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mart city” has emerged as an umbrella term for the per-
vasive implementation of information and communica-
tion technologies (ICT) designed to improve various 
areas of today’s cities. Areas of focus include citizen 

well-being, infrastructure, industry, and government. Smart city 
applications operate in a dynamic environment with many stake-
holders that not only provide data for applications, but can also 
contribute functionality or impose (possibly conflicting) require-
ments. Currently, the fundamental stakeholders in a smart city 
are energy and transportation providers, as well as government 
agencies, which offer large amounts of data about certain aspects 
(for example, public transportation) of a city and its citizens. 

Increasingly, stakehold-
ers deploy connected Internet of Things (IoT) de-
vices that deliver large amounts of near-real-time 
data and can enact changes in the physical envi-
ronment. Efficient management of these large vol-
umes of data is challenging, especially since data 
gathered by IoT devices might have critical security 
and privacy requirements that must be honored at 
all times. Nevertheless, this presents a significant 
opportunity to closely integrate stakeholders and 
data from different domains to create new applica-
tions that can tackle the increasingly complex chal-
lenges of today’s cities, such as autonomous traffic 
management, efficient building management, and 
emergency response systems. 

Currently, smart city applications are usually 
deployed on premises. Cloud computing has ma-
tured to a point where practitioners are increasingly 

comfortable with migrating their existing smart city 
applications to the cloud to leverage its benefits 
(such as dynamic resource provisioning and cost 
savings). However, future smart city applications 
must also be able to operate across cities to create 
a global, interconnected system of systems for the 
future Internet of Cities.1 Therefore, such applica-
tions have to be designed, implemented, and oper-
ated as cloud-native applications, allowing them to 
elastically respond to changes in request load, stake-
holder requirements, and unexpected changes in the 
environment.

Here, we outline our recent work on the smart 
city operating system (SCOS), a central element 
of future smart city application ecosystems. The 
SCOS is designed to resemble a modern computer 
operating system, providing unified abstractions for 
underlying resources and management tasks, but 
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specifically tailored to city scale. We present the 
specific foundations of SCOS that enable a larger 
smart city application ecosystem,2 allowing stake-
holders and citizens to create applications within the 
smart city domain. This approach enables them to 
build applications by only focusing on their specific 
demand, while completely freeing them from the 
complexities and problems they’re currently facing. 

Challenges in Smart City Development
Applications in a smart city operate in highly dynam-
ic environments comprising heterogeneous sets of 
infrastructures, which in turn are managed by differ-
ent providers (transport, energy, water, and so on) to 
serve multiple stakeholders. To address the intrinsic 
complexities of such environments, we introduced a 
cloud-based smart city application ecosystem,2 de-
picted in Figure 1. A number of challenges arise in 
the development of such an ecosystem.

The first challenge arises from incorporating 
and enabling the heterogeneous sets of available in-
frastructures in a smart city. On one hand, the eco-
system needs the ability to manage and operate the 
large number of devices that emerge through the IoT 
(sensors, gateways, and so on). This calls for novel 
means to stage, deploy, and organize such IoT devic-
es to ensure that they can be fully utilized in smart 
city applications. On the other hand, smart city ap-
plications need to run on, and integrate, a plethora 
of IoT devices and cloud computing infrastructure 
types to operate holistically with maximum perfor-
mance. To make this possible, the application eco-
system must be able to handle a variety of resources, 
ranging from traditional servers to hosted cloud 
solutions to the dormant computational potential 
of edge devices. Beyond this, the large number of 
different infrastructures and the rapid pace of in-
frastructure evolution call for means to move ap-
plications seamlessly between cloud, dedicated, and 
edge infrastructures in the smart city domain.

The second challenge comes from the massive 
amount of data that’s emitted by a smart city in a 
large range of forms and formats. To enable data-
driven applications, which are essential for deci-
sion making in smart city development, it’s vital to 
provide intelligent data management mechanisms. 
These mechanisms need to provide adaptive abili-
ties to store and manage heterogeneous data. Addi-

tionally, in a smart city context, they have to handle 
high-volume datastreams as well as large batches of 
data in structured and unstructured formats, which 
calls for novel integrated processing approaches.

