
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A balanced scheduler with data reuse and replication for scientific
workflows in cloud computing systems
Israel Casas a,c,∗, Javid Taheri e, Rajiv Ranjan b,c, Lizhe Wang d, Albert Y. Zomaya a

a School of Information Technologies, The University of Sydney, Sydney, Australia
b School of Computing Science, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
c Data61, CSIRO, Australia
d School of Computer Science, China University of Geosciences, Wuhan 430074, China
e Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden

h i g h l i g h t s

• Experimentation stage includes computer and data intensive workflows.
• Incrementing number of resources does not guarantee execution time reduction.
• System utilization significantly drops as number of virtual machines increases.
• Optimal number of virtual machines depends on workflow characteristics.

a r t i c l e i n f o

Article history:
Received 13 April 2015
Received in revised form
13 October 2015
Accepted 5 December 2015
Available online xxxx

Keywords:
Cloud computing
Scientific workflow
Scheduling
Virtual machine
Data-intensive computing
Big data

a b s t r a c t

Cloud computing provides substantial opportunities to researchers who demand pay-as-you-go
computing systems. Although cloud provider (e.g., Amazon Web Services) and application provider (e.g.,
biologists, physicists, and online gaming companies) both have specific performance requirements (e.g.
application response time), it is the cloud scheduler’s responsibility to map the application to underlying
cloud resources. This article presents a Balanced and file Reuse–Replication Scheduling (BaRRS) algorithm
for cloud computing environments to optimally schedule scientific application workflows. BaRRS splits
scientific workflows into multiple sub-workflows to balance system utilization via parallelization. It
also exploits data reuse and replication techniques to optimize the amount of data that needs to be
transferred among tasks at run-time. BaRRS analyzes the key application features (e.g., task execution
times, dependency patterns and file sizes) of scientific workflows for adapting existing data reuse and
replication techniques to cloud systems. Further, BaRRS performs a trade-off analysis to select the
optimal solution based on two optimization constraints: execution time and monetary cost of running
scientific workflows. BaRRS is compared with a state-of-the-art scheduling approach; experiments prove
its superior performance. Experiments include four well known scientific workflows with different
dependency patterns and data file sizes. Results were promising and also highlightedmost critical factors
affecting execution of scientific applications on clouds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has great impact on Information Technol-
ogy (IT) solutions for both scientific and business applications

∗ Corresponding author at: School of Information Technologies, The University of
Sydney, Sydney, Australia.

E-mail addresses: icas8033@uni.sydney.edu.au, israel_fime@hotmail.com
(I. Casas).

[1,2]. Cloud computing environment has important features that
are important for both science and business applications/purposes.
Clouds also offer solutions to computationally intensive applica-
tions similar to HPC (High Performance Computing) environments
such as supercomputing centers [3]. From the business perspec-
tive, clouds offer flexible platforms to both cloud providers and
application owners. Cloud computing offers a unique computing
ecosystem where providers and application owners can establish
elastic relationship driven by application performance require-
ments (e.g. availability, execution time, monetary budget, etc.) and

http://dx.doi.org/10.1016/j.future.2015.12.005
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.12.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:icas8033@uni.sydney.edu.au
mailto:israel_fime@hotmail.com
http://dx.doi.org/10.1016/j.future.2015.12.005

2 I. Casas et al. / Future Generation Computer Systems () –

characteristics (e.g. input data size, number of end-users connect-
ing to that application, output data size, etc.) [4,5].

Current computing applications demand research on cloud
environments for their efficient use of resources [6]. Cloud
providers are concerned and need to maintain their services in
a relatively unreliable environment, while producing profitable
revenues. Cloud application owners, on the other hand, want
services/resources that meet strict performance requirements.
Both require access to a cloud scheduler framework and algo-
rithm that can automatically map applications to cloud resources
while ensuring application-level performance and provider-level
resource utilization goals [7,8].

Due to their data intensive nature, modern scientific applica-
tions can benefit if cloud schedulers include data reuse and repli-
cation techniques in executing their workflows [9–11]. Data reuse
avoids file transfers by allocating tasks to same computing units,
e.g., VirtualMachines (VMs) in context of cloud computing systems
such as Amazon EC2 and Microsoft Azure. For tasks requiring the
same set of files, the data replication technique duplicates the files
across the VMs hosting those tasks. Both techniques can influence
(enhance or degrade) optimization objectives. It is up to the sched-
uler to decide when to apply one or both of these techniques. The
scheduler also needs to decide the number of resources (e.g., VMs)
it needs to provision for an application workflow. All aforemen-
tioned considerations depend on the following two main factors:
the type of application and the monetary cost model of the cloud
provider (e.g., Amazon EC2 pricing1).

This article presents a scheme for efficient scheduling of
scientific workflows in cloud environments. Main contributions of
our scheduling scheme (BaRRS) include: concurrently optimizing
two important, yet conflicting, objectives in cloud environments,
i.e., execution runtime and monetary cost, (2) exploring the
trade-off between the aforementioned two objectives through
scheduling sample configurations, and (3) computing the exact
number of required resources (VMs). To achieve these objectives,
BaRRS combines three scheduling mechanisms to manage a
workflow plan according to its task dependencies, file sizes, task
execution times, and network bandwidth, aswell as the underlying
VMs’ characteristics (e.g., Amazon EC2 instances2).

The article is organized as follows: Section 2 discusses the
related work; Section 3 presents our system model; Section 4
presents the problem statement; Section 5 details the BaRRS;
Section 6 explains experiments. Section 7 discusses the results,
followed by Section 8 that concludes this work.

2. Related work

Most of the existing approaches in the context of scheduling
scientific workflows consider fixed or static pool of VM resources.
Recently, approaches have emerged that consider more realistic
scenarios in which resources can be scaled up or down, while
optimizing the monetary cost of leasing the cloud resources.
To cover related literature, this section is divided into three
groups. The first group discusses schedule strategies that consider
only a fixed number of VM resources, while the second group
surveys scientific workflow scheduling approaches which can
dynamically estimate the required number of VM resources.
Last group of related work considers grid and heterogeneous
computing systems.

