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Big data streaming has become an important paradigm for real-time processing of massive 
continuous data flows in large scale sensing networks. While dealing with big sensing data 
streams, a Data Stream Manager (DSM) must always verify the security (i.e. authenticity, 
integrity, and confidentiality) to ensure end-to-end security and maintain data quality. 
Existing technologies are not suitable, because real time introduces delay in data stream. 
In this paper, we propose a Dynamic Prime Number Based Security Verification (DPBSV) 
scheme for big data streams. Our scheme is based on a common shared key that updated 
dynamically by generating synchronized prime numbers. The common shared key updates 
at both ends, i.e., source sensing devices and DSM, without further communication after 
handshaking. Theoretical analyses and experimental results of our DPBSV scheme show 
that it can significantly improve the efficiency of verification process by reducing the time 
and utilizing a smaller buffer size in DSM.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Big data stream

A large number of applications, such as large scale sensors, information monitoring, web exploring, data from social 
networks like Twitter and Facebook, surveillance data analysis, and financial data analysis, deal with a large stream of 
data input, and consequently require an alternate ideal model of real-time data processing. As a result, a new computing 
paradigm based on Stream Processing Engines (SPEs) has appeared [15]. SPEs deal with the specific types of challenges and 
are intended to process data streams with a minimal delay [15–18]. In SPEs, data streams are processed in real time (i.e. 
on-the-fly) rather than batch processing after storing the data.

Several of these applications are approaching the bottleneck of current data streaming infrastructures and require real-
time processing of very high-volume and high-velocity data streams (also known as big data streams). The complexity of big 
data is defined through V4’s: 1) volume – referring to terabytes, petabytes, or even exabytes (10006 bytes) of stored data, 
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2) variety – referring to unstructured, semi-structured and structured data from different sources like social media (Twitter, 
Facebook etc.), sensors, surveillance, image or video, medical records etc., 3) velocity – referring to the high speed at which 
the data is handled in/out for stream processing, and 4) veracity – referring to the quality of data. These features introduce 
huge open doors and enormous difficulties for big data stream computing. A big data stream is continuous in nature and it 
is important to perform real-time analysis as the lifetime of the data is often very short (data is accessed only once) [22,25]. 
As the volume and velocity of the data is so high, there is not enough space to store and process; hence, the traditional 
batch computing model is not suitable.

1.2. Data stream security verification

Even though big data stream processing has become an important research topic in the current era, the data stream 
security has received little attention from researchers [43,44]. Some of these data streams are analyzed and used in very 
critical applications (e.g. surveillance data, military application, Supervisory Control and Data Acquisition (SCADA), etc.), 
where data streams need to be secured in order to detect malicious activities. The problem is exacerbated when thousands 
to millions of small sensors in self-organizing wireless networks become the sources of the data stream. How can we 
provide the security for big data streams? In addition, compared to conventional store-and-process, these sensors will have 
limited processing power, storage, bandwidth, and energy. Furthermore, data streams ought to be processed on-the-fly in a 
prescribed sequence. In this paper, we address these issues by designing an efficient architecture for real-time processing of 
big sensing data streams, and the corresponding security scheme.

The common approach to security is to apply a cryptographic model. Keeping data encrypted is the most common and 
safe choice to secure data in transmission, if the encryption keys are managed properly. There are two most common types 
of cryptographic encryption methods: asymmetric and symmetric. Asymmetric-key encryption algorithms (e.g. RSA, ElGamal, 
DSS, YAK, Rabin, etc.) perform a number of exponential operations over a large finite field. Therefore, they are 1000 times 
slower than symmetric key cryptography [7,8]. Efficiency becomes an issue if asymmetric-key based infrastructure such as 
the Public-Key Infrastructure PKI [28,29] is applied to big data streams. Thus, symmetric-key encryption is the most efficient 
cryptographic solution for such applications. However, symmetric-key algorithms (e.g. DES, AES, IDEA, RC4) fail to meet the 
requirements of real-time big data streams security processing due to the properties of big data (i.e., 4 Vs). Hence, there is 
a need for an efficient scheme for securing big data streams.