The third challenge arises from the require-
ments that come with developing, managing, and 
operating applications. Enabling smart city ap-
plications, which seamlessly incorporate data and 
infrastructure resources available in the ecosys-
tem, requires both novel design and development 
approaches and novel architectural paradigms and 
patterns. To support practitioners in developing 
smart city applications on top of the domain’s in-
herent complexities, it’s vital to provide a toolset 
that hides these complexities, while also enabling 
practitioners to utilize and incorporate the afore-
mentioned diverse infrastructure sets. This not 
only calls for novel methodologies and program-
ming models, but also for the ability to provide an 
elaborate reconfigurable runtime environment that 
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FIGURE 1. A cloud-based smart city application ecosystem. Designed 

around the central middleware—the smart city operating system 

(SCOS)—the smart city application ecosystem allows for the seamless 

integration of relevant stakeholders and resources to efficiently build, 

deploy, and operate smart city applications
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enables adaptive execution along the whole range 
of heterogeneous infrastructures, multimodal data, 
and myriad IoT devices.

Finally, it’s important to provide mechanisms to 
fully address the complex ownership and compliance 
requirements that arise in the smart city domain. An 
ecosystem in this domain has to deal with unique 
security and compliance constraints, which apply 
on many levels, ranging from company regulations 
to governmental restrictions on provider levels. Ad-
ditionally, the heterogeneity of stakeholders, data 
providers, and data consumers, combined with the 
large scale as well as massive amounts of data, leads 
to an increased complexity.

To capacitate a smart city application ecosys-
tem, addressing these challenges is essential, and in 
turn enables the execution of manageable and evolv-
able smart city applications.

Smart City Operating System
The SCOS, depicted in Figure 2, addresses the chal-
lenges we’ve described, providing a solid founda-
tion for a larger smart city application ecosystem. 
To build a foundation that allows easy extendibility 
and high scalability, we followed the microservice 
architecture principle in its design.3 This approach 
allows for clean separation of concerns and serves as 
a flexible interaction mechanism among SCOS com-
ponents that enables novel synergies, leading to an 
extensible and evolvable system. 

Infrastructure Layer
The first layer of the SCOS, the infrastructure lay-
er, manages, configures, provisions, and constantly 
monitors the underlying infrastructure resources.

Infrastructure management. A smart city contains 
various heterogeneous types of infrastructure re-
sources, such as traditional servers, cloud comput-
ing resources,4 and edge and emerging IoT devices.5 
The infrastructure layer integrates these resources 
using an infrastructure management subsystem. 
The infrastructure management subsystem pro-
vides a mechanism that enables SCOS stakehold-
ers to locate and identify their owned or leased 
resources. After the resources that should be man-
aged have been located, they need to be accessible 
for the SCOS to be integrated into the overall sys-

tem. Therefore, the infrastructure management 
subsystem provides a prebuilt list of drivers for com-
municating with the resources, as well as an access 
management component for securely storing the 
necessary credentials or keys. Finally, to provide an 
extensible approach, the infrastructure management 
subsystem provides APIs that enable stakeholders to 
build custom drivers to integrate emerging types of 
resources that require new forms of interactions.

Configuration management. Once the infrastruc-
ture resources are integrated into and accessible to 
the SCOS, it’s necessary to facilitate their process-
ing power, for example, to run and execute applica-
tions. To do this, configuration management allows 
for provisioning, deploying, and configuring these 
resources transparently and efficiently. Since the 
various types of infrastructure resources have dif-
ferent capabilities and environments, configuration 
management needs to respect these constraints. 
Hence, it provides a scalable and elastic provision-
ing solution that can be specifically tailored to each 
type of infrastructure.6 The overall provisioning 
approach installs platform-specific software pack-
ages that allow leasing and releasing, monitoring, 
and deploying of resources in a generic and uniform 
manner. Next, for tailoring the connected and pro-
visioned infrastructure to stakeholder requirements, 
the configuration management subsystem provides 
interfaces that enable the SCOS to configure sev-
eral aspects (for example, pull- versus push-based 
updates) via the provisioned software packages. 
Finally, the configuration management subsystem 
supports the seamless deployment of single applica-
tions, complete application topologies, and addition-
al necessary packages onto connected infrastructure 
resources by considering both the computational ca-
pabilities and the available execution environments.7 
Furthermore, since smart city applications need to 
be able to evolve over time to react to changing re-
quirements or regulations, configuration manage-
ment enables the seamless migration of application 
topologies among deployment targets.8 Thus, it 
enables the independent evolution of applications, 
their topologies, and infrastructure resources.