2.1. Scheduling approaches for fixed number of resources

Kloh et al. [12] proposes a scheduler for cloud environments
based on multiple objectives: runtime, cost and/or reliability.

1 http://aws.amazon.com/ec2/pricing/.
2 http://aws.amazon.com/ec2/instance-types/.

This approach is evaluated by incorporating the objectives into
well-known scheduling mechanisms including dynamic schedul-
ing [13], bi-criteria scheduling [14], cost-based scheduling [15],
multiple QoS constrained schedule strategy [16], fault tolerance
policies [17], and scheduling decisions based on service level
agreements [18]. This algorithm outperformed the Join the Short-
est Queue (JSQ) scheduling algorithm [19]. This study uses a num-
ber of resources at a higher abstraction level regardless of the
incurring costs. Because it only considers a fixed number of re-
sources for each service class (basic, master and premium), it pro-
vides no guarantee on optimum system utilization. Users also have
no information about how to increase efficiency within a budget
when selecting a service class.

Achar et al. [20] proposes a scheduling approach based
on the Virtual Machine Tree (VMT) data structure. Scheduling
decisions assign priority to tasks and VMs based on the task
size in MIPS (Million Instructions per Second). Results indicate
VMT outperforms the FCFS (First Come First Serve). Although
their experiments used different number of VMs, they did not
dynamically scale up or down to maintain/satisfy utilization
constraints; this may lead to system under-utilization or over-
utilization. In another approach, Fan Zhang et al. [21] describe a
bi-objective scheduling approach to execute scientific workflows
based on theOrdinal Optimization (OO)method. The authors’ focus
was to decrease the scheduling time overhead through pruning
the solution space. As the modified OO did not consider scaling
up/down the number of VMs as well as transfer of data files to
save on network communication, it is not suitable for realistic
cloud scenario considered by our work. In another approach,
Deng et al. [22] proposed a linear programming approach to
schedule resources to reduce extra cost, power consumption, and
response time. They implemented a dynamic scheduling model
that adapts to different uncertainties (e.g. overutilization) at run-
time. Nevertheless, they neither recommend a precise policy to
select the number of required VMs nor mention the involved
monetary costs.

Authors in [23] produced an algorithm to schedule multiple
workflows into cloud systems. The main characteristic of this
scheduler is that it gives priority to schedule tasks with high
computing demands. In another approach for cloud systems,
authors in [24] presented a scheduling heuristic based on the
Particle Swarm Optimization (PSO) to map workflows’ tasks into
resources optimizing computation and communication cost. The
approach presented in [25] tackles the workflow scheduling with
makespan and energy consumption as its objectives. This hybrid
solution is built from a multi-objective genetic algorithm and an
energy-conscious scheduling algorithm.

2.2. Scheduling approaches with resource estimation policies

Moschakis et al. [26] presented a base case study for the
execution of applications deployed on theAmazonElastic Compute
Cloud (EC2). They evaluated two gang scheduling strategies on
the EC2: AFCFS (Adaptive First Come First Serve) and LJFS (Largest
Job First Serve). This approach however does not include deep
application analysis. It schedules jobs as they arrive regardless
of their tasks’ dependencies, and thus seems inappropriate for
scientific workflows.

Authors of [27] designed a scheduling scheme that calculates
the number of required VMs to execute an application. This
distribution approach follows a microeconomic scheme where
users’ intention is to decrease application execution time, while
maintaining a budget. The cloud providers’ intention is to
maximize revenue. The goal, in a microeconomics context, is to
reach an equilibrium point. In this model, the equilibrium point
is reached when adding any more VM leads to more cost for the

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/instance-types/

I. Casas et al. / Future Generation Computer Systems () – 3

cloud provider, while removing any already scheduled VM leads to
longer execution time within a user’s budget. Because this study
do not consider dynamic scheduling configuration where number
of VMs can be changed dynamically, it cannot be used to analyze
different scheduling configurations.

Oliveira et al. developed an adaptive scheduling approach for
parallel scientific workflows in cloud environments [28]. Their
solution includes estimating the number of VMs for allocating
to workflow tasks. Their heuristic considered following variables:
execution time,monetary cost, and reliability. This enables users to
include constraints on execution time and monetary cost. Results
showed that their heuristic outperforms native MapReduce [29]
implementation. This approach does not provide a complete
scheduling plan prior execution; instead, it schedules and executes
a group of tasks in an iterative manner. As a consequence, the
scheduler does not analyze the entire workflow at once.

2.3. Grid and heterogeneous systems

Important research has been done on scheduling of workflows
in grids. As an example in [30] authors considered the problem to
execute workflows into grid systems minimizing execution cost
while meeting a time deadline. In their solutions they consider
different types of tasks with different dependencies patterns;
based on their characteristics the scheduler allocates tasks to
resources fulfilling a deadline with the lowest possible monetary
cost. Even though cloud systems involve a higher number of
variables compared to grids incrementing the problem difficulty,
furthermore the scheduling of jobs is an NP-complete problem in
a general form [31] demanding a higher analysis of these systems.

In [32] they produce a scheduling algorithm for DAGs for
heterogeneous systems. Their solution considers application
structure as well as computation and communication cost from
resources. It first assigns ranks to all tasks and finally map them
to resources following an earliest finishes time methodology. In
another approach for heterogeneous systems, in [33] authors
developed an efficient and simple scheduler for workflows. Their
solution finds the earliest finishing time for every task in a given
workflow. This method first organizes tasks into a pre-scheduling
based on a critical path. Then every task is assigned to the resource
that contributes with the earliest finishing time.

After analyzing all the mentioned techniques, we have noticed
that most of existing scheduling approaches produce a scheduling
plan based on a static number of resources/VMs. A few allowed
users to execute applications using different pool sizes (mainly
based on users’ budgets). Further most of these schedulers target
simple applications with no dependencies among tasks; they lack
the potential to be applicable for dynamic scheduling of scientific
workflows on clouds.

