Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 785434, 13 pages
http://dx.doi.org/10.1155/2014/785434

Research Article

Hindawi

Hybrid PolyLingual Object Model: An Efficient and
Seamless Integration of Java and Native Components on

the Dalvik Virtual Machine

Yukun Huang,l’2 Rong Chen,'” Jingbo Wei,* Xilong Pei,! Jing Cao,’
Prem Prakash Jayaraman,’ and Rajiv Ranjan®

! Tongji University, Shanghai 200092, China

? Jiangxi University of Finance and Economics, Nanchang 330029, China
? Shanghai Kortide Century Technology, Shanghai 201203, China
* Academy of Space Technology, Nanchang University, Nanchang 330031, China

® CSIRO, Canberra, ACT 2601, Australia

Correspondence should be addressed to Rajiv Ranjan; raj.ranjan@csiro.au

Received 16 May 2014; Accepted 19 May 2014; Published 12 June 2014
Academic Editor: Zheng Xu

Copyright © 2014 Yukun Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have
investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform
simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java
object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components
in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic
mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented
by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type
transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows
that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI

bridging code being demanded.

1. Introduction

In recent years the Android system has become one of the
mainstream mobile operating systems that support applica-
tions written in Java. As a core technology in Java, Java Native
Interface (JNI) is widely used to call the native code from Java
and as vice [1]. It is also applied in integrating and reusing
the third-party components in Java programs for better
performance or to take advantages of hardware features [2-
4]. However, despite the claim in [5] that using the JNI with
the native code is faster than using Java virtual machine, the
communication delay in JNI is not negligible and significant
overhead in JNI is still left unsolved. To make it worse,
the coding complexity of JNI always makes the developing
process inconvenient and cumbersome. Operating efficiency
and programming complexity of JNI are more salient on the

Android platform, owing to insufficient hardware resources
and power limitation as well as frequently visiting peripheral
devices. Therefore an efficient and seamless method is needed
to reuse native components in an Android application.

In the last two decades, a great deal of research has been
dedicated to the improvement of JNI mechanism either for
better efficiency or for lower coding complexity. On one hand,
efficiency was improved through speeding up the invoking
process of native methods with optimized just-in-time (JIT)
compiler [6, 7] or by reducing the cost of symbolic lookups
for the Java fields and objects accessing [8]. On the other
hand, using native code always increases the complexity of
application development. To avoid the low level and complex
JNI code, solutions such as share stub, bridge liberally or mid-
dleware [9-19], automated bridge code, or interface generator
[20-22] were introduced. Some of the efforts mentioned

above could be adopted into the Dalvik virtual machine
(VM) of the Android platform. However, efforts to improve
the efficiency of JNI follow the JNI paradigm which is too
complicated to be easily used, while efforts to reduce the
complexity of JNI tend to lower down the running efficiency.

One of the reasons that JNI cannot be substituted is that
most of the native objects have no metadata and reflection
ability, so they are incapable of being recognized by the Java
VM and be accessed or managed directly by the Java VM.
In this case, data have to be transferred between different
executions spaces through the JNI functions, which have
been proved to be inconvenient and uneconomic.

To solve this problem for the Android platform, we
propose a hybrid polylingual object (HPO) model to merge
the native component objects into the Dalvik runtime based
on the component assembly runtime (CAR) technology [23].
CAR supports the metadata and reflection mechanism for
the native components at runtime. We design a metadata
injection mechanism to inject the metadata of the CAR
component object into the metaclass of a Java object. Under
the mechanism, a CAR object can be managed and accessed
directly as a Java object and as vice by the Dalvik VM, which
greatly improves the execution efficiency of JNI applications.
Contributing to the avoided bridging code, the HPO model
lowers down the coding complexity substantially.

The rest of this paper is organized as follows. In Section 2,
JNI related work is introduced for the improvements of
efficiency and usability (complexity). Section 3 gives an
outline of the motivation of the HPO model. In Section 4,
details and features of the HPO model are proposed. A
modified Dalvik VM for the HPO is designed in Section 5
to support the metadata injection. Section 6 provides an
experiment to testify our approach and the performance. The
last section gives the conclusion and discusses the further
study.

2. Related Work

2.1. Research on JNI Efficiency. Besides the help of visiting
hardware resources via native code, JNI enhances the effi-
ciency of Java programs by means of the fast execution of
native code, as proved in the studies of [24-26]. For example,
Batyuk et al. [24] benchmarked the performance of the Dalvik
Java code and the native code on Android devices and found
that native C applications can be up to 30 times as fast
as an identical algorithm running in Dalvik VM, and Java
applications can become a speedup of up to 10 times if
utilizing JNI.

However, overheads of JNI functions are disturbing
which are often observed to pull down the running per-
formance of native code. In order to improve the invoking
efficiency of JNI functions, Stepanian et al. [6] introduced
a strategy for inline native functions into Java programs
using a JIT compiler. This strategy can substantially reduce
the overhead of performing JNI calls. They made further
optimizations to transform inline call backs into semantically
equivalent lightweight operations. Yu-Hsin et al. [7] modified
the Java Native Access (JNA) source code and integrated the
LLVM JIT compiler into JNA to improve the performance.

The Scientific World Journal

Lee et al. [8] found that symbolic lookups of accessing Java
fields or objects are expensive and can be avoided by caching
field IDs and method IDs in static variables in native pro-
grams. Yann-Hang proposed to pin objects to their current
memory location to ensure that the addresses can be used
in future. The Jaguar project in [27] helped Java applications
to efficiently access system resources through compile time
translation of certain Java bytecodes to inline machine code
segments, and a preserialized objects mechanism is advised
to reduce the cost of Java object serialization.

2.2. Research on JNI Complexity. Using native code with JNI
always increases the programming complexity. As Bubak et
al. [28] had claimed, the functionality of JNI is available
through a complex set of routines and many low level details
involving field IDs, method IDs, and class references, which
makes the development process long, inconvenient, and
error prone. Furthermore, in order to reuse a third-party
component in a Java application, a wrapper component or
bridge code that delegates to the third-party component is
needed [29, 30]. However, native language programmers have
to pay extra effort to attach or detach various Java objects
explicitly from native code to access Java object’s fields or to
avoid resource leak [31].

Lots of research aimed at hiding the JNI layer from
developers. To reduce the coding complexity of JNI and to
help developers write less JNI wrapper code, several tools,
including JNA, Simplified Wrapper and Interface Generator
(SWIG) [21], Java-C automatic wrapper (JACAW) [32], and
AWGNL [33], have been developed to make the bridging
process automatic and simple. Wrapper generator shields the
user from the details of JNIL. For example, SWIG processes an
interface file that defines all the variables and functions that
need to be accessed from Java and generates the NI interface
to the C code for Java. However, the convenience of these tools
comes at the cost of a more complex and cumbersome bridge
interface which produces more additional overhead.

