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The security and privacy issues of android system have attracted a lot of attention from
both industry and academia in recent years. Static detection is one typical method to
analyze malicious code. However, existing single static detection method can introduce
high false alarm rate and is only appropriate for a limited scope. In this paper,
we propose an integrated static detection framework, which consists of four layers
of filtering mechanisms, that is, the message digest (MD5) values, the combination
of malicious permissions, the dangerous permissions, and the dangerous intention,
respectively. An intuitive threat-degree model is proposed especially on dangerous
permissions detection. Furthermore, we implement a prototype system ASE and validate
its feasibility, performance and scalability. A comprehensive evaluation shows that the
proposed framework has obvious advantages especially in efficiency, granularity, layers,
and correctness.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of the wireless mobile technology, the emerging mobile Internet services are changing the
original thinking pattern, behavior way, value concept, and the quality of human living. As an open source operating system,
android has developed into one of themostwidely usedmobile Internet platform. In terms of an investigation report released
by Gartner [1], the market share of android system has accounted for over 80% of the global smartphone and its aggregate
sales have reached 1.2 billion in 2014, becoming the biggest growth point for profit in information technology field.

It is well known that the security and privacy issues of android systemhave attracted a lot of attention fromboth industry
and academia so far. Android mobile devices are facing the growing serious threats caused by malware. A report [2] from
a well known computer and network security provider F-Secure shows: 149 malware families have been discovered by
2014, and the number of android malware families is nearly 136 which accounts for approximately 91.3% of the total.
Generally, these security and privacy issues mainly reflect in following aspects: disclosing user’s contact, stealing user’s
personal material, silently tracking user’s location, forcing users to install malware, deducting user’s charges secretly, and
so on. Therefore, the security threats frommalware can produce a grave impact on promotion and development of android
products. For the purpose of enhancing security, Google is stepping up efforts to improve safety measures on android
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platform. For example, as an efficient alternative, the compulsory authentication mechanism will be introduced when a
legitimate user is ready to install an application from the Google Play [1].

Over the past few years, there have been quite a few studies on how to detect and prevent themalware on android [3–5].
Specially, the static detection is one of the most common methods to detect malicious code. However, the existing single
static detection method can introduce high false alarm rate and is only appropriate for a limited scope. To address these
concerns, in this paper, we focus on how to reduce the false alarm rate, improve the detection efficiency, and increase
scalability of proposed solution. In order to achieve this goal,we first analyze and compare previous static detectionmethods.
Inspired by these existing solutions, we propose an integrated static detection and analysis framework with four layers
of filtering mechanisms. Furthermore, we implement a static detection prototype system named ‘‘ASE’’ and conduct a
performance testing on real mobile devices.

The main contributions of this paper are threefold. First, we introduce an integrated static detection framework
which provides four layers of filtering mechanisms, such as the MD5 characteristic values, the combination of malicious
permissions, the dangerous permissions, and the dangerous intention, respectively. In thiswork,we perform static detection
with emphasis on theAndroidManifest.XML file instead of on theSmali file. It is noted that, based on this improvement,
we can reduce the workload of detection obviously and improve the detection efficiency practically. Second, we present a
novel threat-degree threshold model of dangerous permissions on malware detection. Compared with existing detection
methods, we use this model to assess and analyze dangerous degree of an application, which not only can improve
the detection efficiency, but also can reduce the false alarm rate. Third, this proposed integrated framework achieves a
reasonable trade-off between detection complexity and success rate. Owing to the properties of gradually deepening and
comprehensive judgment, this proposed framework can reduce the workloads and lower false alarm rate to a certain
extent, efficiently detect knownmalicious applications, and generate an instructive detection report on emerging unknown
application as well.

Furthermore, we implement a prototype system ASE and conduct a comprehensive evaluation from the respects of
feasibility, performance and scalability. Based on this prototype system, we detect 4006 real malware samples and their
accuracy rates are nearly 99%. Additionally, utilizing a mobile device clouds, namely, TestIn, we perform a comprehensive
testing on real mobile devices. In this testing, we use 83 real mobile devices and achieve a 98.80% pass rate, where the
versions of android cover from 2.3 to 5.1, respectively. These evaluations show that the proposed framework provides the
properties of better performance, high efficiency and low false alarm rate. Finally, this proposed framework is expected to
not only detect and analyze the mobile malware on android with high efficiency but to provide a means of evaluating the
dangerous degree of android applications at the minimized false alarm rate as well.