To overcome the limitations of existing approaches we de-
signed and implemented BaRRS. In summary, BaRRS (1) imple-
ments scheduling polices to allocate tasks with dependencies in
scientific workflows, (2) provides users with multiple schedul-
ing plans—with different execution times and monetary cost, and
(3) implements a policy to scale up/down the number of VMs ac-
cording to users’ demands at run-time.

3. Framework

3.1. The cloud environment

The cloud model consists of a set of VMs with g different
types (Table 1). The characteristics of each VM’s type are network
bandwidth, number of cores, memory and disk size. This model
adopts hours as the minimum accountable time unit to hire a VM.
The VM hourly cost is given by ⟨c1, . . . , cg⟩.

Table 1
Parameter definitions.

Workflows

W = [t1, . . . , tn] Set of tasks for the workflowW
insize

i , t̂ transferi Data input size and transfer time for ti
t̂exei Task execution time
tparentsi Set of parents for ti

Environment and VM configuration

VM = [vm1, . . . , vmv] Set of VMs
vmcores

j Total number of virtual cores in vmj

vmcost
j Monetary cost for vmj per quantum of time

vmmem
j VM’s main memory size

vmdisk
j VM’s hard disk size

vmbw
j VM’s network bandwidth

Scheduler

vmqueue
j Scheduling queue assign to vmj

ˆvmtime
j Estimated time to execute vmqueue

j on vmj

Optimization technique

maxtime,mintime Maximum and minimum runtime
maxcost ,mincost Maximum and minimummonetary cost
w1 Execution time optimization weight
w2 Monetary cost optimization weight

3.2. Workflows

The workflow model is based on [34]. Each workflow W
contains a fixed number of tasks. Each task has a set of input file(s)
with size insize

i . The parent set for a task ti is given by tparentsi . In
order to execute each task, a central manager needs to transfer its
respective input file set to the respective VM resource. The total
estimated time to execute the ith task is denoted as:

t̂ totali = t̂ transferi + t̂exei .

Fig. 1 presents four scientific workflow examples extracted
from [35]; each with a specific dependency pattern between tasks.
A workflow level is a group of tasks with a single parent group.
The parallelism, P , of a level is the number of tasks building the
given level; for instance, the Montage workflow in Fig. 1(a) has
nine levels, where the second level has the maximum parallelism,
max(P), with six tasks.

Thismodel considers the following assumptions: (1) the system
executes W at a time and contemplates computing and data
intensive workflows, (2) each VM works under a particular
bandwidth vmbw

j that is assumed to be fixed during the execution
of W , and (3) resources are requested from a cloud provider prior
to execution and released after the execution of each task in the
workflow. Additionally, it is assumed that users will provide the
estimated execution time t̂exei for all tasks in W . The file transfer
time is given by the total size of file(s) divided by the minimum
bandwidth value between VMs, expressed as:

t̂ transferj =
insize

i

min

vmbw

p , vmbw
i

where vmbw

p and vmbw
i refer to the VMs executing ti and its parent

tparenti respectively.

4. Problem statement

The scientific workflow scheduler formulates the scheduling
problems as a weighted optimization problem of two objectives
(monetary cost and runtime). It assigns tasks to VMs to minimize
execution time and monetary cost based on user requirements.
To formulate this problem, the considered tasks are distributed

4 I. Casas et al. / Future Generation Computer Systems () –

(a) Montage workflow. (b) CyberShake.

(c) Epigenomics. (d) LIGO.

Fig. 1. Scientific workflows.

among the VM’s queues,

vmqueue

j , . . . vmqueue
v

. A queue is defined

as a decomposition of a set into disjointed subsets whose
union is the original set. Based on this model, the scheduling
problem is defined as finding the total number of queues and its
corresponding elements to maximize the following augmented
objective function (F):

F = w1
(maxtime

− Runtime)
(maxtime −mintime)

+ w2
(maxcost − Cost)

(maxcost −mincost)
.

Variables maxtime, mintime, maxcost and mincost are continuously
updated during scheduling process reflecting the best and worst
VM configurations. At the same time the goal of function F is to
highlight the best scheduling configuration among all the available
ones based on the selected optimization weights.

Runtime is defined as the maximum time taken by the slowest
or least powerful VM to execute the current queues of jobs i,
expressed as:

Runtime = Max|VM|

j=1 [vmtime
j]

where,

vmtime
j =

|vmqueue
j |
i=1

ti.

Cost or Monetary is defined as the sum of runtimes of each VM
multiplied by its respective cost, expressed as:

Cost =

|VM|
j=1

⌈Runtime⌉vmcost
j .

Since application owner do not have tools accurately estimate
total execution time or monetary cost for their workflows, our
approach offers an abstract and flexible way to choose a particular
scheduling configuration driven by the percentage scale of the
optimization constraints, where:
w1 + w2 = 1.
In this way, workflow owner gives a percentage weight to
constraint based on his needs.

5. BaRRS approach

The purpose of BaRRS is to produce an estimation table for
large workflows. This table is presented to application owners
for comparing monetary costs and execution time tradeoffs for
executing their large workflow considering heterogeneous VM
configurations (e.g., CPU Type, CPU Speed, cores, memory, renting
cost, etc.). Firstly, BaRRS estimates results for subset of VMs
denoted as subVM where subVM ⊂ VM and |subVM | = α |VM |

size (0 < α ≤ 1). Next, BaRRS employs a trade-off analysis
technique [36–38] for building the complete set of solutions
considering exhaustive set of VM configurations. In this work, the
trade-off is modeled by the exponential shape graph, fe (x) = Ae ×

exp (xke), that maps the number of VMs to the execution time and
its respective monetary cost. As in [36], we found out exponential
function has a lower mean square error (MSE) in comparison to
the linear regression and other distributions. Hence we selected
exponential graph to model the scheduling estimations trade-offs.
Given that subVM time

i is the execution time of ith configuration in
subVM then Ae = max

subVM time

i

where i = 1, 2, . . . , v. From

fe (x), each VM configuration xi = subVM i produces a different ki:

ki =

ln

fe(x)
Ae

xi

.