Operations management. After the infrastructure 
is provisioned and ready for deployment, the SCOS 
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needs a mechanism for monitoring and analyzing 
the resources’ performance. The operations manage-
ment subsystem supports the constant monitoring 
and collection of information from connected re-
sources by using the available monitoring capabili-
ties of the respective infrastructure—for example, 
cloud monitoring APIs, such as Google’s Monitor-
ing API  (https://cloud.google.com/monitoring/api) 
and commonly applied monitoring tools such as 
Ganglia9—or by provisioning software capabilities 
that support gathering performance measurements, 
such as tailored profilers for edge devices.6 In ad-
dition to monitoring, operations management pro-
vides mechanisms to manage gathered logs, events, 
and faults. Based on collected information from 
the underlying infrastructure resources, the opera-
tions management subsystem conducts performance 
analyses that can be used to optimize resource uti-
lization or evolve the overall infrastructure deploy-
ment. Furthermore, other SCOS subsystems can 
use the fine-grained analysis information to adapt 
application topologies to react to defined require-
ments such as service-level agreements (SLAs). Fi-
nally, operations management provides APIs that 
allow SCOS operators to define custom adaptation 

routines (such as scaling algorithms) to guarantee a 
defined availability for infrastructure resources or 
deal with network outages.10

Data Layer
The second layer of the SCOS, the data layer, is re-
sponsible for storing and providing access to data 
residing in the ecosystem, and processing and ana-
lyzing data that other SCOS layers can use to gener-
ate valuable insights.

Storage and access. In modern smart cities, run-
ning applications, infrastructure resources, and 
citizens produce an ever-growing amount of data 
(commonly referred to as big data11). The data layer 
provides the storage and access subsystem for man-
aging and handling this data. This subsystem allows 
SCOS stakeholders to store and consume large sets 
of diverse data by providing generic and extendable 
APIs. For efficiently managing data in the SCOS, 
the subsystem supports the plethora of available 
data formats and the intrinsic diversity of data, and 
can also manage potentially noisy data12 produced 
by the underlying infrastructure with its millions 
of managed resources. Additionally, the subsystem 
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FIGURE 2.  Smart city operating system. The SCOS resembles a modern computer operating system that 

is specifically tailored to the city scale by providing unified abstraction layers for underlying resources, 

management, and security aspects.
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can handle both static data that isn’t frequently 
accessed or processed and dynamic data that con-
stantly changes. To address the challenges that 
emerge from handling these different types of data, 
the storage and access subsystem provides a flex-
ible approach that supports various storage facilities 
such as traditional relational databases, document-
oriented, and complex unstructured datastores. Pro-
viding data storage in a data-as-a-service (DaaS) 
fashion enables the seamless integration of data fa-
cilities into the SCOS, eases the integration of new 
datastores, and allows for easy and uniform data 
access as well as storage functionality for compo-
nents inside and applications on top of the SCOS. 
Furthermore, the storage and access subsystem 

provides mechanisms for merging and combining 
different types of data, which can be used as a foun-
dation for analysis and planning operations in upper 
layers. Finally, the storage and access subsystem in-
corporates novel concepts that protect data, but also 
allow open data exchange where different levels of 
data owners can share data by integrating the hub 
of all things principle (http://hubofallthings.com). 
Following this approach enables the clear concept of 
ownership and supports emerging data compliance 
and security requirements.

