms such as au-
toregressive integrated moving average (ARIMA)14 
and Holt-Winters to project independent metrics 
such as business workload. Another approach, 
which requires more complex solutions, involves 
identifying system dependencies and then con-
structing correlation and regression models to derive 
intermetric relationships (Figure 8). Analysts can 
then use various simulation-based solutions to fore-
cast system variables and infer their impact on the 
overall system.

erformance monitoring of Internet of Things 
(IoT) applications will require clear under-

standing and specification of performance metrics 
across a range of hardware (CPU, storage, and net-
work), software (Apache Hadoop, Apache Storm, 
Apache Kafka, and so on), and IoT devices (such as 
sensors). Some IoT applications, such as those in the 
smart cities and environmental risk management 
(flooding, earthquake, and tsunami) domains, need 
to perform risk modelling using environmental da-
tasets stored across multiple private datacenters. At 

the same time, they can exploit public clouds to per-
form analytics over public social media data. 

Monitoring in an IoT application ecosystem (a 
system of systems) is difficult since the performance 
metrics to be monitored across hardware, software, 

Web tier 

Application tier 

Database tier 

Legitimate alerts 

Correlated alerts 

Duplicate alerts 

FIGURE 7. Enterprises can use analytics to identify types of alerts, 

allowing them to choose which alerts to act on.

Web 

App 

Database 

High URL response time 

High CPU utilization 

FIGURE 8. Enterprises can use various forecasting and predictive 

approaches to achieve proactive alerting solutions.allowing them to 

choose which alerts to act on.
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and IoT devices might be different but interdepen-
dent. For example, key performance metrics include 

•	 event detection and decision-making delay at 
the application level, 

•	 throughput and latency in distributed messaging 
queuing systems (Apache Kafka), 

•	 response time in batch processing systems 
(Apache Hadoop), 

•	 response time for processing top-k queries in 
transactional systems (Apache Hive), 

•	 read/write latency and throughput for distrib-
uted file systems, 

•	 utilization and throughput for CPU resources, and 
•	 throughput for storage and network resources. 

Still to be determined are how these perfor-
mance metrics across hardware, software, and IoT 
device layers can be defined and formulated as well 
as how they should be combined to give a holistic 
view of dataflows. To ensure application-level perfor-
mance, we must also monitor dataflow metrics (data 
volume, velocity, variety, and sources; and types and 
mix of search queries) across layers to develop ap-
propriate workload characterization models. 
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