Then,

ke =

|subVM|
i=1

ki

|subVM|
.

Finally,

fc (x) =

|VM|
j=1

⌈fe (x)⌉vmcost
j .

An example of fe (x) and fc (x) is shown in Fig. 2(a) and (b). Fig. 2(c)
presents an example of a complete trade-off graphwith all possible
combinations of VM configurations with their respective runtime
and monetary cost.

This algorithm includes the parameter 0 < α ≤ 1 to control
the number of estimations in order to decrease the scheduling
overhead time. For α = 1, BaRRS behaves as a brute force
algorithm because it produces all possible configurations with
their respective runtime andmonetary cost to execute aworkflow.
For α < 1, the number of configurations is uniformly distributed
among all possible configurations. As an example, for |VM| = 10
and α = 0.5, BaRRS will produce five α (|VM|) estimations point;
they will be for x = {2, 4, 6, 8, 10}.

5.1. Balanced with file Reuse and Replication techniques Scheduling
algorithm (BaRRS)

Algorithm 1 presents the BaRRS heuristic. It first computes
runtime andmonetary cost for the selected number of estimations
(line 1). Line 2 builds the complete set of solutions for the different
possible number of VM resource configurations. Finally, line 3
presents the trade-off solutions to a user.

I. Casas et al. / Future Generation Computer Systems () – 5

(a) Execution time. (b) Cost.

(c) Trade-off.

Fig. 2. Trade-off frontier.

Table 2
Trade-off MSE values example.

Parameter Value MSE

k1 −0.2672 0.00043
k2 −0.3683 0.00018
k3 −0.3539 0.00014
k4 −0.3068 0.00014
k5 −0.2582 0.00056
k̄ −0.3109 0.00011

k̄ =
1
n

n
i=1 ki .

In this context, the trade-off graph is defined as a set of solutions
where each solution has a different number of VMs with its
respective execution time and monetary cost. The set of trade-
off values connected together are called the trade-off frontier.
This trade-off follows a similar shape as Pareto frontier [36,37],
the main difference is that trade-off offers flexibility to analyze
complete spectrum of number of VMs, which is a key feature from
this study.

The exponential function fe (x) is then used to obtain runtime
where x is the number of VMs. Selection of ke and Ae values
demands important attention since they drive the final trade-
off shape [36]. In this work, the variable Ae corresponds to the
maximum execution time for each approach. From the previous
estimated solutions, ke is obtained as

log

fe (VM)

Ae

= VMke.

A different k is produced for each combination of VMs with
a different MSE. Based on our experimental practice, we found
mean value of ke offers minimum MSE. Fig. 3 and Table 2 present
an example of this concept. From an original graph g (VM), five
estimated k values produce different MSE, Table 2. Then f (VM)
reconstruct g (VM) using k̄ as shown in Fig. 3. Since left tail on
f (VM) graph does notmatch g (VM) this approach does f (1) = Ae
to overcome this issue.

5.2. Runtime and monetary cost estimation

Algorithm 2 computes runtime and monetary cost. It first
appliesworkflow contraction (line1). It then creates a VMpool. The

Fig. 3. Trade-off values example.

size of the VM pool (|VM|) and the maximum estimated number
are set in lines 2 and 3. The cycle from lines 4 to 7 obtains the best
scheduling plan for the selected maximum number of estimations.

5.3. The scheduling algorithm

Algorithm 3 presents the Scheduling Algorithm. Its objective
is to produce VMs queues. This algorithm analyzes the total
workflow task levels (|L|). It first enumerates the total number of
descended tasks from the actual level (line 2). Then all the tasks
are placed as in group A (line 3). Lines 4–11 add each task to
the available scheduling queues based on file reutilization (line 6)
and replication (line 7) techniques. Based on these techniques, the
selected tasks are added to the scheduling queue that contributes
with the greatest Objective Function value.

5.4. File reutilization and replication

The file reutilization mechanism reduces the number of file
transfers during workflow execution. This technique identifies
parent and descended tasks and allocates them into the same VM.
File replication objective is to transfer a parent task’s file replica to
VMs where its descended tasks will be deployed. In this approach,
the policy to apply one rule or the other is based on the file transfer
time saved against the task execution.

6 I. Casas et al. / Future Generation Computer Systems () –

Algorithm 4 presents the file reutilization and replication
mechanism. The complete algorithm analyzes all tasks in the
workflow (lines 1–8). The bandwidth value is set to the minimum
value among the machine holding the input files and a selected
target VM (line 2). Line 3 presents the fundamental part of this
algorithm. If the total time to transfer the input files exceeds
execution time, then the task is added to the same task parent
queue, e.g., reutilization. Otherwise the task is added to another
VM, causing a new transfer (replication).

5.5. Queue balance

The objective of this technique is to balance all VM queues.
Scheduler rules can overload a particular queue leading to
unbalanced load across VMs. To balance scheduling queues, this
procedure interchange tasks between all queues in order to
lower the difference between their loads without worsening any
optimization goal. Algorithm 5 presents the balance technique. It
first computes the average number of tasks between VMs (line 1).
Line 2 empty the bag set. Later, lines 3–9 analyze all vmqueue

i for all
VMs. Tasks are moved from overloaded queues, those with higher
queue length than the average, to this bag. If a queue’s size is lower
than the average, tasks from bag are transmitted to it, considering
its incurred data transfer time.

5.6. Workflow contraction

BaRRS tries to group tasks of a workflow for faster distribution
amongVMs; it starts by grouping serial tasks. Fig. 4 exemplifies this
procedure; the serially connected tasks inside dotted semicircle in
Fig. 4(a) are grouped together to produce the contracted workflow
in Fig. 4(b).