In addition to the method of automatic wrapper code
generator, several researches hide the JNI layer from devel-
opers in other solutions. The Janet package described in [28]
provides a language extension which allows incorporating
native code directly into Java source files. Jeannie designed in
[34] proposed a new foreign functional interface that makes
programmers write both the Java code and the native code
in the same file. Gabrilovich and Finkelstein [22] suggest a
template-based framework that provides automatic selection
of the right functions to access Java objects based on their
types.

For Windows-specific solutions, many projects, such as
Jawin [12], RJCB, Bridge2Java [35], Microsoft VM [36], and
Jacob [37], have emerged in the early years that enable
interactions between Java and COM components. For exam-
ple, Jacob uses the bridge technique to bind Java objects
and COM objects. Bridge2Java uses a proxy generation tool
to parse typelib file and transform the dispatch interface
of COM server objects to objects and methods of Java
agents. Microsoft Java virtual machine integrates two runtime
environments—Java and COM, and each type of objects are
packaged individually.

The Scientific World Journal

Although these technologies reduce the difficulty of the
JNI development, they usually introduce substantial over-
head in native function calls. Furthermore, most of the
mentioned technologies have application constraints and
platform dependency, which makes them hard to be applied
in the development of JNI application on the Android
platform. For Android-platform solutions, the Android NDK
is helpful to reuse a large mass of legacy C/C++ code in
Android application, and SWIG is also used to create the
bridge code or wrapper code for the native components in
Android application [38, 39]. Unfortunately, none of them
resolved the overheads produced by the JNI function calls.

3. Analysis the Deficiency of JNI

This paper analyses the deficiency of the JNI mechanism at
two points, accessing data and invoking methods. At the point
of accessing data, critical overhead occurs during invoking
native functions from Java to native and even larger ones
during invoking back from native to Java to access the Java
methods and data. This is because the JNI mechanism can
be regarded as a policy that part of the computing ability of
a Java object is migrated to the native side while the fields
and data structures are still in the Java side. Then native
code has to access these resources via the JNI functions,
which leads to significant overhead. As a conclusion, the more
frequently a Java object is accessed and operated by a native
method, the less efficiently a JNI program performs. At the
point of invoking methods, JNI links a native function to a
Java native method one by one such that the native code is
tightly coupled with the Java code and hard to be updated
dynamically. Furthermore, the native functions are grouped
in libraries in a flat organizational structure, which increases
the cost of the symbolic lookups.

As a solution, if all the Java objects fields that are
frequently accessed by the native code were moved to the
native side, the overheads of the JNI function calls will be
greatly reduced. On the other hand, functions in an object-
oriented language must belong to a particular class and be
invoked upon the class or an instance of the class. So the
native method of a Java class can be mapped to a method
that belongs to a native class instead of being mapped to
an individual function in native libraries. Following these
concepts, both the computing abilities and the data resources
of a Java class can be encapsulated into a native class.
Similarly, a native class can map its computing abilities and
data resources to a Java class too. Instead of using the JNI
bridging code to integrate and interoperate between these two
kinds of heterogeneous objects, we tend to couple them into
a hybrid polylingual object (HPO). The HPO model has the
ability of directly interacting with both the Java code and the
native code on our modified Dalvik VM. Higher executing
and developing efficiency of the HPO model is expected
because of the avoided JNI bridging code.

The key point of our proposition is to couple a Java object
and a native object together in a virtual machine, which will
be achieved through the metadata and reflection mechanism
of the CAR technology [40]. Java is distinguishable from
C/C++ in its reflecting property and metadata maintained.

Java objects always carry their own type information with
them. The Java’s metaprogramming is based on its core reflec-
tion API, which allows inspection of types and construction
of dynamic method calls [41, 42]. However, C/C++ has
no metadata and reflection mechanism. Although a COM
object supports metadata, it obtains limited reflection ability
through the IDispatch interface and automation techniques
[36, 43], which makes it not a good choice for Android
applications. The CAR technology is finally chosen to develop
native components on the Android platform because of the
following. (1) The CAR technology is qualified to be used in
an embedded system. (2) CAR has a programming-language
independent component standard, and a CAR component
can be implemented in C/C++ or other compiled languages.
(3) CAR supports metadata and reflection mechanism.

Contributions of this paper are the following. Firstly, we
present a HPO model allowing native component object to
be accessed directly as a Java object and vice versa. It helps
to reduce the overheads of JNI function calls. Secondly, in
order to support the HPO model in the Dalvik VM, we pro-
pose a metadata injection approach that provides automatic
mapping and reflection ability to combine the Java object
with the native object. Thirdly, we provide the HPO-oriented
development tools that help developers to implement the
integration and conversion between the Java components
and the native components on the Android platform. With
the help of these tools, developers no longer need to write
the bridging code for the heterogeneous components or to
struggle with the details of JNI programming.

4. Hybrid Polylingual Object Model

In this section, a hybrid polylingual object (HPO) model
is proposed to achieve the integration and interoperation
between Java components and native CAR (C++) compo-
nents. The definition of the HPO model is given, followed by
the features being discussed.

4.1. Definition. In general, a HPO has some interoperation
interfaces for both Java and CAR programs. The object is
defined as a Java class and acts as a normal Java object in the
VM, while it is implemented by the native object to improve
the running efficiency. A schematic plot of the proposed HPO
model is shown in Figure 1(a), in which a hybrid polylingual
object is composed of a Java object and a CAR object which
are bound through the Dalvik VM. The Java object is named
as Java stub object (JSO) and the native object is native
entity object (NEO). Based on the HPO model, we provide
a runtime environment supporting the life of the objects for
Java, HPO, and CAR component simultaneously, as shown in
Figure 1(b).

Definition I (Java stub object). A JSO is a Java object whose
status and behaviors are migrated to the native side. It is
merely a stub object for the corresponding object existing in
the native side.

Definition 2 (native entity object). A NEO is a native object
that encapsulates and implements all the status and behaviors

Java side Native side

T TTTTh
|
1
I Java objects
I
I
1
1

1
1
1
1
1
1
L
I
! 1
! 1
! 1
! 1
! I
! 1
! 1
! 1
! 1
I
1
1
1
1
1
1
1
1
1

()

The Scientific World Journal

Java side Native Side

HPO

Native Objects

O
O
O

(b)

FIGURE 1: Hybrid polylingual object model and runtime environments. (a) A single HPO. (b) A runtime environment supporting the objects

for Java, HPO, and CAR component.

of a JSO. It is the real entity that preserves the status and
performs the behaviors that belong to a JSO.