The rest of this paper is organized as follows: Section 2 overviews the related work and the property of static
detection method. Section 3 describes malware classification and security mechanisms on android. Section 4 presents the
detailed description of proposed static detection framework. The implementation, performance and further discussions are
presented in Section 5, followed by conclusions in Section 6.

2. Background and related work

2.1. Related work

The studies of detecting and preventing malware on android platform are always hot topics in recent years [5–7]. [5]
investigated 1260 malware samples which are from 49 different malware family of android, and further analyzed their
characteristics of the behaviors and the load of installing and running applications. [8] discussed twomain vulnerabilities of
content provider in android components, i.e., passive content leaks and content pollution, which are caused by application
developers owing to not setting the strict access permissions with the components.

With regard to the static detection methods, [9–12] proposed the rule-based scheme, respectively. [9] defined the
rules of combined permissions for various potential malware. By means of the specific combination permissions and
detection results, users can choose whether to continue or to abort the installation of unsafe applications. [10] proposed
a permission-based footprint-matching method to detect the known malware family or unknown malware via a heuristic
filtering technique. [11] presented a fuzzy hashing algorithm to detect the repackaged applications of the third-party
application stores. [12] introduced a classification method to analyze an application based on the used permissions. This
method took the permissions into consideration, whereas the characteristics of android applications was not concerned
about. [13] implemented an android anomaly detection system which took the system data as a measure to conduct the
anomaly detection. [14,15] proposed a behavior-based malware detection system Andromaly, providing the testing with
CPU workloads, the number of running processes, the number of packets sent overWiFi, application startup, and othermain
characteristics. Besides that, [16] proposed a malware analytic method by parsing the AndroidManifest files and further
developed a threat degreemodel according to the number of dangerous permissions and dangerous intention, providing the
properties of lowworkload andhigh accuracy. [17] introduced amethod based onpermissions and application programming
interface (API) calls to detect malware. Additionally, [18] proposed a malware detection system by monitoring the network
traffic.

These previous studies reviewed the theoretical and technical aspects of the static detection methods. Through the
combination and improvement of existing methods, this paper proposes an integrated static detection and analysis
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Table 1
Comparison with Android-based static detection systems.

Reference System Detection method Description

[13] Signature-based Analyzing and identify android applications dangerous function calls
[19] AASandbox Signature-based Using android apps sandbox to implement a static and dynamic detection
[20] TaintDroid Anomaly Using stain tracking technique to monitor users’ privacy in real-time
[21] Anomaly Cloud security services through the malware detection and analysis
[22] Anomaly Evaluating the effect of using machine learning classifiers to detect malware
[9] Kirin Rule-based Defined potentially dangerous combination of permissions rules to detect
[10] DroidRanger Permission-based Using permission behavior footprint and heuristic filtering to detect
[23] STREAM Permission-based Profiling applications to obtain information used in dynamic analysis
[24] Crowedroid Behavior-based Using cloud information and k-means clusters algorithm to classify
Our ASE Integrated Combining above four static detection mechanisms

framework, which shows obvious advantages especially in efficiency, granularity, layers, and correctness. As shown in
Table 1, we simply compare our system ASE with other typical static detection systems for android.

2.2. Static detection

In practice, the malware detection systems on android generally utilize the combination of both static and dynamic
detection techniques. It is noted that these two detectionmethods have their own advantages respectively. In this paper, we
only review the properties and advantages of the static detection, whichwe focus on: (1) easy to conduct the comprehensive
analysis. The static detection process is not bound by a specific program execution and is appropriate for all program
execution. In contrast, the dynamic detection technique mainly concern the samples with the case of matching the
predefined behaviors. (2) The certainty of detection results. Before proceeding to perform the detection, the results has been
given and the malicious behavior is difficult to be disguised or falsified. (3) High detection efficiency. The static detection
method is easy to estimate the computation cost and execution efficiency. In contrast, the dynamic detectionmethod is liable
to be affected by the deployment environment and its workload of detection are usually higher. On the whole, however,
we believe that the dynamic detection method is a necessary complement to static detection, especially in providing a
comprehensive evaluations with android malware.