6. Experimental setup

To evaluate the performance of BaRRS, four scientificworkflows
are tested against our specialized scheduling approach. This DAGs
workflow structure is generated based on [39,40] to be executed on

(a) Original. (b) Contracted.

Fig. 4. Workflow contraction example.

high performance computing system. We used our VMware-ESXi-
based (version 5.5) private cloud to validate our solutions. Our
cloud consists of three Krypton Quattro R6010 with 4-way AMD
OpteronTM 6300 series (64-Cores each), ESXi for our experiments.
12 VMs were prepared to perform as workers. Pegasus-WMS (4.2)
on Ubuntu 14.04 was used as the workflow management system,
where BaRRS was implemented.

6.1. Scientific workflows

All four workflows contain 100 tasks each. Dependency details
are found in [39] including their source code.

Epigenomics
This workflow has its tasks grouped across eight task levels.

The MaxLevel (level with maximum number of tasks) contains 24
tasks. The average data size andmakespan per task are 749MB and
2346 s, respectively.

Montage
The Montage workflow’s tasks are distributed across nine

levels and 62 tasks build its MaxLevel. The average data size and
makespan per task are 20.6 MB and 11.34 s, respectively.

CyberShake
The CyberShake’s tasks are grouped across five levels and it

has two MaxLevel with 48 tasks each. The average data size and
makespan per task are 1156.1 MB and 51.70 s, respectively.

LIGO
The total tasks from this workflow are convened across eight

levels with 24 tasks in its MaxLevel. The average data size and
makespan per task are 55.6 MB and 222.0 s, respectively.

6.2. Comparing algorithms

As described in Section 2, most algorithms intended for cloud
environment use a fixed number of VMs in their scheduling
procedures. To the best of our knowledge, Provenance Adaptive
SchedulingHeuristic [28] is among the state-of-the-art approaches
that is also able to produce scheduling planswith different number
and combinations of VMs based on execution runtime, monetary
cost and reliability requirements. For this reason, the Provenance
Scheduling approach is selected for comparison against to BaRRS.

The Provenance scheduler analyzes group of tasks ready for
execution, it groups them in queues with sizes depending on
their historical execution time profile. This approach is able to
increment the number of VMs as long as the monetary cost of an
application does not exceed its upper limit (monetary constraint).

I. Casas et al. / Future Generation Computer Systems () – 7

Fig. 5. Epigenomics trade off.

Fig. 6. Montage trade-off frontier.

6.3. Experimentation setup

The parameter valuesw1,w2 andα are set to 0.50. On the trade-
off graphs, each point corresponds to a unique number of VMs
expressed as ‘‘{ }’’. For example {3, 5, 7} represent trade-off points
for VMs three, five and seven. We based the VMs characteristics or
configurations based on theGeneral Purpose Systemsmodel in [41]
including: vmcores

j , vmcost
j , vmmem

j , vmdisk
j .

7. Results

7.1. Epigenomics workflow

The Epigenomics trade-off graphs in Fig. 5 show how BaRRS
outperformed the Provenance. Provenance’s low performance is
related to the way it schedules tasks of a workflow: one task level
at the time. This causes VMs to remain idle until an entire level
finishes execution. Only then, VMs can continue to execute the
next level task set. Furthermore, VMs do not save files if not used
by the next executing task. As a result, files are sent to a central
disk and thus adding unnecessary file transfers to increase both
execution time and monetary cost.

7.2. Montage workflow

The main characteristic of the Montage trade-off graphs (Fig. 6)
is that most of the solutions are executed within one hour. This
situation is caused by a low computing demand from Montage
workflows. Tasks neither need high computing power nor large
scale file transfer. It also presents a particular dependency pattern:
each task on the second level depends on two tasks from the
first level. BaRRS analyzes both levels and explores data reuse
by identifying the pair of parent tasks and their descendants.
Following that, it groups and deploys them to the same VM. For
this reason, BaRRS’s lead to lower execution and cost values in
comparison to Provenance approach.

Fig. 7. CyberShake trade-off frontier.

Fig. 8. LIGO trade-off frontier.

7.3. CyberShake workflow

Fig. 7 presents the trade-off graph for both BaRRS and Prove-
nance approaches. An important characteristic of this workflow
is that most of its solutions are executed at the average rate of
11,000 s, while not less than 10,000. The reason for such execution
time is the need to transfer 80 GB input files. The network transfer
time of these files contributes to about 65% of total execution time
or running time.

7.4. LIGO workflow

Fig. 8 presents the trade-off graph for BaRRS and Provenance.
Solutions for both approaches tend to execute at an average
execution time of 3000 s at the cost of $3.00. The reason for this
behavior is the uniformity of the dependency patterns. The first
two task levels contract (Workflow Contraction) in a single one,
same as levels four and five, converting the problem to a simple
map of parallel tasks where four VMs are the correct number
to achieve optimization constraints. Incrementing the number of
VMs offers no execution time improvement, while increasing the
monetary cost.

8. Discussion

This section presents execution time,monetary cost and system
utilization results for the complete range of |VM| configurations.
This measurement is to analyze the total time VMs are active
during execution, which is defined as:

Utilization =

|VM|
j=1

[vmtime
j]

(Runtime) |VM|

where,

vmtime
j =

vmqueue
j

i=1

t̂exei .

8 I. Casas et al. / Future Generation Computer Systems () –

Fig. 9. Epigenomics system utilization.

Fig. 10. Epigenomics execution time.

8.1. Epigenomics

The six-machine configuration presents the highest utilization
value for BaRRS as shown in Fig. 9. This condition is due to the
following reasons. First, the Workflow’sMaxLevel consumes 98.5%
of the total execution time. Second, the size of files and makespan
values are similar for all tasks. Third, the twenty four tasks in this
level can distribute uniformly on six VMs. For the same reason, this
configuration presents a low execution time and monetary cost as
shown in Figs. 10 and 11.

The execution times gradually decrease as the number of VMs
increases (Fig. 10). The reason for this behavior is the uniform
distribution of tasks in the workflow graph. Furthermore, each
task only depends on single parent, allowing a very uniform task
deployment across the VMs.