Definition 3 (hybrid polylingual object). A HPO is a cross
language compound object that is archived by coupling a
Java stub object with one or more NEOs together in virtual
machine.

The HPO model has the following features. Firstly, though
a JSO and a NEO are located in different address spaces,
they have same lifespans and live in same threads. Secondly,
the language programming paradigms and compiling for
JSOs and NEOs are independent. Thirdly, the HPO model is
object-oriented because of its encapsulation and inheritance.
Lastly, the HPO model is also a component-oriented model,
considering the ability of reusing a HPO component through
interfaces without source code.

Though HPO has shown potentials of binding Java object
with native object and supporting the integration of Java
component and CAR components, some constraints have
to be followed to get the characteristics mentioned. These
constraints are (1) the cross languages inheritance of a HPO
model; (2) the mapping relationships and coupling manners
between JSOs and NEOs; (3) the injection mechanism of
the programming metadata for a HPO class; and (4) The
transformation of Java components and CAR components.
These constraints will be discussed in detail as follows.

4.2. Inheritance in the HPO Model. In the object-oriented
programming, inheritance allows a class to pass on its status
and behaviours to its children and allows programmers to
reuse code. Generally, inheritance can be realized easily in a
single program environment, but cross language inheritance
of HPO may be more difficult. There are three cases of
inheritance for the HPO model, as shown in Figure 2.

In the first case, a Java class is inherited from a HPO
class and complies with the Java’s inheritance mechanism. In
other words, a HPO class derives its children class in a Java
environment, as shown in Figure 2(a).

In the second case, a NEO class is inherited from another
NEO class iteratively. In this case, all the father or ancestor

NEO classes related to the first NEO class could be accessed
from the same JSO class that is coupled with the first NEO
class, as shown in Figure 2(b).

In the last case, a JSO class may inherit from multiple
interfaces, and each interface is implemented by one NEO
class. In this case, all the NEO objects should be coupled to
the corresponding JSO object, as shown in Figure 2(c).

4.3. Mapping and Coupling. In the HPO model, the mapping
relationship between the JSOs and the NEOs is not always
the one to one. On one hand, one JSO may be coupled with
multiple NEOs in the case of multi-interface inheritance. On
the other hand, one NEO may be coupled with multiple JSOs
because a NEO may have implemented several interfaces and
each interface is coupled with a special JSO. For example,
Figure 3(a) shows an IDL file of the FooBar component in
which the CFooBar class is defined, and Figure 3(b) shows
that each interface that belongs to the CFooBar class is
mapped to one special JSO.

An IDL file in CAR component technology is a .car file
and is used to describe the interactive contract between
Java components and CAR components. CFooBar is a CAR
component class defined in the FooBar component and
includes two interfaces, IFoo and IBar. In addition to the
interfaces defined explicitly in the .car file, every CAR com-
ponent class inherits an IObject interface (similar to COM
IUnknow) implicitly from CObject. To simplify the mapping
relationship of the JSOs and the NEOs, we build a rule on
how to map a NEO class to multiple JSOs; each NEO class in
a component is mapped to a JSO class, and each interface in
a NEO class is mapped to one JSO class, respectively, too.

Following the mapping rule, IObject, IFoo, and IBar
are mapped to FooBar.java, IFoo.java, and IBar.java, respec-
tively. However, FooBar.java is different from IFoo.java and
IBar.java in two points.

(a) They are coupled with the CFooBar object through
different interfaces. FooBar.java is coupled with the
IObject, while IFoo.java and IBar.java are coupled
with the IFoo and IBar of the CFooBar, respectively.

The Scientific World Journal

Java side

Java object

Java side Native side

Native object

Super

(®)

(a)

Native object

Native side

Java side Native side

F1GURE 2: Inheritance of HPO classes. (a) Inheritance in Java side. (b) Inheritance in native side. (c) Interface inheritance.

(b) FooBar.java is responsible for instantiating the NEO
of the CFooBar class and manages the lifespan, while
IFoo.java and IBar.java are exempt from that.

For convenience, the FooBar.java class is marked as a
native class JSO (ncJSO), while classes of IFoo.java and
IBar.java are marked as native interface JSOs (niJSO). Algo-
rithm 1 lists the definitions of the JSOs that are mapped from
CFooBar.

4.4. Metadata and Annotation. In the stage of programming,
it is necessary to add the mapping information of the JSOs
and NEOs to the Java class source code. The coupling of a
JSO and a NEO is implemented by the proposed metadata
injection mechanism which is critical to realize (1) how a
HPO is defined and used in the programming stage without
changing the Java syntax and (2) how a HPO is created and
managed in the runtime stage.

The metadata of a HPO class can be divided into two
types, the metadata that is used in the programming and
compiling stage (programming metadata) and the metadata
that is used during the runtime stage (runtime metadata). The

runtime metadata is relevant to the VM environment and will
be discussed in Section 5.

Programming metadata is composed of the type of a JSO
(ncJSO or niJSO), the name of the component module in
which the corresponding NEO is defined, and the class name
and the interface name of the NEO. These programming
metadata of a NEO is injected into the corresponding JSO
class source code by means of the annotation mechanism
of Java [44]. For each NEO class or interface in a native
component, a few annotations are added to its corresponding
JSO class. Then a JSO class becomes a HPO class that carries
the programming metadata about the NEO. Annotations in
Java are a kind of special classes and can be used to comment
the classes, methods, variables, parameters, and packages in
Java class source code and may be embedded in Java class
files by compiler. These annotation classes are recognized by
the Java VM at runtime to retrieve values of the embedded
elements that are defined in these annotation classes [45].
Therefore, the metadata will be exploited by the Dalvik VM to
create instances of the HPO classes. This approach neither has
it changed any semantics of the Java class, nor has it changed
any syntax of the Java language.

FooBar.car
module{

The Scientific World Journal

interface IFoo{
Foo([in] Int32 i,
[in] Int32 j,
[out] Int32% 0);}
interface IBar{
Bar([out] String"str);}
class CFooBar{
interface IFoo;

interface IBar;}

(a)

Java side

ncJSO

FooBar

HPO

HPO

HPO

Native side

IObject

IFoo
NEO —e
CFooBar
——e
IBar

FIGURE 3: Mapping and Coupling. (a) FooBar component and CFooBar class. (b)The corresponding JSO classes coupled with CFooBar.