3. Design background

3.1. Android malware classification

In this section, the malware classification and problem formulation are presented. There exist many various malware
classification [3,5,9]. Generally, the existing malware can be grouped into eight categories. We now briefly introduce the
common malware classification and their features that our later design will address:
• Malicious deductions: Without the knowledge or authorization, an application can lure the user to execute malicious

code and result in the loss of charges secretly.
• Privacy theft: Without the knowledge or authorization, an application can access or steal user’s information involving

personal privacy and sensitive data secretly.
• Remote control: Without the knowledge or authorization, an application can silently receive and perform the remote

commands in the background.
• Malicious code propagation: An application can secretly propagate itself or other malicious codes via the means of

replication, infection, download, etc.
• Charges consumption: Without the knowledge or authorization, an application can automatically make calls, send SMS,

download repeatedly or other means to cause extra charges for users.
• Systematic damage: The malicious code can damage system functions by various means, i.e., mobile terminal, system

applications, users files, network services, etc.
• Trick fraud: The malware can trick a user to forge or tamper the normal applications so as to accomplish the improper

purpose.
• Hooliganism: The malware has no direct damage to system or users. However, it can reside in memory, consume CPU

resources, automatic binding, pop-up advertisements, and so on.

3.2. Android permission mechanism

Android system provides developers with over 100 kinds of permissions. For instance, when a developer needs to access
the network via the developed applications, the <use-permission> item will be used to predeclare the permission in
AndroidManifest.xml file. Table 2 shows some malicious collections of permissions with regard to users’ privacy. In
addition to the permissions provided by android system, a developer can also utilize the <use-permission> item to
declare own permission and execute forcibly.
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Table 2
Android permissions involving user privacy.

Categories Permissions Description

Location android.permission.ACCESS_COARSE_LOCATION Get a rough location
android.permission.ACCESS_FINE_LOCATION Get precise location

Network android.permission.INTERNET Access network

SMS

android.permission.READ_SMS Read SMS content
android.permission.RECEIVE_SMS Receive SMS
android.permission.SEND_SMS Send SMS
android.permission.WRITE_SMS Edit SMS

Contacts android.permission.READ_CONTACTS Read contacts
android.permission.WRITE_CONTACTS Edit contacts

Record android.permission.RECORD_AUDIO Recording audio
Camera android.permission.CAMERA Taking pictures

3.3. Android signature mechanism

Generally, the META-INF folder of android application contains three files: MANIFEST.MF, *.SF, and *.RSA. The
android application usually uses the self-signed mechanism to ensure application’s origin and integrity to a certain extent.
The signature utilizes asymmetric encryption algorithms and the concrete signing steps are as follows:

• (1) As for an android application, other files, except for the META-INF folder, all use the SHA-1 algorithm generate
message digests. All digests need to be encoded with BASE64 and be written into the MANIFEST.MF file.

• (2) Based on the MANIFEST.MF file, all digests need to be encrypted by the private key of the certificate. These results
will further be encoded with BASE64 and be written into the *.SF file.

• (3) Save the public key into the *.RSA file.

As seen from the above steps, we can use *.RSA to decompress the *.SF file and verify its signature. Furthermore, we
can validate the integrity of theMANIFEST.MF file through the*.SF file. Finally, we achieve the validation of the integrity of
all files among the whole android application. It should be noted that the permission and signature mechanisms of android
system are not in any way limited to these, we do not have them discussed in this work further.

4. Integrated static detection and analyses framework

In this section, we provide the details of proposed integrated static detection and analyses framework. The framework
combines a four layers of filtering mechanisms, which is appropriate to filter known malicious applications layer by layer,
and also can provide an detection report on unknown application activities. In this work, to improve the detection efficiency,
we perform detection with emphasis on the AndroidManifest.XML file instead of on the Smali file. In addition, we
present a novel threat-degree threshold model of dangerous permissions to detect malware.