1.3. Motivation

The discussion above led to four most important features of the big data stream from the point of view of security 
verification:

1. Security verification needs to be performed in near real time (on-the-fly).
2. Verification framework has to deal with high volume and high velocity data.
3. Data items can be read once in the prescribed sequence.
4. Unlike the store-and-process paradigm, original data is not available for comparisons in the context of the stream 

processing paradigm.

In light of the above features and properties of big data streams, we classified existing security solutions into two classes: 
Communication Security [9,19,48,49] and Server side data security [26,27,30,36]. Communication security deals with data 
security when it is in motion and server side security deals with data security when it is at rest. The security threats and 
solutions proposed in the literature are further discussed in the related works section. Those proposed solutions are suitable 
for store-and-process, however are not plausible for big data streams.

Another major motivation is to perform the security verification on near real time in-order to synchronize with the 
processing speed of SPEs [43]. Stream data analysis performance should not degrade because of security processing time, 
there are several applications needs to perform data analysis on real time. According to the features of big data stream 
(i.e. 4 Vs) existing security solution needs huge buffer size to process security verification. Which is simple impossible to 
maintain such big buffer for data stream because of the continuous nature of data. Therefore, light wait security mechanism 
is very much important to perform security verification on near real time and reduce buffer size.

1.4. Research challenges

As discussed earlier in this section, symmetric cryptographic solution is the best way to protect data in faster processing 
time. Existing symmetric cryptographic based security solutions for data security are either static shared key or centralized 
dynamic key. In static shared key, we need to have a long key to defend from a potential attacker. Length of the key 
is always proportional to the security verification time. From the required features of big data streams specified in last 
subsection, it is clear that security verification should be in real-time. For the dynamic key, centralizing processor rekeying 
and distributing keys to all the sources is a time consuming process. A big data stream is always continuous in nature and 
huge in size. This makes it impossible to halt data for rekeying, distribution to the sources and synchronization with DSM.
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Buffer size for the security verification is another major issue because of the volume and velocity of the big data stream. 
According to the features of big data stream (i.e. 4 Vs), we cannot halt the data for more time before performing the security 
verification. This leads to an allocation of bigger buffer size in SPEs and may reduce the performance of SPEs. Hence, the 
buffer size reduction is one of the major challenges for big data stream.

1.5. Our contributions

In order to address the challenges, we have designed and developed a Dynamic Prime-Number Based Security Verification 
(DPBSV) scheme. Our scheme takes in to account a typical shared key that is updated dynamically by producing synchronize 
prime numbers. The synchronize prime number generation at both source sensing device and DSM enables reduction of 
the communication overhead without compromising security. Due to the reduced communication overhead, our scheme 
is suitable for big data streams as it verifies the security on-the-fly (near real time) and reduce the buffer usage. Our 
proposed scheme uses a smaller key length (64-bit). This enables faster security processing at DSM without compromising 
the security. The same level of security is accomplished by changing the key progressively in a specific interval of time. 
Dynamic key generation is based on the random prime numbers, which are initialized and synchronized at source sensors 
and DSM without further communications between them after handshaking. This increases the efficiency of the solution. 
Based on the shared key properties, individual source sensors updates their dynamic key independently. Due to the reduced 
key length, our scheme is suitable for processing high volumes of data without any delay. This makes DPBSV highly efficient 
at DSM for processing secured big data streams.

In summary, we are proposing a scheme for big data stream security verification without the need of key exchange for 
rekeying. The additional benefit of this is that it reduces the communication overhead and increases the efficiency of the 
security verification process at DSM. Our proposed scheme is efficient in comparison to AES, as it reduces the computational 
load and execution time significantly compared to the original AES; furthermore, it also strengthens the security of the data, 
which is the main research contribution of this paper. The contributions of the paper can be summarized as follows:

• We present a secure big data stream processing architecture.
• We design and develop an efficient Dynamic Prime-Number Based Security Verification (DPBSV) scheme for big data 

streams.
• We evaluate our proposed DPBSV scheme in our architecture and show that our solution is efficient when applied to 

big data streams in comparison to AES standard.