FooBar.java
package com.elastos.hpo.foobar;
Class FooBar{
private String strField = “Hello”;
native int Foo(int a, int b);
native String Bar();
}
IFoo.java
package com.elastos.hpo.foobar;
class IFoo{
native int Foo(int a, int b);
}
IBar.java
package com.elastos.hpo.foobar;
class IBar{
native String Bar();

}

ALGORITHM 1: Definitions of JSO classes.

Annotations added to the Java class are described as
below.

(a) A Java class is annotated as a ncJSO class by the
@HPOClass annotation consisting of two elements:
the name of the native component module that

defines the NEO class and the name of the NEO class.
The @HPOClass annotation is written as

@HPOClasss (Module = module_name,
¢))

Class = class_name).

(b) A Java class is annotated as a niJSO class by the
@HPOlInterface annotation class consisting of two
elements: the name of the native component module
that defines the NEO interface and the name of the
NEO interface. The @HPOInterface annotation is
written as

@HPOlnterface (Module = module_name,
(2)

Interface = interface_name).

It is unnecessary to define any annotations for the native
methods in a JSO class source code because the Dalvik
VM will automatically mangle the JSO native method with
the homonymic method in the corresponding NEO. The
definitions of the HPOs converted from CFooBar are shown
in Algorithm 2.

4.5. Conversion between Java and CAR Components. The
HPO model provides a conversion framework between Java
components and CAR components in addition to the ben-
efits of reusing legacy code for CAR components and Java

The Scientific World Journal 7

FooBar.java
package com.elastos.hpo.foobar;
import dalvik.annotation.CAR;
@HPOClass(Module = “FooBar”, Class = “CFooBar”)
Class FooBar{

private String strField = “Hello”;

native int Foo(int a, int b);

native String Bar();}
IFoo.java
package com.elastos.hpo.foobar;
import dalvik.annotation.CAR;
@HPOInterface(Module = “FooBar”, Interface = “IF00”)
class IFoo{

native int Foo(int a, int b);}
IBar.java
package com.elastos.hpo.foobar;
import dalvik.annotation.CAR;
@HPOInterface(Module = “FooBar”, Interface = “IBar”)
class IBar{

native String Bar();}

ALGORITHM 2: Definitions of HPO classes.

FooBarClient.java
package com.elastos.hpo.foobar;
import com.elastos.hpo.R;
import com.elastos.hpo.foobar.FooBar;
public class foobarclient extends Activity {
private final FooBar fb = new FooBar();
private TextView txtl;
private TextView txt2;
public void onCreate(Bundle savedInstanceState) {
int value = fb.foo(2, 3);
this.txtl.setText(Integer.toString(value));
String str = fb.bar();
this.txt2.setText(str);

ALGORITHM 3: Programming with HPO.

components in Android applications. Tools of CAR2Java and
Java2CAR are provided to generate the HPO class source
code automatically, which reduce the manual participation
during the conversion procedure to improve the developing
efficiency. CAR2Java and Java2CAR provide the ability of
reading IDL files and generating files of HPO classes that
consists of .java (for JSOs), .h and, .cpp (for NEOs). These
files will be implemented in Java or CAR, respectively,
without any JNI specifications being concerned.

Steps to convert an existing Java component to a CAR
component are as follows.

(a) Write an IDL file to define the interfaces between a
Java component and a native component, in which

each class, interface, or method is extracted from the
JSO class in the Java component.

(b) Annotate all these JSO classes with the @HPOXxx
annotation class that is mentioned in Section 4.4.

(c) Parse the IDL file with Java2CAR to generate the
skeleton code (header files and source files) of CAR
classes.

(d) Implement all the CAR classes in the native compo-
nent.

(e) Compile the native component to get an.eco (.so) file.

(f) Put the .eco (.so) file to the path that is specified by
the Java application.

(g) Build and run the Java application in the Android
SDK.

Steps to convert an existing CAR component to a Java
component are as follows.

(a) Write an IDL file to define the interfaces between the
CAR component and the Java component, in which
each class, interface, or method is extracted from the
NEO class in the CAR component.

(b) Parse the IDL file with CAR2JAVA to generate the
source code of the corresponding JSO classes with
@HPOXxx annotations inside.

(c) Write a client Java class to instantiate HPO classes in
Java code.

(d) Put the .eco (.so) file to the path specified by the Java
application.

(e) Build and run the Java application in the Android
SDK.

If neither Java components nor CAR components are
provided, the coding can be motivated by writing an IDL file
and putting it to the CAR2JAVA/JAVA2CAR tool to generate
the skeleton code for both Java and CAR components.

4.6. Programming with HPO. Supposed that the FooBar
component (as shown in Figure 3) has been implemented in
CAR and the corresponding HPO classes have been defined
in Java (as shown in Algorithm 2), a normal Java class is
required to serve as a client that instantiates the HPO classes;
therefor the HPO can be accessed by other Java classes in
an Android application. The example code of the client class,
FooBarClient.java, is shown in Algorithm 3.

Our approach relieves the Java programmers of learning
and using JNI functions. In the Java side, coding in the HPO-
based program is almost the same as coding in a JNI-based
program; the main difference between these two types lies
in the native side. For native code developers, JNI-based
programs require the knowledge of JNI functions and JNI
specifications. For HPO-based developers, HPO programs
require the knowledge of CAR component programing. Since
CAR components can be written in C++, a C++ developer
can write a CAR component program easily. In a HPO-based
program, there is no bridge code between Java and CAR
components, so developers write less code and no longer need
to struggle with the low level details of JNI.

The HPO model supports dynamic updating of native
components in Android applications. A HPO-based Android
application consists of two parts: a Java program and one or
more native components. These two parts are independent of
each other at the compile time; that is, they are dynamically
bounded at runtime. Furthermore, these two parts are inter-
acted with each other through an interface. If the interface is
kept unchanged, the native components can be dynamically
updated and replaced without the need of recompiling the
Java code. This is helpful to the migration of HPO programs
across platforms.

The Scientific World Journal

5. Design of the HPO-Dalvik VM

An improved Dalvik VM is implemented in this section
to support objects of Java, HPO, and CAR simultaneously,
which is achieved by modifying the standard Dalvik VM
and embedding the CAR runtime in the Dalvik runtime.
The improved Dalvik VM is named as the HPO-Dalvik VM
for convenience. A HPO-Dalvik VM addresses the following
issues: (1) how to recognize a HPO class and figure out the
corresponding JSO class and NEO class; (2) how to load
a NEO class and instantiate a NEO; (3) how to couple a
JSO and a NEO together and invoke native methods in a
HPO dynamically; (4) how to manage the lifespan of a HPO;
and (5) how to interconvert data types between Java and
CAR. Answers to these issues depend heavily on the proposed
mechanism of runtime metadata injection.