4.1. Initialization

Generally, the workload of static detection depends mainly on the size and amount of the Smali files as well as the
AndroidManifest.XML files in one application. However, there are a large number of Smali files in each application and
they distribute in various directories of an application package (APK) file. Therefore, to traverse all files in an APK and to
detect each Smali file, it will introduce a heavy workload and reduce the detection speed obviously. To solve this problem,
we perform detection mainly on the AndroidManifest.XML file instead of on the Smali file in this work. Based on this
improvement, this proposed framework can significantly reduce theworkload and improve the detection efficiency onAPKs.

4.2. Four layers of filtering mechanisms

As the above mentioned, our integrated static detection framework involves a four layers of filtering mechanisms:
the MD5 characteristic values, the combination of malicious permissions, the dangerous permissions, and the dangerous
intention. Under such a framework, any android application follows the detection flow shown in Fig. 1.

(1) MD5 blacklist database: The MD5 blacklist database is used to achieve the detection of the message digest characteristic
values. In our ASE system, about 3000 of 4006 samples come from a security service providers and others are open
sources. We first establishes a blacklist database of MD5 values by collecting 4006 malicious samples. Second, we
can extract the MD5 values from the detecting APKs, and then perform both matching and judging quickly with the
established blacklist. Finally, the system will filter out some known malicious applications, whereas the rest of the
detected APKs will perform other detections. It is noted that the blacklist in our system mainly includes both MD5
values and the appropriate category of malicious applications, as shown in Table 3. The focus of this detection is
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Fig. 1. Static detection flow.

Table 3
Illustration of MD5 fingerprint samples.

MD5 values Description

a2bd62c99207956348986bf1357dea01 Android.Adware.AirAD.a
ac365eeb5595554d67975ad61003e48e Android.Hack.i22hkt.a
f153a1ac9f8ee70f9e8db68ba62834de Android.Troj.Kmin.A.v
ac365eeb5595554d67975ad61003e48e Android.Hack.i22hkt.a
30f8c5d2cc445273e959b2a49fc8e937 Android.Troj.AirAD.a
540e8b5fdff054be1831cfbb4cdef7f0 Android.Troj.ACTCore.a
f14b9a0e83412e3156e79d716c96297d Android.Troj.Blueja.a
20779151b36a15cb596e50b878f5f0bb Android.Troj.GacBlocker.b

to extract the MD5 value and match it with the established MD5 blacklist. To achieve this detection, we can utilize
the MessageDigest.getInstance function in java.security.MessageDigest package to extract the MD5
string of detected APK. During the matching process, the system needs to connect with the blacklist database and query
the existing MD5 blacklist of malicious applications.

(2) Combination of malicious permissions: According to a previous work [5], a combination permissions including of ten
types of malware families is proposed. In addition, some other combination permissions can also lead to malicious
deduction andprivacy leak problem, as shown in Table 4. Combinedwith the above combination permissions ofmalware
families, we can obtain the appropriate APK permissions and match them with the existing combination permissions
lists. Generally, if an application matches with all combined permissions of any malicious family, it means that there
exists the high risks in this application, e.g., the malicious deduction or the leakage of privacy.

(3) Dangerous permissions: Based on the existing definition [17] and our analyzing results on 4006 malware samples, we
can conclude 21 types of dangerous permissions on android malware, as shown in Table 5. In this work, we improve the
detectionmethod ondangerous permissions relative to [17]. In this detection,we firstmatch the application permissions
with the dangerous permissions, and then list the dangerous permissions that the application is applying for. Finally,
we can generate a detection report and submit it to users.

Specially, we present an intuitive threat-degree threshold model especially for the detection of dangerous permissions.
To achieve this goal, we define a threat-degree threshold, as shown in Eq. (1). The value δ denotes the threat-degree on
dangerous permission of an application, α means the number of dangerous permissions that the current application is
applying for, and β is the number of application permissions that the current application is applying for.

δ =
α

β
. (1)
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Table 4
Combination of malicious permissions.

Permissions combination Description

android.permission.ACCESS_COARSE_LOCATION android.permission.INTERNET Uploading the rough location
android.permission.ACCESS_FINE_LOCATION android.permission.INTERNET Uploading the precise location
android.permission.READ_SMS android.permission.INTERNET Uploading the SMS message
android.permission.READ_CONTACTS android.permission.INTERNET Uploading the contact information
android.permission.SEND_SMS android.permission.WRITE_SMS Sending and receiving the paid SMS

Table 5
Dangerous permissions lists.