Processing and analysis. After enabling the efficient 
access to and storage of data in the data layer, the pro-
cessing and analysis subsystem allows stakeholders 
to efficiently transform, mediate, and analyze these 
large sets of diverse data. In addition, the processing 
and analysis subsystem provides an extensible set of 
established programming models for cloud, IoT, and 
edge resources, such as Apache Storm (http://storm 

.apache.org), Amazon IoT (https://aws.amazon.com/
iot), Google Cloud Dataflow (https://cloud.google 
.com/dataflow), Amazon Elastic MapReduce (https://
aws.amazon.com/elasticmapreduce), Apache Quarks 
(http://quarks.incubator.apache.org), and Esc,13 that 
allows for processing both streaming and historical 
data, which is a vital aspect of current smart cit-
ies. On top of the basic programming model, the 
processing and analysis subsystem provides a novel 
processing approach based on a lambda architecture 
(http://lambda-architecture.net). Employing lambda 
architectures allows the SCOS to balance through-
put, latency, and fault tolerance by simultaneously 
executing batch processing on batch data, and 
stream processing on real-time data. The analysis of 

processed data is another vital element 
in a smart city environment. Thus, the 
data layer provides data aggregation 
mechanisms, novel querying capabili-
ties,14 and a transparent environment 
for executing tailored processing and 
analysis routines. For building and de-
ploying executable routines, the subsys-
tem provides a prebuilt set of commonly 
applied processing and analysis logic, as 
well as a development kit for building 
and deploying custom code.

Application Layer
The third layer of the SCOS, the application layer, 
provides a comprehensive set of methodologies and 
tools for efficient design, development, distribution, 
and operation of smart city applications.

Design and development. One of the main goals of 
the SCOS application layer is to enable practitioners 
to create smart city applications in a simple, struc-
tured, and well-defined way. To accomplish this, the 
design and development subsystem is built around a 
comprehensive methodology for architecting, devel-
oping, and operating cloud-native smart city appli-
cations based on the methodology for architecture 
and deployment of cloud application topologies 
(MADCAT).15 The methodology provides actionable 
guidelines for iteratively architecting and imple-
menting smart city applications, both for new ap-
plications and for migrating existing applications to 
a cloud-native architecture16 suitable for the SCOS 

One of the main goals of the SCOS 
application layer is to enable 

practitioners to create smart city 
applications in a simple, structured, 

and well-defined way. 
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smart city application ecosystem. Furthermore, the 
SCOS provides a unified mechanism for describing 
smart city applications and their components along 
with deployment properties and requirements, simi-
lar to the Topology and Orchestration Specification 
for Cloud Applications (TOSCA).17 This mechanism 
allows for easy sharing of applications and applica-
tion components between SCOS deployments and 
provides a clear separation between application 
component dependencies and infrastructure re-
quirements to create infrastructure-agnostic appli-
cation descriptions. Such applications can then be 
offered in a smart city application market,18 where 
users can buy and sell applications and their compo-
nents using an open self-service platform.

Runtime environment. To allow for seamless execu-
tion of smart city applications, the SCOS runtime 
environment provides a configurable and adaptive 
execution environment for cloud-based applications 
that’s independent of the underlying physical infra-
structure. The execution environment incorporates 
a pluggable, unifying infrastructure abstraction8 to 
transparently support and manage multiple applica-
tion deployment mechanisms, such as container-
based deployments—for example, Docker (https://
docker.com)—and virtual machine-based deploy-
ments that are provisioned using predominant 
cloud offerings—for example, OpenStack (https://
openstack.org) or Amazon EC2 (https://aws.amazon 
.com/ec2). The runtime environment furthermore 
provides a service mobility mechanism that allows 
for seamless migration of application components 
between datacenters and stakeholder premises.19 
Moving processing logic closer to data sources and/
or data sinks can reduce network overhead and as-
sociated costs. Additionally, component migration 
allows for the execution of applications that other-
wise couldn’t be executed because of compliance 
constraints.