5.1. Runtime Metadata of HPO. In order to couple a JSO and
a NEO at runtime, the NEO runtime metadata is injected
into the ClassObject of a JSO class. In Java, the metadata of
a class is grouped as a sort of metaobject named ClassObject
and can be used mostly with the reflection. The runtime
metadata of a CAR class is a set of descriptive, structural, and
administrative data linked to this class and can be retrieved
by the CAR reflection of APIs at runtime. These reflection
interfaces for CAR object metadata will be injected into the
JSO ClassObject when a HPO class is loaded at runtime, as
shown in Figure 4(a).

Figure 4(b) shows the JSO ClassObject structure of the
proposed mechanism of runtime metadata injection. By
default, all user classes are loaded by the system class loader,
but it is possible to replace the default class loader with
one or more customized class loaders. Here a new class
loader for HPO classes is implemented. Whenever the HPO-
Dalvik VM loads a Java class annotated with @ HPOClass or
@HPOInterface, it sets a flag in the accessFlags field of a JSO
ClassObject to indicate that it is a ncJSO class or a niJSO class.
Three accessFlags values are added to indicate the type of a
HPO class.

(a) CLASS_CAR_CLASS indicates that the current Java
class is a ncJSO class;

(b) CLASS_CAR_INTERFACE indicates that the current
Java class is a niJSO class;

(c) CLASS_.CAR_NEEDCLEAN is used to perform the
garbage collection of the NEO object, which indicates
that the current JSO class needs to deconstruct its
NEO objects.

A HPO-Dalvik VM loads the native component modules
and NEO classes of a HPO class by the names of the
modules, classes, or interfaces that are specified through the
annotations of the HPO class. The HPO-Dalvik VM retrieves
the metadata of these NEO classes or interfaces according
to the metadata type with the help of the CAR reflection
mechanism. The HPO-Dalvik VM injects the references of
these metadata into the corresponding fields and structures
of the ClassObject.

The Scientific World Journal

ClassObject

NEO

class
metadata

Java ClassObject
Name \ \\\\\\%ﬁ% <:E

O et |

ifields \
DR

FIGURE 4: NEO metadata injection. (a) Inject the CAR object metadata into the JSO ClassObject.(b) The modified structure of the JSO

ClassObject.

Figure 4(b) also shows the metadata injection of the
native methods. In a JNI program, a Java method is specified
with the flag “native” to tell the Java VM to search for
the method in the native code. Similarly, a native method
in a JSO is specified with flag “native” and is bounded to
the method that has the same name in a NEO. The exact
method to be called is determined at the first invocation at
runtime. Before the method is called at the first time, the
nativeFunc pointer in the method structure points to the entry
of the HPO-Dalvik dvmResolveNativeMethod() function.
This function is modified from its original version in the
Dalvik VM to parse the metadata of the corresponding NEO
native method and obtain the exact native method address.
If the process is successful, the insns field in the method
structure will hold the address of the native method, and the
nativeFunc field would be assigned with the entry address
of the dvmCallCARJNIMethod() function (implemented in
HPO-Dalvik to push the arguments of a JSO native method
into the native stack and call the CAR native method that is
pointed by the insns field). A HPO-Dalvik VM does not need
to go through the resolving process again unless the HPO is
destroyed. And all calls to the JSO’s native method are bridged
by dvimCallCARJNIMethod() function.

5.2. Instantiation of a HPO. The HPO-Dalvik VM treats a
HPO as a normal Java object. A HPO can be regarded as

an integer object whose lifespan has the same period to a
normal Java object: created, in use, invisible, unreachable,
collected, finalized, and deallocated. When the new operator
is performed onto a HPO, the HPO-Dalvik VM analyses
the JSO’s class file to obtain the value of the attribute
CLASS_CAR_TYPE and then determines the CLSID of
the corresponding CAR object according to the value of
CLASS_CAR_TYPE. During this period, the HPO-Dalvik
VM looks up necessary information for creating an instance
of the CAR object by the CAR’s reflection interfaces.

It is reasonable to take inheritance into account when an
instance of a HPO class is created. If no inheritance happens,
a HPO object involves only one JSO and one NEO. In this
case, the HPO-Dalvik VM must allocate one more unit in
the size of u4 (unsigned int) behind the instance object of
a JSO to store the reference of a NEO instance object. If
inheritance happens, a HPO object may involve one JSO and
multiple NEOs. In this case, the HPO-Dalvik VM calculates
the number of the NEOs (including the direct NEO as well as
its father and ancestors) and allocates corresponding memory
in the size of u4 behind the instance object of the JSO to
store all the references of these NEO instances. The JSO could
access its nth NEO on level n by calculating the pointer offset
according to

offset = objectSize + sizeof (u4) * n. (3)

10

TABLE 1: Data types of Java and CAR.
Java CAR Description
boolean Boolean Eight bit integer
byte Byte Eight bit signed integer
short Intl16 16 bit signed short
int Int32 32 bit signed integer
long Int64 64 bit signed long
char Charl6 16 bit unsigned integer
float Float 32 bit float
double Double 64 bit float
Object Interface object
String String String
StringBuffer StringBuf String buffer
array [] ArrayOf/BufferOf array

5.3. Garbage Collection of HPO. The HPO-Dalvik VM man-
ages HPO and Java objects in a unified rule, so the policy of
garbage collection for the HPO objects should be the same
as that of the normal Java objects. The HPO-Dalvik VM
must ensure that all the JSO and NEOs that belong to one
HPO have the same lifespan. However, different from the Java
garbage collection which manages objects memory implicitly,
CAR manages the objects memory by reference counting
such as setting the relevant object to null or using release()
method to remove the memory explicitly. Our solution is to
deconstruct all the NEO objects compulsorily when the JSO
object is destroyed by the garbage collectors.

It is worthy of being noted in the case of the movement
of Java objects. The Dalvik VM adopts multiple garbage
collectors, which cause the movement of a Java object such
as copying collectors [46]. Typically, copying collectors are
to duplicate Java objects from the old heap to the new heap.
Once the duplication is done, the old objects become useless
and the reference of the JSO will be changed. Since a NEO
keeps the reference of the corresponding JSO at the time of
its initialization, it has to update the reference to the new JSO
address as soon as a JSO is moved.

54. Data Types Transformation. Data types mapping
between Java and CAR is shown in Table 1. There are two
kinds of data types in Java: primitive type and reference type.
A primitive type is directly mapped to the counterpart of
the CAR. For example, boolean, byte, short, int, long, float,
double, and char of Java are mapped to Boolean, Byte, Intl6,
Int32, Int64, Float, Double and Char of CAR, respectively.

