
80	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 16/$ 3 3 . 0 0 © 2 0 16 I EEE

Michael Vögler and
Johannes M. Schleicher

Technische Universität Wien

Christian Inzinger
University of Zurich

Schahram Dustdar
Technische Universität Wien

Rajiv Ranjan
Newcastle University

mart city” has emerged as an umbrella term for the per-
vasive implementation of information and communica-
tion technologies (ICT) designed to improve various
areas of today’s cities. Areas of focus include citizen

well-being, infrastructure, industry, and government. Smart city
applications operate in a dynamic environment with many stake-
holders that not only provide data for applications, but can also
contribute functionality or impose (possibly conflicting) require-
ments. Currently, the fundamental stakeholders in a smart city
are energy and transportation providers, as well as government
agencies, which offer large amounts of data about certain aspects
(for example, public transportation) of a city and its citizens.

Increasingly, stakehold-
ers deploy connected Internet of Things (IoT) de-
vices that deliver large amounts of near-real-time
data and can enact changes in the physical envi-
ronment. Efficient management of these large vol-
umes of data is challenging, especially since data
gathered by IoT devices might have critical security
and privacy requirements that must be honored at
all times. Nevertheless, this presents a significant
opportunity to closely integrate stakeholders and
data from different domains to create new applica-
tions that can tackle the increasingly complex chal-
lenges of today’s cities, such as autonomous traffic
management, efficient building management, and
emergency response systems.

Currently, smart city applications are usually
deployed on premises. Cloud computing has ma-
tured to a point where practitioners are increasingly

comfortable with migrating their existing smart city
applications to the cloud to leverage its benefits
(such as dynamic resource provisioning and cost
savings). However, future smart city applications
must also be able to operate across cities to create
a global, interconnected system of systems for the
future Internet of Cities.1 Therefore, such applica-
tions have to be designed, implemented, and oper-
ated as cloud-native applications, allowing them to
elastically respond to changes in request load, stake-
holder requirements, and unexpected changes in the
environment.

Here, we outline our recent work on the smart
city operating system (SCOS), a central element
of future smart city application ecosystems. The
SCOS is designed to resemble a modern computer
operating system, providing unified abstractions for
underlying resources and management tasks, but

Migrating Smart City
Applications to the Cloud

BLUE SKIES

M A R CH/A P R I L 2 0 16 	 I EEE CLO U D CO M P U T I N G� 81

specifically tailored to city scale. We present the
specific foundations of SCOS that enable a larger
smart city application ecosystem,2 allowing stake-
holders and citizens to create applications within the
smart city domain. This approach enables them to
build applications by only focusing on their specific
demand, while completely freeing them from the
complexities and problems they’re currently facing.

Challenges in Smart City Development
Applications in a smart city operate in highly dynam-
ic environments comprising heterogeneous sets of
infrastructures, which in turn are managed by differ-
ent providers (transport, energy, water, and so on) to
serve multiple stakeholders. To address the intrinsic
complexities of such environments, we introduced a
cloud-based smart city application ecosystem,2 de-
picted in Figure 1. A number of challenges arise in
the development of such an ecosystem.

The first challenge arises from incorporating
and enabling the heterogeneous sets of available in-
frastructures in a smart city. On one hand, the eco-
system needs the ability to manage and operate the
large number of devices that emerge through the IoT
(sensors, gateways, and so on). This calls for novel
means to stage, deploy, and organize such IoT devic-
es to ensure that they can be fully utilized in smart
city applications. On the other hand, smart city ap-
plications need to run on, and integrate, a plethora
of IoT devices and cloud computing infrastructure
types to operate holistically with maximum perfor-
mance. To make this possible, the application eco-
system must be able to handle a variety of resources,
ranging from traditional servers to hosted cloud
solutions to the dormant computational potential
of edge devices. Beyond this, the large number of
different infrastructures and the rapid pace of in-
frastructure evolution call for means to move ap-
plications seamlessly between cloud, dedicated, and
edge infrastructures in the smart city domain.