8.2. Montage

An important characteristic of themontageworkflow is that the
maximum number of tasks across the level is 62. For simplicity we
refer to this level as MaxLevel. Even though this level groups the
majority of the tasks, it only contributes to about 57% of the total
execution time. This factor causes solutions with higher utilization
values to demand only a small number of VMs. Furthermore, as
the number of VMs increases, their utilization significantly drops
(Fig. 12) (see Figs. 13 and 14).

8.3. CyberShake

CyberShake solutions have considerable low system utilization
as shown in Fig. 15. Themain reason for this performance is the size
of input files. The average transfer input time is about 92.4 s, while
task average execution time is about 51.7 s. This data intensive
workflow is suitable to execute on a small number of VMs to obtain
the higher utilization values. Moreover, users are able to evaluate
whether they execute their workflow on the cloud or on their own
resources based on this analysis. This highlights the importance of
our study to guide users (see Figs. 16 and 17).

Fig. 11. Epigenomics monetary cost.

Fig. 12. Montage system utilization.

Fig. 13. Montage execution time.

Fig. 14. Montage monetary cost.

8.4. LIGO

LIGO has two MaxLevels with 24 tasks. All tasks in these
two groups demand different file sizes with different execution
times. This causes lower system utilization values for Provenance
experiments (Fig. 18). BothBaRRS andProvenance approach lead to
similar results for execution time and monetary cost as presented
in Figs. 19, 20; mainly because of fairly equal file transfer and
execution times for tasks. Nevertheless, BaRRS still outperforms,

I. Casas et al. / Future Generation Computer Systems () – 9

Fig. 15. CyberShake system utilization.

Fig. 16. CyberShake execution time.

Fig. 17. CyberShake monetary cost.

Fig. 18. LIGO system utilization.

though marginally, Provenance because it considers all tasks
during scheduling.

8.5. Discussion summary

Our results show that system utilization is proportional to
task parallelism. As parallelism increases the file reuse and/or
file replication techniques can influence majority of tasks. Both
algorithms (BaRRS and Provenance) are able to produce reasonable
solutions, however we observe that only BaRRS is capable of
selecting the optimal solutions according to users’ optimization

Fig. 19. LIGO execution time.

Fig. 20. LIGO monetary cost.

requirements. Though Provenance gives users the freedom to
select monetary constraints; it leads to degradation of system
utilization. BaRRS, on the other hand, offers the option to free
monetary limit by modifying w1 and w2 values causing the
scheduler to still find a solution without monetary limits that
does not degrade system utilization. It is important to highlight
the system utilization is largely dependent on the nature of the
application workflow.

9. Conclusions and future work

In this paper we presented the BaRRS scheduling approach
for deploying scientific workflows on cloud-based VM resources.
BaRRS is based on three techniques and a deep workflow
analysis. It produces a scheduling configuration that gives an
application owner the flexibility to choose different combination
of VMs based on execution time and monetary cost tradeoff.
These techniques include queue balancing, file reuse, and file
reutilization. BaRRs approach takes a special consideration of the
workflow feature analysis such as file sizes, task parallelism and
task interdependencies. Four scientific workflows are selected
as the application benchmark to test BaRRS performance. BaRRS
was compared against the state-of-the-art Provenance scheduling
approach, experiments proved BaRRS’s superior performance in
meeting conflicting requirements.

Experiments analyzed here reveal two important threads
for future investigation. First, as the workflow dependency
patterns have an important influence on selection of scheduling
polices, enhancing our BaRRS scheduler to inherit diverse set
of dependency patterns is important. Our first future direction
is to address this issue and provide better solutions. Secondly,
scheduling overhead time can impact feasibility of scheduling
strategies. For that reason, future investigation is required to filter
(detect and dismiss) low quality solutions before the scheduler
analyzes it; this should significantly reduce the scheduling
overhead time.

10 I. Casas et al. / Future Generation Computer Systems () –

Acknowledgments

The authors would like to acknowledge the support of the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO), Consejo Nacional de Ciencia y Tecnología (Conacyt), and
the Australian Research Council for supporting this work.

References

[1] F. Etro, The economic impact of cloud computing on business creation,
employment and output in Europe, Rev. Bus. Econ. 54 (2009) 179–208.

[2] L.I. Millett, S.H. Fuller, The Future of Computing Performance:: Game Over or
Next Level?, National Academies Press, 2011.

[3] High Performance Computing—HPC Cloud Computing. Available:.
[4] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, A view of cloud computing, Commun. ACM 53
(2010) 50–58.

[5] P. Mell, T. Grance, The NIST definition of cloud computing, 2011.
[6] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research

challenges, J. Internet Serv. Appl. 1 (2010) 7–18.
[7] J.O. Gutierrez-Garcia, K.M. Sim, A family of heuristics for agent-based Cloud

bag-of-tasks scheduling, in: 2011 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, CyberC, 2011, pp. 416–423.

[8] J. Taheri, A.Y. Zomaya, S.U. Khan, Genetic algorithm in finding Pareto frontier
of optimizing data transfer versus job execution in grids, Concurr. Comput.:
Pract. Exper. (2012).

[9] Ata Turk, Kerim Yasin Oktay, Cevdet Aykanat, Query-log aware replicated
declustering, IEEE Trans. Parallel Distrib. Syst. 24 (5) (2013) 987–995.

[10] Sharrukh Zaman, Daniel Grosu, A distributed algorithm for the replica
placement problem, IEEE Trans. Parallel Distrib. Syst. 22 (9) (2011) 1455–1468.

[11] Bill Allcock, et al., Secure, efficient data transport and replica management
for high-performance data-intensive computing, in: 2001. MSS’01. Eighteenth
IEEE Symposium on Mass Storage Systems and Technologies, IEEE, 2001.