Different from the reference types of Java which are
passed as opaque references to native methods in JNI, the
HPO-Dalvik VM maps Java reference types to CAR reference
types by metadata and reflection. Reference types such as
String, StringBuffer, arrays, and Java classes are mapped to
the reference types of String, StringBuffer, ArrayOf<Type>,
BufferOf<Type>, and CAR classes.

Parameters or objects of each reference type should be
converted into a HPO so that they are accessed by a HPO
native method. To this end, the corresponding NEO (CAR)
objects should already exist in the native side. When the fields

The Scientific World Journal

and methods of these HPO objects are accessed by a native
method, they are actually accessed in its NEO object. The
HPO-Dalvik VM will find out the appropriate NEO objects
and feed their references to the native method in native side.
Take an object type as an example, for a FooBar object in Java,
the HPO-Dalvik VM maps it to the type of CFooBar in CAR.
If a CFooBar object already exists in the CAR runtime, the
HPO-Dalvik VM delivers the CFooBar object reference to
the native method that is going to access this FooBar object;
otherwise it will create a CFooBar object by CAR’s reflection
mechanism and deliver the reference of the created object
to the native method. Then high performance is expected
without the JNI interface method which parses data from the
reference parameters or creates and returns a new Java object
in the native side.

6. Performance Evaluation

In order to validate the feasibility of the presented HPO
model, we built a prototype of runtime VM for HPO objects
on the basis of the Dalvik VM in Android 2.3.7 and the Elastos
component platform. The Elastos component platform is a
middleware that provides a runtime environment to support
CAR components running on embedded systems [47]. An
experimental application on HPO was developed and was
compared with the JNI counterpart.
The experiment was carried out on

(i) CPU: Intel(R) Core (TM) i3-3110 M 2.40 GHz,
(ii) memory size: 2 GB,
(iii) OS: Android2.3.7,
(iv) toolkit: Android NDK R8b,

(v) device: AVD emulator based on Android2.3.7,
(vi) target: API level 10.

6.1. Test Cases and Experimental Method. To evaluate the
execution efficiency of calling native methods for HPO and
JNI, four types of native methods are prepared:

(a) public native int Sum(int n);
(b) public native String Strcat(String a, String b);
(c) public native int[] ArrayAdd(int[] a, int[] b);

(d) public native MyObject GetMyObject(MyObject
obj).

Native methods were focused on the execution time
running in the Java side and in the native side. Logging facility
of the Android platform was used to profile the native calls.
The system clock was recorded in millisecond units by the
function System.currentTimeMillis() to get the CPU time
in the Java side and in microsecond units by the function
gettimeofday() to get the CPU time in the native side. Each
method was repeated for 100, 200, 400, 600, 800, or 1000
times to get a legible figure and an average time.

The Scientific World Journal 11
TaBLE 2: Call native method from Java.

From Java 100 200 400 600 800 1000

(ms) JNI HPO JNI HPO JNI HPO JNI HPO JNI HPO JNI HPO

Sum 0.20 0.21 0.38 0.75 1.00 1.10 1.22 1.24 1.71 1.78 1.80 1.85

ArrayAdd 7.85 0.66 17.00 8.44 30.50 13.92 46.50 28.77 53.30 41.92 86.10 78.60

Strcat 15.12 1.21 23.60 9.06 35.70 28.50 56.43 25.96 95.70 49.12 136.26 85.00

GetMyObject 148.10 15.70 259.12 36.82 477.37 91.40 873.03 172.02 1139.78 309.60 1354.90 423.00
TABLE 3: Run native method in native.

From Java 100 200 400 600 800 1000

(ms) JNI HPO JNI HPO JNI HPO JNI HPO JNI HPO JNI HPO

Sum 0.12 0.13 0.27 0.28 0.58 0.52 0.87 0.99 115 1.33 1.56 1.65

ArrayAdd 7.77 0.36 12.94 4.20 20.09 14.38 33.45 16.48 40.82 20.15 70.63 26.45

Strcat 6.16 0.40 17.02 4.82 33.84 16.28 54.84 20.26 98.93 24.19 127.34 29.77

GetMyObject 145.62 12.11 251.60 18.43 442.18 27.65 787.20 42.89 1054.20 51.34 1129.14 53.42

6.2. Experimental Results and Analysis

6.2.1. Calling Native Method from Java Side. Table 2 presents
the average execution time of the native methods that
are called in the Java side. An outstanding acceleration of
the HPO method is clearly observed, though it may vary
according to the data types of the method parameters and
return value. As an example of simple data types, the average
execution time of the HPO-based Sum() method is almost the
same as that of the JNI-based Sum() method, with the gap
less than 0.5ms. For the ArrayAdd() and Strcat() methods
with complex data type parameters and returning values,
the speedup of HPO is quite obvious. For example, under
the condition of 400 loops, the JNI-based native method
ArrayAdd() costs 30.50 ms, while the corresponding HPO-
based method costs only 13.92ms. Similarly, HPO-based
GetMyObject() method of 1000 loops receives a time saving
of 69 percent, which indicates that complex data types earn
better efficiency improvement than simpler ones.

6.2.2. Running Native Method in Native Side. Table 3 displays
the execution time of each test case looped 100, 200, 400, 600,
800, and 1000 times in the native side, and similar results
are drawn from Table 2. For simple data types, the execution
time of JNI-based Sum() is almost the same as that of HPO-
based Sum(). But the execution time of moderate complex
data types like HPO-based ArrayAdd() and Strcat() methods
reduces to almost half if compared with the corresponding
JNI-based methods. For the native method GetMyObject()
with complex data types and returning values, the JNI-based
implementation spends 1129.12ms to run 1000 loops in the
native side, which is 21 times longer than that of the HPO-
based implementation.

6.2.3. Invoking Cost of Native Method. The elapsed time for
invoking a native method and returning from it can be
obtained by subtracting the average execution time in the
native side from the average execution time in Java.

The rightmost two columns in Table 4 show the recorded
overhead time for invoking methods and returning process,
which show an additional cost 0f 16% to 114% from the HPO
model. The cost of the first three native methods varies from
0.8 us to 1.4 us, while the gap is widened to 64 us in the
last method GetMyObject(). This extra cost is caused by the
reflection mechanism of the HPO-Dalvik VM reflecting the
method metadata and mapping data types of parameters.
Owing to the significant speedup of native methods running
in native side, the extra invoking cost of the HPO model is
acceptable.

The results show that our solution enhances the executing
efficiency of calling native methods definitely. There is a
performance gain of 10-70% in each call of native methods
in a small price for reflection, which indicates that the HPO
model is a promising technique for the integration and
interoperation of Java components and native components in
the Dalvik VM.