The second challenge comes from the massive
amount of data that’s emitted by a smart city in a
large range of forms and formats. To enable data-
driven applications, which are essential for deci-
sion making in smart city development, it’s vital to
provide intelligent data management mechanisms.
These mechanisms need to provide adaptive abili-
ties to store and manage heterogeneous data. Addi-

tionally, in a smart city context, they have to handle
high-volume datastreams as well as large batches of
data in structured and unstructured formats, which
calls for novel integrated processing approaches.

The third challenge arises from the require-
ments that come with developing, managing, and
operating applications. Enabling smart city ap-
plications, which seamlessly incorporate data and
infrastructure resources available in the ecosys-
tem, requires both novel design and development
approaches and novel architectural paradigms and
patterns. To support practitioners in developing
smart city applications on top of the domain’s in-
herent complexities, it’s vital to provide a toolset
that hides these complexities, while also enabling
practitioners to utilize and incorporate the afore-
mentioned diverse infrastructure sets. This not
only calls for novel methodologies and program-
ming models, but also for the ability to provide an
elaborate reconfigurable runtime environment that

Applications Applications

Smart city operating system

Infrastructure Providers

Cloud

Server

Edge

Internet
of Things

Application layer

Data layer

Infrastructure layer

Energy Mobility Asset

C
ro

ss-c
u

ttin
g

c
o

n
c

e
rn

s

FIGURE 1. A cloud-based smart city application ecosystem. Designed

around the central middleware—the smart city operating system

(SCOS)—the smart city application ecosystem allows for the seamless

integration of relevant stakeholders and resources to efficiently build,

deploy, and operate smart city applications

82	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

enables adaptive execution along the whole range
of heterogeneous infrastructures, multimodal data,
and myriad IoT devices.

Finally, it’s important to provide mechanisms to
fully address the complex ownership and compliance
requirements that arise in the smart city domain. An
ecosystem in this domain has to deal with unique
security and compliance constraints, which apply
on many levels, ranging from company regulations
to governmental restrictions on provider levels. Ad-
ditionally, the heterogeneity of stakeholders, data
providers, and data consumers, combined with the
large scale as well as massive amounts of data, leads
to an increased complexity.

To capacitate a smart city application ecosys-
tem, addressing these challenges is essential, and in
turn enables the execution of manageable and evolv-
able smart city applications.

Smart City Operating System
The SCOS, depicted in Figure 2, addresses the chal-
lenges we’ve described, providing a solid founda-
tion for a larger smart city application ecosystem.
To build a foundation that allows easy extendibility
and high scalability, we followed the microservice
architecture principle in its design.3 This approach
allows for clean separation of concerns and serves as
a flexible interaction mechanism among SCOS com-
ponents that enables novel synergies, leading to an
extensible and evolvable system.

Infrastructure Layer
The first layer of the SCOS, the infrastructure lay-
er, manages, configures, provisions, and constantly
monitors the underlying infrastructure resources.

Infrastructure management. A smart city contains
various heterogeneous types of infrastructure re-
sources, such as traditional servers, cloud comput-
ing resources,4 and edge and emerging IoT devices.5
The infrastructure layer integrates these resources
using an infrastructure management subsystem.
The infrastructure management subsystem pro-
vides a mechanism that enables SCOS stakehold-
ers to locate and identify their owned or leased
resources. After the resources that should be man-
aged have been located, they need to be accessible
for the SCOS to be integrated into the overall sys-

tem. Therefore, the infrastructure management
subsystem provides a prebuilt list of drivers for com-
municating with the resources, as well as an access
management component for securely storing the
necessary credentials or keys. Finally, to provide an
extensible approach, the infrastructure management
subsystem provides APIs that enable stakeholders to
build custom drivers to integrate emerging types of
resources that require new forms of interactions.