1.6. Organization of the paper

The rest of this paper is organized as follows: related work is reviewed in the next section; Section 3 provides the back-
ground on big sensing data stream and corresponding security related work; Section 4 describes our DPBSV key exchange 
scheme; Section 5 presents the security analysis of our scheme formally; Section 6 evaluates the performance and efficiency 
of our scheme through experimental results and Section 7 concludes our work and suggests future work.

2. Related works

This section describes the related works in two broad categories: stream data processing and data security.

2.1. Stream data processing

Data streaming has become an important paradigm for the real-time processing of continuous data flows in several 
domains such as finance, telecommunications, large scale sensor networks which require online processing and security 
verification of continuous data flows. A large amount of data is collected by such applications; for example, Tien [24]
measured about 4 zettabytes (or 10∗∗21 bytes) of digital data being generated per year by everything from underground 
physics experiments to retail transactions to security cameras to global positioning systems.

Stonebraker et al. [20] outlined eight requirements that a system software should meet to excel at a variety of real-time 
stream processing applications: Keep the Data Moving, Query using SQL on Streams (StreamSQL), Handle Stream Imper-
fections (Delayed, Missing and Out-of-Order Data), Generate Predictable Outcomes, Integrate Stored and Streaming Data, 
Guarantee Data Safety and Availability, Partition and Scale Applications Automatically, and Process and Respond Instanta-
neously. For our purpose, we have classified some important paradigm of stream data processing in Table 1. We use the 
application areas, processing techniques, proposed technique and QoS as our classification properties. We next describe 
some of these architecture in brief.

Arasu et al. [15] proposed a Data Stream Management System (DSMS), called STREAM, for STanford stREam data Man-
ager. The challenges in building a DSMS instead of a traditional DBMS is to handle multiple continuous, unbounded, possibly 
rapid and time-varying data streams. Fig. 1 shows the high level abstraction of stream data processing at DSMS. The incom-
ing streams (on the left) produce data indefinitely and drive query processing. Processing of continuous queries typically 
requires intermediate states, stored as Scratch Store. This state could be stored and accessed in memory or on disk. Although 
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Table 1
Stream processing classifications of some exiting technology.

Architecture Focused data stream Proposed technique Processing technique QoS

StreamCloud 
[12,14]

Deals with big 
data

Parallel Query processing Parallel Scalable and elastic with input load

Staying FIT 
[13]

Distributed sensor 
network

Load Shedding Centralize and 
Distributed

–Effect of query load distribution
–Effect of input dimensionality

STREAM [15] Any Query execution resource 
utilization

Centralized Multiple continuous queries over 
multiple continuous data streams

Monitoring 
Streams [16]

Sensor data Stream monitoring Centralized –Response times
–Tuple drops

Aurora [17] Other data then 
human data

Monitoring applications Centralized Resource allocation decisions

TelegraphCQ 
[18]

Sensor network Continuous queries processing Centralized Scalable query processing

Flexible Filters 
[23]

Embedded 
application

Dynamic load balancing Distributed –Load balancing for stateless and stateful 
operators
–Redistributes the load on the fly.

Fig. 1. A simplified view of a DSMS to process and analyze input data stream [15].

we are concerned primarily with the online processing of continuous queries, in many applications stream data also may 
be copied to an archive, for preservation and possible offline processing of expensive analysis or mining queries.