Dangerous permission Dangerous intention Dangerous permission Dangerous intention

READ_SMS Steal privacy information CHANGE_WIFI_STATE Access network
SEND_SMS Malicious deductions INTERNET Access network
RECEIVE_SMS Intercept communication ACCESS_NETWORK_STATE Access network
WRITE_SMS Malicious deductions RECORD_AUDIO Steal privacy information
PROCESS_OUTGOING_CALL Intercept communication READ_PHONE_STATE Intercept communication
MOUNT_UNMOUNT_FILESYSTEMS Steal privacy information READ_LOGS Steal privacy information
READ_HISTORY_BOOKMARKS Steal privacy information CAMERA Steal privacy information
RECEIVE_BOOT_COMPLETED Self-starting READ_CONTACTS Steal privacy information
INSTALL_PACKAGES Install malicious applications ACCESS_FILE_LOCATION Steal privacy information
MODIFY_PHONE_STATE Intercept communication CALL_PHONE Malicious deductions
WRITE_HISTORY_BOOKMARKS Malicious deductions

Fig. 2. Threat-degree distribution of non-malicious applications.

To validate the feasibility of the proposed threat-degree model, we perform a test on 1000 malicious samples and 100
non-malicious samples, respectively. It deserves noting that 1000malicious samples come from a security service providers
and other 100 non-malicious samples are from the top 100 applications in Google Play store. The specific detection
results are shown in Figs. 2 and 3.

As seen from both Figs. 2 and 3, the threat-degree of malicious applications is significantly higher than non-malicious
applications, especially for threat-degree exceeding 0.40. Overall, the threat-degree ofmalicious applications has a relatively
common distribution above 0.40, whereas the threat-degree in most of non-malicious application is less than 0.50. In terms
of the results of statistical analyses, it is found that the malicious applications whose threat-degree is above 0.50 is nearly
71.5%, whereas the non-malicious applications below 0.50 can reach 94%. Without loss of generality, we define 0.50 as
the threshold value in this work. It deserves noting that this threshold value only means a low boundary as the judgment
condition of malicious applications. In practice, we can utilize this threshold value to speed up the judgment on malicious
applications to someextent. For example,when the threat-degree of a detected application ismuch greater than0.50, e.g., 0.8
or greater, we can assume that it is a malicious application. In contrast, if the threat-degree of an application is much lower
than 0.50, e.g., 0.3, it may be judged to be a benign application. On the other hand, owing to the uncertainty of dangerous
permissions detection, we should judge an application more deeply so as to achieve a more accurate conclusion, i.e., by
virtue of other detection methods and techniques.

With the respect of the number of detected samples, it should be noted that the size of 1000malicious samples is 630MB,
whereas the size of 100 non-malicious samples reaches nearly 1.5 GB. In addition, we need not only to download non-
malicious samples from Google Play store but also need to extract them into the mobile device. Thus the collecting of
non-malicious samples has a high requirement for detection environment and storage space of real mobile devices. It is the
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Fig. 3. Threat-degree distribution of malicious applications.

Table 6
Dangerous intention filter action list.

Dangerous permission Dangerous intention Dangerous permission Dangerous intention

BOOT_COMPLETED Self-starting, power consumption INSTALL_SHORTCUT Maliciously add shortcuts
SMS_RECEIVED Intercept communication content UNINSTALL_SHORTCUT Maliciously delete shortcuts
CONNECTIVITY_CHANGE Malicious deductions NATIVE_CODE Maliciously implant code
BATTERY_CHANGED Maliciously change battery power USER_PRESENT Steal privacy information
PHONE_STATE Intercept communication, deductions PACKAGE_ADDED Install malicious application
SCREEN_ON Maliciously modify screen switch SIG_STR Steal phone signal strength
SCREEN_OFF Maliciously modify screen switch NEW_OUTGOING_CALL Malicious deductions
TIME_TICK Maliciously modify the system time

Table 7
Comparison with known malware detection system.