Configuration management. Once the infrastruc-
ture resources are integrated into and accessible to
the SCOS, it’s necessary to facilitate their process-
ing power, for example, to run and execute applica-
tions. To do this, configuration management allows
for provisioning, deploying, and configuring these
resources transparently and efficiently. Since the
various types of infrastructure resources have dif-
ferent capabilities and environments, configuration
management needs to respect these constraints.
Hence, it provides a scalable and elastic provision-
ing solution that can be specifically tailored to each
type of infrastructure.6 The overall provisioning
approach installs platform-specific software pack-
ages that allow leasing and releasing, monitoring,
and deploying of resources in a generic and uniform
manner. Next, for tailoring the connected and pro-
visioned infrastructure to stakeholder requirements,
the configuration management subsystem provides
interfaces that enable the SCOS to configure sev-
eral aspects (for example, pull- versus push-based
updates) via the provisioned software packages.
Finally, the configuration management subsystem
supports the seamless deployment of single applica-
tions, complete application topologies, and addition-
al necessary packages onto connected infrastructure
resources by considering both the computational ca-
pabilities and the available execution environments.7
Furthermore, since smart city applications need to
be able to evolve over time to react to changing re-
quirements or regulations, configuration manage-
ment enables the seamless migration of application
topologies among deployment targets.8 Thus, it
enables the independent evolution of applications,
their topologies, and infrastructure resources.

Operations management. After the infrastructure
is provisioned and ready for deployment, the SCOS

M A R CH/A P R I L 2 0 16 	 I EEE CLO U D CO M P U T I N G� 83

needs a mechanism for monitoring and analyzing
the resources’ performance. The operations manage-
ment subsystem supports the constant monitoring
and collection of information from connected re-
sources by using the available monitoring capabili-
ties of the respective infrastructure—for example,
cloud monitoring APIs, such as Google’s Monitor-
ing API (https://cloud.google.com/monitoring/api)
and commonly applied monitoring tools such as
Ganglia9—or by provisioning software capabilities
that support gathering performance measurements,
such as tailored profilers for edge devices.6 In ad-
dition to monitoring, operations management pro-
vides mechanisms to manage gathered logs, events,
and faults. Based on collected information from
the underlying infrastructure resources, the opera-
tions management subsystem conducts performance
analyses that can be used to optimize resource uti-
lization or evolve the overall infrastructure deploy-
ment. Furthermore, other SCOS subsystems can
use the fine-grained analysis information to adapt
application topologies to react to defined require-
ments such as service-level agreements (SLAs). Fi-
nally, operations management provides APIs that
allow SCOS operators to define custom adaptation

routines (such as scaling algorithms) to guarantee a
defined availability for infrastructure resources or
deal with network outages.10

Data Layer
The second layer of the SCOS, the data layer, is re-
sponsible for storing and providing access to data
residing in the ecosystem, and processing and ana-
lyzing data that other SCOS layers can use to gener-
ate valuable insights.

Storage and access. In modern smart cities, run-
ning applications, infrastructure resources, and
citizens produce an ever-growing amount of data
(commonly referred to as big data11). The data layer
provides the storage and access subsystem for man-
aging and handling this data. This subsystem allows
SCOS stakeholders to store and consume large sets
of diverse data by providing generic and extendable
APIs. For efficiently managing data in the SCOS,
the subsystem supports the plethora of available
data formats and the intrinsic diversity of data, and
can also manage potentially noisy data12 produced
by the underlying infrastructure with its millions
of managed resources. Additionally, the subsystem

Cross-cutting
concerns

Smart city operating system

Application
layer

Infrastructure
layer

Data layer

Design and
development

Runtime
environment

Processing and analysis

Infrastructure
management

Configuration
management

Operations
management

 Storage and access

Lifecycle
management

Se
c

u
rity an

d
c

o
m

p
lian

c
e

T
e

n
an

t
m

an
ag

e
m

e
n

t

FIGURE 2. Smart city operating system. The SCOS resembles a modern computer operating system that

is specifically tailored to the city scale by providing unified abstraction layers for underlying resources,

management, and security aspects.