Lifecycle management. This subsystem is responsi-
ble for managing the complete lifecycle of smart city 
applications in the SCOS. For applications devel-
oped using the SCOS methodology we’ve described, 
the lifecycle management subsystem provisions re-
quired resources according to the specified require-
ments as well as applicable constraints, and deploys 

all application components according to their de-
ployment manifests.7,8 Stakeholders can then start, 
stop, or pause applications. During runtime, the 
lifecycle management subsystem will continuously 
monitor deployed smart city applications to optimize 
application deployment topologies.20 Furthermore, 
monitoring data is pushed to the data layer, which 
enables consumption and further processing by ap-
plications. In addition to monitoring the overall op-
erations of executed application components, the 
lifecycle management subsystem continuously moni-
tors and verifies mandatory compliance criteria and 
enforces them by initiating component migrations if 
possible and instructing the runtime environment to 
deny access to critical resources if necessary.

Cross-Cutting Concerns
The final SCOS layer represents cross-cutting con-
cerns. SCOS components or applications require 
common functionality (for example, authentication) 
that span several layers. Since such functionality af-
fects the overall system, it’s centralized in one place 
to avoid updating components throughout the sys-
tem in case a certain behavior (such as logging) has 
to be changed.

Tenant management. Smart city applications operate 
under complex compliance and security regulations. 
Furthermore, since these applications must operate 
at large scale, are maintained by various stakeholders, 
and are provided in different possible facets, a pletho-
ra of constraints need to be efficiently managed. The 
tenant management subsystem supports the magni-
tude of participating stakeholders and allows them to 
specify their own security and compliance guidelines. 
An important aspect of tenant management is to en-
able the clean separation and isolation of any type of 
data, but especially sensitive data. Thus, tenant man-
agement enables each SCOS stakeholder to clearly 
define the following constraints regarding its data: 

•	 Tenants specify which data they provide and in 
what quality. 

•	 Tenants can decide what data can be shared or 
consumed. 

•	 Tenants can describe with whom they want to 
share data, or who is specifically allowed to con-
sume provided data. 
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•	 Tenants can specify what data and from whom 
they want to consume data. 

Based on this specification, the tenant management 
subsystem derives a constraint matrix that clearly 
regulates data exchange in the SCOS, which pre-
vents undesirable data transfer by respecting various 
forms of interactions (such as direct or transitive). 
In addition to data concerns, tenant management 
maintains a consolidated view of resources con-
sumed by and available to SCOS tenants.

Security and compliance. Stakeholders in smart city 
environments implicitly expect and demand servic-
es to be secure, as well as to preserve their privacy. 
Thus, the SCOS provides a security and compliance 
subsystem that allows it to address both basic and 
complex security aspects: 

•	 Since data in the SCOS constantly flows among 
different components or applications, which can 
reside inside or on top of the SCOS, the secu-
rity and compliance subsystem provides strong 
encryption mechanisms to protect data in tran-
sit,19 as well as approaches for securely storing 
sensitive data in SCOS components that deal 
with such data. 

•	 Since the SCOS must deal with a broad variety 
of stakeholders and users, the security and com-
pliance subsystem includes capabilities that fa-
cilitate strong authentication mechanisms that 
SCOS components can use to clearly specify 
who can access a specific service. 

•	 The SCOS also provides authorization capabili-
ties for enforcing permissions before accessing 
applications or manipulating data. 

•	 To allow operators to manage the SCOS more 
efficiently, the security and compliance subsys-
tem provides auditing and logging functionality 
at the component level. 

•	 To keep the overall stack of components in the 
SCOS secure, the subsystem provides configu-
ration management for automatically delivering 
software and security updates for different lay-
ers of the SCOS. 

The security and compliance subsystem also deals 
with security requirements that emerge from the 

underlying infrastructure layer. Since IoT resources 
embody a vital aspect not only in enterprise sys-
tems, but also in consumer solutions, the security 
and compliance subsystem enables flexible security 
models. Based on these models, the SCOS can adapt 
to and respect emerging complex security require-
ments from the various domains it operates in.

ith the rapid adoption of the smart city 
paradigm in cities around the globe and 

its respective success, more and more modern city 
capabilities are provided as smart city applications. 
This fact, combined with the plethora of supported 
ecosystems, diversity of stakeholders operating in 
the smart city ecosystem, and the magnitude of po-
tential users, generates various challenges that need 
to be respected to build and provide truly future-
proof smart city applications. The SCOS represents 
the key element for supporting ongoing smart cities 
as well as the foundation for enabling the future In-
ternet of Cities.
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