System Detection method Detection object 0-day Layers Granularity Working side Usage

DriodRanger [10] Based on permissions Permission Yes 2 Medium Server Higher
Crowdriod [19] Based on behavior Linux kernel calls No 2 Coarser Server Medium
Kirin [9] Based on rules Permission No 1 Coarser Mobile Lower
DroidMOSS [11] Fuzzy hash Hash Yes 1 Coarser Server Medium
Our scheme Permissions Hash, Permission, Action No 4 Finer Mobile Lower

main reason that only 100 non-malicious samples is used in our detection. But we believe that even more non-malicious
samples in this test, the above results are also reasonable and feasible.

(4) Dangerous intention: In this work, we conduct a more in-depth analysis on AndroidManifest.xml files. That is,
we statistically analyze the action strings of the dangerous intent filters as well. According to the definition of
dangerous action in [16] and our analyzing on 4006malicious samples, we summarize 15 types of dangerous action and
briefly describe their dangerous intentions, as shown in Table 6.

The dangerous intent detection is a process to filter malicious applications based on the exiting dangerous intention. This
detection may be repeated over and again depending on the requirements of the actual situation. Specially, we analyze and
compare the performance of the proposed framework with four typical malware detection systems, including detection
layer, detection method, resources usage and other five aspects. Here, the detection layer means the number of layers
of malware detection system to analyze the features, the granularity refers to the size in which the detected content of
android application are sub-divided, and the usage indicates that the detection system need to utilize the amount of the
resource at work. Additionally, the 0-day means that whether or not the used system exists the 0-day vulnerability. All of
them are divided into five grades in terms of their specific performance and requirements. As shown in Table 7, the result
of this comparison show that the proposed framework has obvious advantages in detecting efficiency, granularity, layers,
workload, performance and deployment.

5. System implementation and performance evaluation

In this section,we perform a comprehensive evaluation of the proposed framework and prototype system. By considering
the implementation details, we conduct the component evaluation on implemented detection system. Then we apply the
proposed integrated framework on our implemented prototype system and a mobile device clouds TestIn with realistic
mobile devices settings, where we show the feasibility of the proposed framework on real mobile devices environment.
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Table 8
Configuration of android AVD and real mobile devices.

Android AVD Real mobile devices
AVD Version RAM (MB) Device Version RAM

MIUI2S_2.2 2.2-API level 8 512 HUAWEI_P6-C00 4.4.2 2 GB
MIUI2S_2.2 2.2-API level 8 512 HUAWEI_T8951d 4.1.1 512 MB
HUAWEI_13 3.2-API level 13 512 MOTOROLA_Droid2 2.3.4 512 MB
M9_40 4.1.2-API level 16 512 MB855 2.3.5 512 MB

Table 9
The number of samples and their success rate.

The number of samples Success rate
Commercial samples Open source samples Total Detection method Success rate

3000 1006 4006 MD5 detection 100%
3000 1006 4006 Combination permissions 100%
3000 1006 4006 Dangerous permissions 99%
3000 1006 4006 Dangerous intention 99%

Furthermore, there are three versions of android virtual devices (AVD), i.e., 2.2, 3.2, 4.1.2, and four types of the real phone
devices, i.e., Huawei T8951d, Huawei P6-C00, MOTOROLA Droid2 Global, and MOTOROLA MB855, used in ourmobile
testing platform. Table 8 describes theirmain parameters of hardware configuration on android AVDand realmobile devices.
Table 9 summarizes the number of actual samples and their success rate used in component evaluation of four layers on
real mobile device.

5.1. Component evaluation

(1) MD5 characteristic values detection: We extract the MD5 values from the detected APKs, and then match them rapidly
with the established MD5 blacklist database. Finally, the knownmalicious applications will be filtered out. According to
our testing results, the success rate of detecting MD5 characteristic values on malicious applications is 100%. Here, we
omit the illustrations of non-malicious and malicious applications that are recorded in the logs of our system.

(2) Combination permissions detection: After obtaining the pending permissions from APK applications, we can compare
them with the each existing combination permissions. If an applications matches with all combined permission of any
malicious family at the same time,we can assume that this is a suspectedmalicious application.With respect to detection
results, this detection can accurately identify a suspected malicious application and the success rate can reach 100%.