84	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

can handle both static data that isn’t frequently
accessed or processed and dynamic data that con-
stantly changes. To address the challenges that
emerge from handling these different types of data,
the storage and access subsystem provides a flex-
ible approach that supports various storage facilities
such as traditional relational databases, document-
oriented, and complex unstructured datastores. Pro-
viding data storage in a data-as-a-service (DaaS)
fashion enables the seamless integration of data fa-
cilities into the SCOS, eases the integration of new
datastores, and allows for easy and uniform data
access as well as storage functionality for compo-
nents inside and applications on top of the SCOS.
Furthermore, the storage and access subsystem

provides mechanisms for merging and combining
different types of data, which can be used as a foun-
dation for analysis and planning operations in upper
layers. Finally, the storage and access subsystem in-
corporates novel concepts that protect data, but also
allow open data exchange where different levels of
data owners can share data by integrating the hub
of all things principle (http://hubofallthings.com).
Following this approach enables the clear concept of
ownership and supports emerging data compliance
and security requirements.

Processing and analysis. After enabling the efficient
access to and storage of data in the data layer, the pro-
cessing and analysis subsystem allows stakeholders
to efficiently transform, mediate, and analyze these
large sets of diverse data. In addition, the processing
and analysis subsystem provides an extensible set of
established programming models for cloud, IoT, and
edge resources, such as Apache Storm (http://storm

.apache.org), Amazon IoT (https://aws.amazon.com/
iot), Google Cloud Dataflow (https://cloud.google
.com/dataflow), Amazon Elastic MapReduce (https://
aws.amazon.com/elasticmapreduce), Apache Quarks
(http://quarks.incubator.apache.org), and Esc,13 that
allows for processing both streaming and historical
data, which is a vital aspect of current smart cit-
ies. On top of the basic programming model, the
processing and analysis subsystem provides a novel
processing approach based on a lambda architecture
(http://lambda-architecture.net). Employing lambda
architectures allows the SCOS to balance through-
put, latency, and fault tolerance by simultaneously
executing batch processing on batch data, and
stream processing on real-time data. The analysis of

processed data is another vital element
in a smart city environment. Thus, the
data layer provides data aggregation
mechanisms, novel querying capabili-
ties,14 and a transparent environment
for executing tailored processing and
analysis routines. For building and de-
ploying executable routines, the subsys-
tem provides a prebuilt set of commonly
applied processing and analysis logic, as
well as a development kit for building
and deploying custom code.

Application Layer
The third layer of the SCOS, the application layer,
provides a comprehensive set of methodologies and
tools for efficient design, development, distribution,
and operation of smart city applications.

Design and development. One of the main goals of
the SCOS application layer is to enable practitioners
to create smart city applications in a simple, struc-
tured, and well-defined way. To accomplish this, the
design and development subsystem is built around a
comprehensive methodology for architecting, devel-
oping, and operating cloud-native smart city appli-
cations based on the methodology for architecture
and deployment of cloud application topologies
(MADCAT).15 The methodology provides actionable
guidelines for iteratively architecting and imple-
menting smart city applications, both for new ap-
plications and for migrating existing applications to
a cloud-native architecture16 suitable for the SCOS

One of the main goals of the SCOS
application layer is to enable

practitioners to create smart city
applications in a simple, structured,

and well-defined way.

M A R CH/A P R I L 2 0 16 	 I EEE CLO U D CO M P U T I N G� 85

smart city application ecosystem. Furthermore, the
SCOS provides a unified mechanism for describing
smart city applications and their components along
with deployment properties and requirements, simi-
lar to the Topology and Orchestration Specification
for Cloud Applications (TOSCA).17 This mechanism
allows for easy sharing of applications and applica-
tion components between SCOS deployments and
provides a clear separation between application
component dependencies and infrastructure re-
quirements to create infrastructure-agnostic appli-
cation descriptions. Such applications can then be
offered in a smart city application market,18 where
users can buy and sell applications and their compo-
nents using an open self-service platform.