6.2.4. The Application Size. From the experiment, HPO-
based programs tend to have smaller size, which is meaning-
ful to mobile devices with limited storage space. The HPO
program in the test is composed of two parts with total
compiled size of 220.6 KB, in which the Java part is 184 KB
and the native part is 36.6 KB. However, the total size of the
compared JNI program reaches 536 KB. This shrinkage of size
can be explained by the avoidable bridging code.

7. Conclusions

High complexity and low efficiency of the JNI mechanism
are main obstacles that keep developers from integrating
and reusing heterogeneous native components in mobile
applications, web services, and wireless networks [48-56].
Existing approaches or tools for JNI mechanism fail to solve
the efficiency and the complexity of JNI simultaneously,
which is even critical in the environment of the Android
system.

12

The Scientific World Journal

TABLE 4: Average elapsed time and invoking cost of native method.

From Java In native Invoking cost
From Java (ms)
JNI HPO JNI HPO JNI HPO
Sum 2.06 2.45 1.40 1.04 0.66 1.41
ArrayAdd 78.33 43.76 61.66 23.28 16.67 20.48
Strcat 118.06 53.06 95.62 2710 22.45 25.96
GetMyObject 1367.45 27772 1233.09 79.40 134.36 198.32

In this paper, a novel approach to reduce the overhead of
the JNI function calls and the complexity of JNI program-
ming is proposed. The solution is to build a HPO model,
a cross language compound object that is composed of a
Java stub object and one or more native entity objects in
a virtual machine. The HPO model helps programmers to
operate data and objects in the native side, which escapes
from the JNI ways that access through the bridging code.
The runtime coupling of a Java object and a CAR object
is implemented in a modified Dalvik VM based on the
technique of metadata injection. The modified VM provides
automatic mapping, allowing any CAR component object to
be accessible as a Java object and vice versa. This is a powerful
feature that makes all the existing CAR-based applications
and services become available to Java. Following the ideas, the
HPO-based development tools are presented, and a prototype
VM is implemented based on the Dalvik VM and Elastos.
Experiments with simple or complex data types demonstrate
an initial evidence of the feasibility and effectiveness of the
HPO model.

Even though the HPO model has been proved to be
useful, some other studies are still on the way to perfection.
For example, the storage approach for shared fields needs a
deeper insight; the callback mechanism and a cross language
debug toolkit are also indispensable to make it prevalent;
support to other languages like JavaScript and Python is even
difficult. All these challenges lead the direction of our next
work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by the National Science and Technol-
ogy Major Project, under Grant 20092X01039-002-002-003
and Grant 20092X03004-005.

References

(1] S.Liang, The Java TM Native Interface: Programmer’s Guide and
Specification, Addison-Wesley Professional, 1999.

[2] J.-Z. Li, Z.-P. Zhang, B. Qiao et al., “A component mining
approach to incubate grid services in object-oriented legacy
systems,” International Journal of Automation and Computing,
vol. 3, pp. 47-55, 2006.

[3] Q. Wanbin, Z. Guojie, and Q. Honglin, “Related techniques of
component reuse in Java,” Computer Applications, vol. 25, no. 1,
pp. 73-75, 2005.

[4] Y.-J. Zhang, “A new external adaptor to VRML viewer based on
Java platform,” in Proceedings of the 7th International Conference
on Machine Learning and Cybernetics (ICMLC *08), vol. 1-7, pp.
2212-2216, July 2008.

[5] S. Lee and J. W. Jeon, “Evaluating performance of android
platform using native C for embedded systems,” in Proceedings
of the International Conference on Control, Automation and
Systems (ICCAS ’10), pp. 1160-1163, October 2010.

[6] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents, and K.
Stoodley, “Inlining Java native calls at runtime,” in Proceedings
of the Ist ACM/USENIX International Conference on Virual
Execution Environments (VEE ’05), pp. 121-131, Chicago, IlI,
USA, June 2005.

[7] T. Yu-Hsin, W. I-Wei, L. I-Chun et al., “Improving performance
of JNA by using LLVM JIT compiler,” in Proceedings of the
12th IEEE/ACIS International Conference on Computer and
Information Science (ICIS ’13), pp. 483-488, 2013.

[8] Y.-H. Lee, P. Chandrian, and B. Li, “Efficient Java native interface
for android based mobile devices,” in Proceedings of the 110th
IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom ’11), pp. 1202-1209,
November 2011.

[9] M.Bubakand K. Dawid, “Creating Java to native code interfaces
with Janet extension,” in Proceedings of the Ist Worldwide SGI
Users’ Conference, pp. 283-294, 2000.

[10] W. Hummer, W. Wolf, and C. Hahn, “Accessing COM-based
applications from Java using webservices,” in Proceedings of the
International Conference on Web Services (ICWS °03), pp. 487-
490, June 2003.

[11] M. Chen, G. Shalom, S. Srinivas et al., “Java JNI bridge: a frame-
work for mixed native ISA execution,” in Proceedings of the
International Symposium on Code Generation and Optimization,
pp. 65-75, 2006.

[12] S. Halloway, “Jawin, an open source interoperability solution,”
Nov, vol. 14, pp. 1-11, 2001.

[13] L. Wang, D. Chen, Y. Hu, Y. Ma, and J. Wang, “Towards
enabling cyberinfrastructure as a service in clouds,” Computers
& Electrical Engineering, vol. 39, no. 1, pp. 3-14, 2013.

[14] W. Zhang, L. Wang, D. Liu et al., “Towards building a multi-
datacenter infrastructure for massive remote sensing image
processing,” Concurrency Computation Practice and Experience,
vol. 25, no. 12, pp. 1798-1812, 2013.

[15] L. Wang, D. Chen, J. Zhao, and J. Tao, “Resource management of
distributed Virtual Machines,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 10, no. 2, pp. 96-111, 2012.

[16] L. Wang, M. Kunze, J. Tao, and G. von Laszewski, “Towards

>

building a cloud for scientific applications,” Advances in Engi-
neering Software, vol. 42, no. 9, pp. 714-722, 2011.

The Scientific World Journal

[17] L. Wang, D. Chen, and F. Huang, “Virtual workflow system
for distributed collaborative scientific applications on Grids,”
Computers & Electrical Engineering, vol. 37, no. 3, pp. 300-310,
2011.

[18] G. von Laszewski, J. Dayal, and L. Wang, “EMOLST: a docu-
mentation flow for distributed health informatics,” Concurrency
Computation Practice and Experience, vol. 23, no. 16, pp. 1857-
1867, 2011.

[19] D.Chen, L. Wang, C. Bian, and X. Zhang, “A grid infrastructure
for hybrid simulations,” Computer Systems Science and Engi-
neering, vol. 26, no. 3, pp. 197-206, 2011.