[12] H. Kloh, B. Schulze, R. Pinto, A. Mury, A bi-criteria scheduling process with CoS
support on grids and clouds, Concurr. Comput.: Pract. Exper. 24 (13) (2012)
1443–1460.

[13] L.A.V.C. Meyer, Strategies for dynamic workflow scheduling on grids (Ph.D.
Thesis), COPPE, UFRJ, 2007 (in Portuguese).

[14] M.Wieczorek, S. Podlipnig, et al., Bi-criteria scheduling of scientific workflows
for the grid, in: CCGRID’08: Pro-ceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid, IEEE Computer Society,
Washington, DC, USA, ISBN: 978-0-7695-3156-4, 2008, pp. 9–16.

[15] J. Yu, R. Buyya, et al., Cost-based scheduling of scientific workflow application
on utility grids, in: E-SCIENCE’05: Proceedings of the First International
Conference on e-Science and Grid Computing, IEEE Computer Society,
Washington, DC, USA, ISBN: 0-7695-2448-6, 2005, pp. 140–147.

[16] M. Xu, L. Cui, et al. A multiple QoS constrained scheduling strategy of multiple
workflows for cloud computing, in: International Symposium on Parallel and
Distributed Processing with Applications, Vol. 0, 2009, pp. 629–634.

[17] L. Ramakrishnan, D.A. Reed, Performability modeling for scheduling and fault
tolerance strategies for scientific work-flows, in: HPDC’08: Proceedings of the
17th International Symposium on High Performance Distributed Computing,
ACM, New York, NY, USA, ISBN: 978-1-59593-997-5, 2008, pp. 23–34.

[18] M. Bandini, A.R. Mury, et al. A Grid-QoS decision support system using service
level agreements, in: Congressoda Sociedade Brasileira, de Computacao de
2009.

[19] H.-C. Lin, C.S. Raghavendra, An approximate analysis of the join the shortest
queue (JSQ) policy, IEEE Trans. Parallel Distrib. Syst. 7 (3) (1996) 301–307.

[20] R. Achar, P. Thilagam, D. Shwetha, H. Pooja, Optimal scheduling of
computational task in cloud using Virtual machine tree, in: 2012 Third
International Conference on Paper Presented at the Emerging Applications of
Information Technology, EAIT, 2012.

[21] F. Zhang, J. Cao, K. Li, S.U. Khan, K. Hwang, Multi-objective scheduling of many
tasks in cloud platforms, Future Gener. Comput. Syst. 37 (2014) 309–320.

[22] L. Deng, Q. Yu, J. Peng, Adaptive scheduling strategies for cloud-based resource
infrastructures, Secur. Commun. Netw. 5 (10) (2012) 1102–1111.

[23] M. Xu, L. Cui, H. Wang, Y. Bi, A multiple QoS constrained scheduling strategy
of multiple workflows for cloud computing, in: 2009 IEEE International
Symposium on Parallel and Distributed Processing with Applications, 2009,
pp. 629–634.

[24] S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments, in: 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, AINA, 2010, pp. 400–407.

[25] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y. Zomaya, et al., A
parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems, J. Parallel Distrib. Comput. 71 (2011) 1497–1508.

[26] I.A. Moschakis, H.D. Karatza, Evaluation of gang scheduling performance and
cost in a cloud computing system, J. Supercomput. 59 (2) (2012) 975–992.

[27] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, A. Delis,
Flexible use of cloud resources through profit maximization and price
discrimination, in: 2011 IEEE 27th International Conference on Paper
Presented at the Data Engineering, ICDE, 2011.

[28] D. de Oliveira, K.A. Ocaña, F. Baião, M. Mattoso, A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds, J. Grid Comput.
10 (3) (2012) 521–552.

[29] J. Dean, S. Ghemawat, MapReduce: a flexible data processing tool, Commun.
ACM 53 (1) (2010) 72–77.

[30] J. Yu, R. Buyya, C.K. Tham, Cost-based scheduling of scientific workflow
applications on utility grids, in: 2005. First International Conference on e-
Science and Grid Computing, 2005, pp. 8–147.

[31] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, 1979, Freeman, San Francisco, LA, 1979.

[32] R. Sakellariou, H. Zhao, A hybrid heuristic for DAG scheduling on heteroge-
neous systems, in: Parallel and Distributed Processing Symposium, 2004. Pro-
ceedings. 18th International, 2004, p. 111.

[33] R. Sakellariou, H. Zhao, E. Tsiakkouri, M.D. Dikaiakos, Scheduling workflows
with budget constraints, in: Integrated Research in GRID Computing, Springer,
2007, pp. 189–202.

[34] M.R. Hoseinyfarahabady, H.R. Samani, L.M. Leslie, Y.C. Lee, A.Y. Zomaya,
Handling uncertainty: Pareto-efficient BoT scheduling on hybrid clouds, in:
2013 42nd International Conference on Paper Presented at the Parallel
Processing, ICPP, 2013.

[35] Shishir Bharathi, et al., Characterization of scientific workflows, in:Workflows
in Support of Large-Scale Science, WORKS 2008. Third Workshop on, IEEE,
2008.

[36] J. Taheri, A.Y. Zomaya, S.U. Khan, Genetic algorithm in finding pareto frontier
of optimizing data transfer versus job execution in grids, Concurr. Comput.:
Pract. Exper. (2012).

[37] Javid Taheri, et al., Pareto frontier for job execution and data transfer time in
hybrid clouds, Future Gener. Comput. Syst. 37 (2014) 321–334.

[38] Javid Taheri, et al., Hopfield neural network for simultaneous job scheduling
and data replication in grids, Future Gener. Comput. Syst. 29 (8) (2013)
1885–1900.

[39] Pegasus: Workflow Management System [Online].
Available: http://pegasus.isi.edu/.

[40] HTCondor: High Throughput Computing [Online].
Available: http://research.cs.wisc.edu/htcondor/.

[41] AWS | Amazon Elastic Compute Cloud (EC2) [Online].
Available: http://aws.amazon.com/ec2/.