Runtime environment. To allow for seamless execu-
tion of smart city applications, the SCOS runtime
environment provides a configurable and adaptive
execution environment for cloud-based applications
that’s independent of the underlying physical infra-
structure. The execution environment incorporates
a pluggable, unifying infrastructure abstraction8 to
transparently support and manage multiple applica-
tion deployment mechanisms, such as container-
based deployments—for example, Docker (https://
docker.com)—and virtual machine-based deploy-
ments that are provisioned using predominant
cloud offerings—for example, OpenStack (https://
openstack.org) or Amazon EC2 (https://aws.amazon
.com/ec2). The runtime environment furthermore
provides a service mobility mechanism that allows
for seamless migration of application components
between datacenters and stakeholder premises.19
Moving processing logic closer to data sources and/
or data sinks can reduce network overhead and as-
sociated costs. Additionally, component migration
allows for the execution of applications that other-
wise couldn’t be executed because of compliance
constraints.

Lifecycle management. This subsystem is responsi-
ble for managing the complete lifecycle of smart city
applications in the SCOS. For applications devel-
oped using the SCOS methodology we’ve described,
the lifecycle management subsystem provisions re-
quired resources according to the specified require-
ments as well as applicable constraints, and deploys

all application components according to their de-
ployment manifests.7,8 Stakeholders can then start,
stop, or pause applications. During runtime, the
lifecycle management subsystem will continuously
monitor deployed smart city applications to optimize
application deployment topologies.20 Furthermore,
monitoring data is pushed to the data layer, which
enables consumption and further processing by ap-
plications. In addition to monitoring the overall op-
erations of executed application components, the
lifecycle management subsystem continuously moni-
tors and verifies mandatory compliance criteria and
enforces them by initiating component migrations if
possible and instructing the runtime environment to
deny access to critical resources if necessary.

Cross-Cutting Concerns
The final SCOS layer represents cross-cutting con-
cerns. SCOS components or applications require
common functionality (for example, authentication)
that span several layers. Since such functionality af-
fects the overall system, it’s centralized in one place
to avoid updating components throughout the sys-
tem in case a certain behavior (such as logging) has
to be changed.

Tenant management. Smart city applications operate
under complex compliance and security regulations.
Furthermore, since these applications must operate
at large scale, are maintained by various stakeholders,
and are provided in different possible facets, a pletho-
ra of constraints need to be efficiently managed. The
tenant management subsystem supports the magni-
tude of participating stakeholders and allows them to
specify their own security and compliance guidelines.
An important aspect of tenant management is to en-
able the clean separation and isolation of any type of
data, but especially sensitive data. Thus, tenant man-
agement enables each SCOS stakeholder to clearly
define the following constraints regarding its data:

•	 Tenants specify which data they provide and in
what quality.

•	 Tenants can decide what data can be shared or
consumed.

•	 Tenants can describe with whom they want to
share data, or who is specifically allowed to con-
sume provided data.

86	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

•	 Tenants can specify what data and from whom
they want to consume data.

Based on this specification, the tenant management
subsystem derives a constraint matrix that clearly
regulates data exchange in the SCOS, which pre-
vents undesirable data transfer by respecting various
forms of interactions (such as direct or transitive).
In addition to data concerns, tenant management
maintains a consolidated view of resources con-
sumed by and available to SCOS tenants.