[20] J. D. deMaster, Java Native Interface Code Generator, Google
Patents, 2000.

[21] D. M. Beazley, “SWIG: an easy to use tool for integrating
scripting languages with C and C++,” in Proceedings of the 4th
USENIX Tcl/Tk workshop, pp. 129-139, 1996.

[22] E. Gabrilovich and L. Finkelstein, “INI-C++ integration made

easy; CC Plus Plus Users Journal, vol. 19, pp. 10-21, 2001.

[23] R. Chen, “Elastos Development Manual,” 2012, http://elastos
.org/.

[24] L. Batyuk, A. D. Schmidt, H.G. Schmidt et al., “Developing and
benchmarking native linux applications on android,” in Mobile
Wireless Middleware, Operating Systems, and Applications, vol.
7, pp. 381-392, 2009.

[25] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark
Dalvik and native code for Android system,” in Proceedings of
the 2nd International Conference on Innovations in Bio-inspired
Computing and Applications (IBICA ’11), pp. 320-323, December
2011.

Y.-J. Kim, S.-J. Cho, K.-J. Kim, E.-H. Hwang, S.-H. Yoon, and J.-
W. Jeon, “Benchmarking Java application using JNI and native C
application on Android,” in Proceedings of the 12th International
Conference on Control, Automation and Systems (ICCAS ’12), pp.
284-288, October 2012.

M. Welsh and D. Culler, “Jaguar: enabling efficient communi-
cation and I/O in Java,” Concurrency—Practice and Experience,
vol. 12, pp. 519-538, 2000.

[28] M. Bubak, D. Kurzyniec, and P. Luszczek, “Convenient use of

legacy software in Java with Janet package,” Future Generation
Computer Systems, vol. 17, no. 8, pp. 987-997, 2001.

[29] Y. Huang, I. Taylor, D. W. Walker et al., “Wrapping legacy codes
for grid-based applications,” in Proceedings of the International
Processing Symposium in Parallel and Distributed, p. 7, 2003.

[30] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana,
“A wrapping approach for migrating legacy system interactive
functionalities to Service Oriented Architectures,” Journal of
Systems and Software, vol. 81, no. 4, pp. 463-480, 2008.

[31] T. R. Culp, “Easing the transition from C++ to Java (part 1),
Journal of Object Technology, vol. 1, no. 2, pp. 79-93, 2002.

[32] Y. Huang and D. W. Walker, “JACAW: a Java-C automatic
wrapper, Tech. Rep., Cardiff University, Wales, UK, 2002.

[33] V. Vairale and K. Honwadkar, “Wrapper generator using Java
Native interface;” International Journal of Computer Science, vol.
2, pp. 126-139, 2010.

[34] M. Hirzel and R. Grimm, “Jeannie: granting Java native inter-
face developers their wishes,” ACM Sigplan Notices, vol. 42, no.
10, pp. 19-38, 2007,

[35] Z. Hongyu, L. Maofeng, and L. Zhiqin, “Technology of
Java/COM integration,” Journal of SWUST, vol. 19, no. 2, pp. 50—
54, 2004.

[36] C. Verbowski, Integrating Java and COM, Microsoft, 1999.

[26

[27

13

[37] D. Alder, The JAcob Project: A Java-COM Bridge, Version 1.8,
1999-2004, Website, 2004.

[38] S. Ratabouil, Android NDK Beginner’s Guide, Packt, 2012.

[39] J. K. Lee and J. Y. Lee, “Android programming techniques for
improving performance;,” in Proceedings of the 3rd International
Conference on Awareness Science and Technology (iCAST ’11), pp.
386-389, September 2011.

[40] R. Chen, “CAR Component Technology;,” 2012, http://elastos
.org/.

[41] G. McCluskey, Using Java Reflection, Java Developer Connec-
tion, 1998.

[42] M. Bellia and M. E. Occhiuto, “Higher order programming
through Java reflection,” Concurrency, Specification and Pro-
gramming CS&P, vol. 3, pp. 447-459, 2004.

[43] C. Verbowski, Using COM Objects from Java, Microsoft, 1999.

[44] H. Cunningham, H. Cunningham, D. Maynard et al., JAPE: A
Java Annotation Patterns Engine, 1999.

[45] L. Reeve and H. Han, “Survey of semantic annotation plat-
forms,” in Proceedings of the 20th Annual ACM Symposium on
Applied Computing, pp. 1634-1638, March 2005.

[46] C. R. Attanasio, D. E Bacon, A. Cocchi et al., “A comparative
evaluation of parallel garbage collector implementations,” in
Languages and Compilers for Parallel Computing, vol. 2624, pp.
177-192, Springer, 2003.

[47] R. Chen, “Elastos: an operating system for software defined
computers,” 2013, http://chenrong.elastos.org/2013/04/13/elas-
tos-an-operating-system-for-software-computer.

[48] Y. Liu, Y. Zhu, L. Ni, and G. Xue, “A reliability-oriented trans-
mission service in wireless sensor networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no.12, pp. 2100-2107,
2011.

[49] X. Liu, Y. Yang, D. Yuan, and J. Chen, “Do we need to handle
every temporal violation in scientific workflow systems,” ACM
Transactions on Software Engineering and Methodology, 2013.

[50] Z.Xu, X. Wei, X. Luo et al., “Knowle: a semantic link network
based system for organizing large scale online news events,”
Future Generation Computer Systems, 2014.

[51] Z. Xu, X. Luo, S. Zhang, X. Wei, L. Mei, and C. Hu, “Min-
ing temporal explicit and implicit semantic relations between
entities using web search engines,” Future Generation Computer
Systems, 2013.

[52] Z. Xu, Y. Liu, L. Mei et al., “Generating temporal semantic
context of concepts using web search engines,” Journal of
Network and Computer Applications, vol. 43, pp. 42-55, 2014.

[53] X. Luo, Z. Xu, J. Yu, and X. Chen, “Building association link
network for semantic link on web resources,” IEEE Transactions
on Automation Science and Engineering, vol. 8, no. 3, pp. 482
494, 2011.

[54] C. Hu, Z. Xu, Y. Liu et al., “Semantic link network based
model for organizing multimedia big data,” IEEE Transactions
on Emerging Topics in Computing, no. 99, 1 page, 2014.

[55

Y. Liu, Q. Zhang, and L. Ni, “Opportunity-based topology
control in wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 3, pp. 405-416, 2010.
[56] Y. Liu, L. Ni, and C. Hu, “A generalized probabilistic topology
control for wireless sensor networks,” IEEE Journal on Selected
Areas in Communications, vol. 30, no. 9, pp. 1780-1788, 2012.

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