Gulisano et al. [12,14] presented StreamCloud, a large scale data streaming system for processing large data stream in 
cloud environments. The proposed method is a highly scalable and elastic. StreamCloud runs on top of a distributed Stream 
Processing Engine (SPE), but is made independent from it by implementing the parallelization with standard stream admin-
istrators. Tatbul et al. [13] studied the problem of load shedding in distributed stream processing and show its difference 
from existing centralized solutions, and they offered several new practical algorithms for addressing the problem. The pre-
sented solution is a distributed algorithm called DFIT that works by transmitting its load requirements locally to its parents. 
They also investigated several centralized solutions a linear programming solution (Solver), a variant on Solver that takes a 
workload history into account (Solver-W), and a centralized version of our distributed algorithm (C-FIT) and compares them.

Carney et al. [16] described the architecture of Aurora with the primitive building blocks for workflow processing, a DAHP 
system oriented towards monitoring applications. Abadi et al. [17] proposed a complete architecture of Aurora (a new model 
and architecture for data stream management for monitoring applications) and describe a stream-oriented set of operators. 
With several heuristics for optimizing a large Aurora network, they focused on run-time data storage and processing issues, 
discussing storage organization, real-time scheduling, introspection, and load shedding.

The TelegraphCQ, a dataflow system for processing continuous queries over data streams which supports dynamic query 
workloads in volatile data streaming environments is presented by Chandrasekaran et al. in [18]. The TelegraphCQ DDL 
supports the creation of archived and unarchived streams that are fed with external sources using stream and source 
specific wrapper functions. For implementation, TelegraphCQ integrated with a sensor network and for simulation freeway 
traffic sensors used.

In [23], overloaded operators trigger a reconfiguration of the load distribution policy with a “backpressure” message to 
upstream peers. However, the authors of [23] only consider stateless operators. SC provides load balancing for stateless and 
stateful operators and redistributes the load on the fly.

2.2. Data security

Cryptographic based security frameworks are proposed mainly in two different classes to protect data, i.e. Communication 
Security (data in motion) [9,19,48,49] and Server side data security (data at rest) [26,27,30,36]. Authors in [9,19] defined 
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Table 2
Communication security threats and existing solutions.

Communication layers Possible attacks Security solutions

Physical Layer • Jamming • Spread spectrum communication
• Tampering • Jamming reports

• Accurate and complete design of 
the node physical package

Data Link Layer • Collision • Error correcting codes
• Exhaustion • Collision detection and avoidance 

techniques• Unfairness
• Interrogation Attack • Rate limiting
• SYBIL Attack

Network Layer • Selective Forwarding • Link layer encryption and 
authentication• Sinkhole

• Sybil attack • Multipath routing
• Wormhole • Identity verification
• HELLO flood • Authenticated broadcast
• Spoofing and alternating 
routing information
• Node capture/Node 
replication attack

Transport Layer • Flooding Packet authentication including all control 
fields in the transport protocol header• DE synchronization

security requirements with descriptions of individual features such as Data Confidentiality, Data Integrity, Data Freshness, 
Availability, and Authentication. They also classified the layer wise security threats and exiting solutions (i.e. physical layer, 
data link layer, network layer, transport layer) for wireless communication. They also proposed secure data collection and 
secure data transmission techniques in wireless networks. Both of these proposed techniques used symmetric key based 
cryptography.

There are several solutions proposed in the literature to protect data in wireless networks and IoT environment. We 
grouped the security threats and solutions for different communication layers in Table 2. For example, Jan et al. [48] pro-
posed a novel detection scheme for Sybil attack in a centralized clustering-based hierarchical network. In [49], they have 
proposed a lightweight authentication scheme for IoT environment. Proposed scheme verifies the identities of the partici-
pating clients and servers in a CoAP-based and it follows a session key based solution.

Server side data security is mainly proposed for physical data centers, when data is at rest and accessed through applica-
tions. There are several potential attacks for such data such as data interruption, interception, privacy breach, impersonation, 
session hijacking, programming flaws, software modification, software interruption, defacement, disrupting communications, 
hardware interruption, and hardware modification, etc. To overcome these attacks, several solutions have been proposed 
such as privacy in multitenant environments, data protection from disclosure, access control, software security, service 
availability, access control, application security, data security (data in transit, data at rest, reminisce), cloud management 
control security, virtual cloud protection, hardware security, and hardware reliability [26,27,30,36]. We have classified the 
cloud based security threats and security requirements in Table 3. According to the recent research trend, we highlighted 
the cloud based security approach and the list of security requirements and threats, that are extensively from [26]. We 
describe a few techniques below as examples of such techniques.