Security and compliance. Stakeholders in smart city
environments implicitly expect and demand servic-
es to be secure, as well as to preserve their privacy.
Thus, the SCOS provides a security and compliance
subsystem that allows it to address both basic and
complex security aspects:

•	 Since data in the SCOS constantly flows among
different components or applications, which can
reside inside or on top of the SCOS, the secu-
rity and compliance subsystem provides strong
encryption mechanisms to protect data in tran-
sit,19 as well as approaches for securely storing
sensitive data in SCOS components that deal
with such data.

•	 Since the SCOS must deal with a broad variety
of stakeholders and users, the security and com-
pliance subsystem includes capabilities that fa-
cilitate strong authentication mechanisms that
SCOS components can use to clearly specify
who can access a specific service.

•	 The SCOS also provides authorization capabili-
ties for enforcing permissions before accessing
applications or manipulating data.

•	 To allow operators to manage the SCOS more
efficiently, the security and compliance subsys-
tem provides auditing and logging functionality
at the component level.

•	 To keep the overall stack of components in the
SCOS secure, the subsystem provides configu-
ration management for automatically delivering
software and security updates for different lay-
ers of the SCOS.

The security and compliance subsystem also deals
with security requirements that emerge from the

underlying infrastructure layer. Since IoT resources
embody a vital aspect not only in enterprise sys-
tems, but also in consumer solutions, the security
and compliance subsystem enables flexible security
models. Based on these models, the SCOS can adapt
to and respect emerging complex security require-
ments from the various domains it operates in.

ith the rapid adoption of the smart city
paradigm in cities around the globe and

its respective success, more and more modern city
capabilities are provided as smart city applications.
This fact, combined with the plethora of supported
ecosystems, diversity of stakeholders operating in
the smart city ecosystem, and the magnitude of po-
tential users, generates various challenges that need
to be respected to build and provide truly future-
proof smart city applications. The SCOS represents
the key element for supporting ongoing smart cities
as well as the foundation for enabling the future In-
ternet of Cities.

References
	 1.	J. Schleicher et al., “Towards the Internet of Cit-

ies: A Research Roadmap for Next-Generation
Smart Cities,” Proc. ACM 1st Int’l Workshop
Understanding the City with Urban Informatics,
2015, pp. 3–6.

	 2.	J. Schleicher et al., “Enabling a Smart City Ap-
plication Ecosystem: Requirements and Archi-
tectural Aspects,” IEEE Internet Computing, vol.
20, no. 2, 2016, pp. 58–65.

	 3.	S. Newman, Building Microservices, O’Reilly
Media, 2015.

	 4.	M. Armbrust et al., “A View of Cloud Computing,”
Comm. ACM, vol. 53, no. 4, 2010, pp. 50–58.

	 5.	L. Da Xu et al., “Internet of Things in Industries:
A Survey,” IEEE Trans. Industrial Informatics,
vol. 10, no. 4, 2014, pp. 2233–2243.

	 6.	M. Vögler et al., “A Scalable Framework for Pro-
visioning Large-Scale IoT Deployments,” ACM
Trans. Internet Technology, 2016, to appear.

	 7.	M. Vögler et al., “DIANE: Dynamic IoT Appli-
cation Deployment,” Proc. IEEE 4th Int’l Conf.
Mobile Services, 2015, pp. 298–305.

	 8.	J. Schleicher et a l., “Smart Fabr ic: An
Infrastructure-Agnostic Artifact Topology De-

M A R CH/A P R I L 2 0 16 	 I EEE CLO U D CO M P U T I N G� 87

ployment Framework,” Proc. IEEE 4th Int’l Conf.
Mobile Services, 2015, pp. 320–327.

	 9.	M. Massie et al., “The Ganglia Distributed Mon-
itoring System: Design, Implementation, and
Experience,” Parallel Computing, vol. 30, no. 7,
2004, pp. 817–840.

	10.	C. Inzinger et al., “Generic Event-Based Moni-
toring and Adaptation Methodology for Hetero-
geneous Distributed Systems,” Software: Prac-
tice and Experience, vol. 44, no. 7, 2014, pp.
805–822.