Israel Casas is a researcher on The Information Technol-
ogy School at The University of Sydney, Australia. He is
a member of the Centre for Distributed and High Perfor-
mance Computing atmentioned School. Hismain research
interests include Cloud Computing, Parallel Computing,
Optimization Techniques, Embedded Systems and Micro-
controllers. Casas started his research experience at the
Electronic and Computer Department at Monterrey Insti-
tute of Technology and Higher Education, Mexico. He has
also contributed with the University of California (Irvine)
for the exploration and evaluation of embedded systems

with software focus.

Javid Taheri received his Bachelor and Masters of Elec-
trical Engineering from Sharif University of Technology,
Tehran, Iran in 1998 and 2000, respectively. His Master
was in the field of Intelligent Control and Robotics. His
Ph.D. is in the field of Mobile Computing from the School
of Information Technologies in the University of Sydney,
Sydney, Australia. He is currently working as a Postdoc-
toral research fellow at same school. His main areas of re-
search are Optimization Techniques, Artificial Intelligence,
Vehicular Ad-hocNetworks, Scheduling, and Parallel Com-
puting.

Rajiv Ranjan is a Scientist in the CSIRO ICT Center,
Information Engineering Laboratory, Australian National
University, Canberra, where he is working on projects
related to cloud and service computing. Previously, he
was a Senior Research Associate (Lecturer level B) in the
School of Computer Science and Engineering, University
of New South Wales (UNSW). Dr. Ranjan has a Ph.D.
(2009) in Computer Science and Software Engineering
from the University of Melbourne. He completed Bachelor
of Computer Engineering from North Gujarat University,
India, in 2002. Dr. Ranjan is broadly interested in the

emerging areas of cloud, grid, and service computing. The main goal of his current
research is to advance the fundamental understanding and state of the art of
provisioning and delivery of application services in large, heterogeneous, uncertain,
and evolving distributed systems.

Dr. Ranjan has more than 50 research publications in journals with high
impact factor (according to JCR published by ISI), in proceedings of IEEE’s/ACM’s
premier conferences and in books published by leading. Dr. Ranjan has often been
invited to served as Guest Editor for leading distributed systems and software
engineering journals including Future Generation Computer Systems (Elsevier

http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref1
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref2
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref4
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref6
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref8
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref9
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref10
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref11
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref12
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref13
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref14
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref15
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref17
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref19
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref21
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref22
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref25
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref26
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref28
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref29
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref31
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref33
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref35
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref36
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref37
http://refhub.elsevier.com/S0167-739X(15)00388-X/sbref38
http://pegasus.isi.edu/
http://research.cs.wisc.edu/htcondor/
http://aws.amazon.com/ec2/

I. Casas et al. / Future Generation Computer Systems () – 11

Press), Concurrency and Computation: Practice and Experience (JohnWiley & Sons),
and Software: Practice and Experience (Wiley InterScience). He was the Program
Chair for 2010 and 2011 Australasian Symposium on Parallel and Distributed
Computing and 2010 IEEE TCSCDoctoral Symposium. He serves as the editor of IEEE
TCSC Newsletter. He has also recently initiated (as chair) IEEE TCSC Technical area
on Cloud Computing.

Lizhe Wang is a Professor at Institute of Remote Sensing
& Digital Earth, Chinese Academy of Sciences (CAS)
and a ChuTian Chair Professor at School of Computer
Science, China University of Geosciences (CUG). Prof.
Wang received his B.E. & M.E from Tsinghua University
and Doctor of Engineering from University of Karlsruhe
(Magna Cum Laude), Germany. Prof. Wang is a Fellow
of IET, and Fellow of British Computer Society. Dr.
Wang serves as Associate Editor of IEEE Transaction on
Computers and IEEE Transaction on Cloud Computing.
His main research interests include high performance

computing, e-Science, and spatial data processing.

Albert Y. Zomaya is the Chair Professor of High Perfor-
mance Computing & Networking and Australian Research
Council Professorial Fellow in the School of Information
Technologies, Sydney University. He is also the Director of
the Centre for Distributed and High Performance Comput-
ing which was established in late 2009. Dr. Zomaya pub-
lished more than 500 scientific papers and articles and is
author, co-author or editor of more than 20 books. He is
currently the Editor in Chief of the IEEE Transactions on
Computers and Springer’s Scalable Computing and serves
as an associate editor for 22 leading journals. Dr. Zomaya

is the Founding Editor of theWiley Book Series on Parallel and Distributed Comput-
ing.

Dr. Zomaya was the Chair of the IEEE Technical Committee on Parallel Pro-
cessing (1999–2003) and currently serves on its executive committee. He is the
Vice-Chair, IEEE Task Force on Computational Intelligence for Cloud Computing and
serves on the advisory board of the IEEE Technical Committee on Scalable Com-
puting and the steering committee of the IEEE Technical Area in Green Computing.
Dr. Zomaya has delivered more than 130 keynote addresses, invited seminars, and
media briefings and has been actively involved, in a variety of capacities, in the or-
ganization of more than 600 conferences.

	A balanced scheduler with data reuse and replication for scientific workflows in cloud computing systems
	Introduction
	Related work
	Scheduling approaches for fixed number of resources
	Scheduling approaches with resource estimation policies
	Grid and heterogenous heterogeneous systems

	Framework
	The cloud environment
	Workflows

	Problem statement
	BaRRS approach
	Balanced with file Reuse and Replication techniques Scheduling algorithm (BaRRS)
	Runtime and monetary cost estimation
	The scheduling algorithm
	File reutilization and replication
	Queue balance
	Workflow contraction

	Experiments Experimental setup
	Scientific workflows
	Comparing algorithms
	Experimentation setup

	Results
	Epigenomics workflow
	Montage workflow
	CyberShake workflow
	LIGO workflow

	Discussion
	Epigenomics
	Montage
	CyberShake
	LIGO
	Discussion summary

	Conclusions and future work
	Acknowledgments
	References