Liu et al. [27] proposed an authenticated key exchange scheme, called Cloud Computing Background Key Exchange 
(CCBKE). This proposed method is an efficient security-aware scheduling of scientific applications in hybrid computing en-
vironments such as cloud computing and designed based on the commonly-used Internet Key Exchange (IKE) scheme and 
randomness-reuse strategy. Benantar et al. [30] introduced a method along with a corresponding framework for keeping up 
a safe relationship between a customer and a server in a distributed processing framework by registering a session identifier 
as a capacity of a Kerberos-based authentication ticket. The session identifier is freely inferred or confirmed by the client 
and the server upon first demand by the customer to the server and every consequent demand by the customer to the 
server is labeled with this session identifier to give a solid security affiliation. Wang et al. [51] proposed a new computing 
paradigm called as Cyberinfrastructure as a Service (CaaS), which provides an on demand service to building a cyberinfras-
tructure. Authors developed a lightweight distributed middleware namely Cyberaide Creative and demonstrated the usage 
via a real application, and test it with a High Performance Computing (HPC) benchmark. The authors in [50] present a par-
allel solution using the MapReduce paradigm in the cloud that can deliver a high-performance, fault-tolerant, and flexible 
solution in a water distribution system (WDS).

In the following, our focus will be on existing security solutions for data stream. They mainly focus on access control 
and query level security [43–45]. Nehme et al. [43] initially highlighted the need for a security framework in streaming 
data. They divided the security problem into two: data security problem (also known as data security punctuation) and 
query security problem (also known as query security punctuation). Data security punctuation deals with data security, 
whereas query security punctuation deals with security and access control during the query processing. They extensively 
work on access control by focusing on both data security and query security punctuation in their papers [43,44]. For exam-
ple, FENCE, a continuous access control framework in dynamic data stream environments, deals with both data and query 
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Table 3
Cloud service level wise security requirements and threats.

Service level Security requirements Threats

Software as a Service (SaaS) • Privacy in multitenant • Interception
• Environment • Data interruption (deletion)
• Data protection from disclosure • Privacy breach
• Data access • Impersonation
• Software security • Session hijacking
• Authentication and Authorization • Traffic flow analysis

Platform as a Service (PaaS) • Access control • Programming flaws
• Instruction Detection • Software modification
• Data security, (data in transit, 
data at rest, remanence)

• Software interruption (deletion)

Infrastructure as a Service (Iaas) • Virtual cloud protection • Impersonation
• Communication security • Session hijacking
• Physical security • Traffic flow analysis
• Environmental security • Exposure in network
• Virtualization security • Defacement

• DDOS
Physical Data Centre • Legal not abusive use of cloud 

computing
• Network attacks
• Connection flooding

• Hardware security • DDOS
• Hardware reliability • Hardware interruption, theft and 

modification• Network protection
• Network resources protection • Misuse of infrastructure

• Natural disasters

security restrictions [44]. It gives low overhead which is suitable for data stream environments. Similarly, ASSIST, an ap-
plication system based on an effective and efficient access control framework, is proposed to protect streaming data from 
unauthorized access [45]. ASSIST has been implemented on top of StreamInsight, a commercial stream processing engine. 
This paper focuses on data security punctuation, where our security mechanism is to protect the data efficiently from po-
tential attacks from/on untrusted intermediaries before the data reaches to the DSM. Wang et al. [46] proposed a framework 
named ARTSense, to trust without identity in participatory sensing networks. The proposed framework achieves the trust of 
information, reputation of participants, anonymity, and security requirements.