	11.	C. Bizer et al., “The Meaningful Use of Big
Data,” ACM SIGMOD Record, vol. 40, no. 4,
2012, p. 56–60.

	12.	J. Stankovic, “Research Directions for the Inter-
net of Things,” IEEE Internet of Things J., vol. 1,
no. 1, 2014, pp. 3–9.

	13.	B. Satzger et al., “Esc: Towards an Elastic Stream
Computing Platform for the Cloud,” Proc. IEEE
Int’l Conf. Cloud Computing (CLOUD), 2011,
348–355.

	14.	Q. Chen and M. Hsu, “Cut-and-Rewind: Extend-
ing Query Engine for Continuous Stream Ana-
lytics,” Trans. Large-Scale Data- and Knowledge-
Centered Systems XXI, LNCS 9260, Springer,
2015 pp. 94–114.

	15.	C. Inzinger et al., “MADCAT: A Methodology for
Architecture and Deployment of Cloud Applica-
tion Topologies,” Proc. IEEE Service Oriented
System Eng. (SOSE), 2014, pp. 13–22.

	16.	V. Andrikopoulos et al., “How to Adapt Applica-
tions for the Cloud Environment,” Computing,
vol. 95, no. 6, 2012, pp. 493–535.

	17.	T. Binz et al., “Portable Cloud Services Using
TOSCA,” IEEE Internet Computing, vol. 16, no.
3, 2012, pp. 80–85.

	18.	M. Vögler et al., “COLT Collaborative Delivery
of Lightweight IoT Applications,” Proc. 2014
Int’l Conf. IoT as a Service (IoTaaS), 2014, pp.
265–272.

	19.	J.M. Schleicher et al., “Nomads: Enabling Dis-
tributed Analytical Service Environments for
the Smart City Domain,” Proc. IEEE Int’l Conf.
Web Services (ICWS), 2015, pp. 679–685.

	20.	M. Vögler et al., “Non-Intrusive Monitoring of
Stream Processing Applications,” Proc. 10th
IEEE Int’l Symp. Service-Oriented System Eng.
(SOSE), 2016, to appear.

MICHAEL VÖGLER is a PhD student in the Distrib-
uted System Group at TU Wien, Austria. His research
interests include cloud computing, service-oriented
architectures, distributed systems, and the Internet
of Things (IoT). Contact him at voegler@dsg.tuwien
.ac.at or dsg.tuwien.ac.at.

JOHANNES M. SCHLEICHER is a PhD student
in the Distributed System Group at TU Wien, Aus-
tria. His research interests include cloud computing,
distributed systems, and smart cities. Contact him at
schleicher@dsg.tuwien.ac.at or dsg.tuwien.ac.at.

CHRISTIAN INZINGER is a postdoctoral researcher
in the software evolution and architecture lab (s.e.a.l.)
at the University of Zurich. His main research focus
is helping developers write better cloud applica-
tions, and his research interests include architectures
for cloud applications, software evolution, and fault
management in distributed elastic systems. Contact
him at inzinger@ifi.uzh.ch.

SCHAHRAM DUSTDAR is a full professor of com-
puter science heading the Distributed Systems Group
at TU Wien, Austria. His work focuses on Internet
technologies. He’s an IEEE Fellow, a member of the
Academy Europeana, and an ACM Distinguished
Scientist. Contact him at dustdar@dsg.tuwien.ac.at
or dsg.tuwien.ac.at.

RAJIV RANJAN is an associate professor (reader)
in the School of Computing Science at Newcastle
University, UK, and a visiting scientist at Data61,
Australia. His research interests include cloud com-
puting, content delivery networks, and big data an-
alytics for Internet of Things (IoT) and multimedia
applications. Ranjan has a PhD in computer sci-
ence and software engineering from the University of
Melbourne. Contact him at raj.ranjan@ncl.ac.uk or
http://rajivranjan.net.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