(3) Dangerous permissions detection: We first classify and describe the known dangerous permissions, and then parse the
permissions that the AndroidManifest.xml file of the application is applying for. Second, we match the parsed
permissions with the existing dangerous permissions lists. Furthermore, we can calculate the threat degree of the
detected application and generate a detection report for users. According to our testing and analysis results, this
dangerous permissions detection can extract dangerous permissions of the applications efficiently and can record the
discovered dangerous permissions into the detection report successfully. Its success rate can reach nearly 99%.

(4) Dangerous intention detection: Through a deep analysis on the AndroidManifest.xml files, we compare the
performing action intention with the existing dangerous action lists and judge whether or not it is a dangerous
action intention. With the respect of the detection results, we can find the dangerous intent based on this detecting
method successfully. Additionally, approximately 99% of the success rate can be reached and it is relatively accurate as
well.

5.2. Integrated evaluation on real mobile devices

Through the integrated static detect on the installed android applications, we can exclude malicious applications,
generate the detection report of unknown applications, and submit it to the user. According to the detecting results, the
user can decide whether to uninstall this application, to reinforce it, or to ignore it. In our prototype system, the detection
process, the detection notification, the detection results with android applications, and the detection results with a safe
application are shown in Fig. 4(a), Fig. 4(b), Fig. 5(c), and Fig. 5(d), respectively.

5.3. TestIn cloud evaluation

In order to evaluate the compatibility, scalability, and operating performance of our prototype system, we perform a
comprehensive performance testing via the TestInmobile device clouds environment. In this performance testing, there are
a total of 83 types of real mobile devices, and android operating system covers eight versions from 2.3 to 5.1. The testing
results show that the pass rate of our system is nearly 98.80%which covers over 61.56million ofmobile devices. The specific
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(a) Detection process. (b) Detection notification.

Fig. 4. Performance evaluation on real mobile device.

(a) Detection results of android apps. (b) Detection results of a benign app.

Fig. 5. Performance evaluation on real mobile device.

performance results are shown in Table 10. In terms of the testing results, our system shows following obvious properties: a
lower CPU andmemory usage, a faster startup time, and little effect on the battery temperaturewhen running. This indicated
that our system provides better properties in both the compatibility and the operating performance.

5.4. The future work and discussion

For further improvements, there are some respectsworth exploring:Onepossible concern is about the number of samples
used in our testing. In our current system, there are 4006malicious samples which are used in our experiment and analysis.
However, it is not enough relative to the endless stream of new increasing malicious applications. We believe that it is
necessary to further expand the sample database later. On the other hand, with regard to the threshold value of threat-
degree, we use 1100 samples to conduct statistic analysis of threshold value. It is reasonable because this threshold value
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Table 10
TestIn cloud test results.

Testing index Test results

Installation time Average installation time: 6.78 s
Start time Average startup time: 1.89 s
CPU usage Average CPU usage: 3.48%
Memory usage Average memory usage: 36.72M
Traffic consumed Average traffic consumption: 0.04 kB
Battery temperature Average battery temperature: 38.01 °C
FPS Average FPS: 17.08

only means a low boundary as the judgment condition on android malware. However, it is certain that, by the means of this
threat-degree model, we can speed up judgment of malicious applications to some extent. Furthermore, the setting of the
threshold value δ on threat-degree has a close relationship with the number and type of detection samples. And even in a
certain extent, those samples will have an effect on the accuracy of threshold value. Compared with both Figs. 2 and 3, the
threat-degree of malicious applications is obviously higher than non-malicious applications. It is apparently an important
fact to support the reasonableness of proposed detection method. On the other hand, although the proposed system can
detect most existing malicious applications with the proposed detection approaches, it does not integrate mechanisms
resisting the latest malicious applications, e.g. polymorphic malware and newly appeared malware families. In addition,
this proposed system is implemented on android system uniquely, without taking into consideration the deployment of
PC-based environment. But we believe the efficient integration and implementation of these ideas is feasible and will be of
our interest for the future work.

6. Conclusions

The studies of detecting and preventing androidmalware have attracted a lot of concerns in recent years. In this work, we
propose an integrated static detection framework and implement a prototype system,which combines a four layers filtering
mechanisms. The comprehensive evaluation on realmobile devices was conducted to show the efficiency, performance, and
feasibility of the proposed framework.
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