The question is then can we apply existing communication and server side security to the big data stream to overcome 
the shortcomings of current approaches. Existing solutions for communication security or server side security do not satisfy 
the requirements of big data stream. We propose a novel light weight security mechanism for big data stream. The prelim-
inary version of this paper contains the stream data processing architecture, security requirements followed by proposed a 
mechanism to address the security verification of big data stream (e.g., integrity, and authenticity) [47]. In this paper, we 
propose a solution, called Dynamic Prime Number Based Security Verification (DPBSV), which is based on a common shared 
key that is updated dynamically by generating synchronized pairs of prime numbers for real time security verification (i.e., 
confidentiality, integrity and authenticity) on big data stream. We have shown the efficiency of our approach by reducing 
the security computation time and buffer utilization.

3. Proposed secure data stream architecture

3.1. Stream processing

Data stream processing is an emerging computing paradigm which is particularly suitable for application scenarios where 
huge amounts of data (Big Data) must be processed in near real-time (with small delay). Rather than processing stored data 
like in conventional clouds or database systems, Data Stream Manager (DSM) processes stream data on-the-fly. The needs 
of on-the-fly processing include the amount of input data that discourages the use of persistent storage, the requirement of 
providing prompt results, etc. DSM is designed to handle high-volume and bursty data streams from multiple sources. DSM 
handles streams of tuples similarly to the way a conventional database system handles relations. In addition, DSM needs to 
do the security verification of the data blocks on near real time to synchronize with stream data analysis.

Fig. 2 shows an overall architecture for a big data stream process from source sensing device to the cloud data processing 
center, including our proposed security framework on the data stream. It also shows the complete architecture of stream 
data processing in the data center of a cloud. Refer to [42] for further information on stream data processing in datacenter 
clouds. It starts with a three step process to reach data at DSM for stream processing. These three steps include collection, 
processing, and storing. All the query and security related processes are handled in DSM. It is important to note that the 
security verification of stream data has to be performed before query processing and it has to be done in real time (with 
small delay) with a fixed (small) buffer size. The processed data is stored in the cloud storage. Queries used in DSM are 
defined as “continuous” since they are continuously standing over the streaming data. Results are pushed to the user each 



JID:YJCSS AID:2957 /FLA [m3G; v1.175; Prn:30/03/2016; 11:58] P.7 (1-21)

D. Puthal et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Fig. 2. Overlay of our architecture from sensing device to cloud data processing center.

time the streaming data satisfies the query predicate. The queries including security verification are defined as a directed 
acyclic graph where each node is an operator and edges define data flows.

A stream of data a potentially infinite sequence of tuples, denoted as (T1, T2, . . . , Tn). The data sources have clocks 
that are well synchronized with other system nodes as in [13]. A query is modeled as a network of connected operators. 
A connection represents a data flow. Typical query operators of DSMs are filter, map, union, join, and aggregate [12]. These 
operators correspond to relational algebra operators. Operators can be classified as stateless (filter, map and union) or 
stateful operators (join and aggregates) [14]. As the nature of the data stream is infinite, stateful operators perform their 
computation over sliding windows of tuples defined over a period of time (e.g. tuples received in the last hour). Cloud 
computing has become a platform of choice due to its extremely low-latency and massively parallel processing architecture 
[41]. It supports the most efficient way to obtain actionable information from big data streams [21–24].

As discussed before fixed buffer size is required for security verification, here we present procedure to compute halting 
time of data block in buffer. Let there are n number of sensors and each send m number of data blocks. We assume 
that in a DSM buffer the probability of attempt to success security verification is (1/(n × m)), or delays with probability 

1 − (1/(n × m)). We can compute Acquisition Probability as A =
(

1 −
(

1
(n×m)

)((n×m)−1)
)

[34]. Based on the value of A, we 

can measure the halting time of the each individual data block; the halting time represented as w is A × (1 − A), where 
the value of w is inversely proportional to the value of A and processing time of DSM.

It is clear from the above description that security verification at DSM is one of the important features of big data stream 
architecture. The major concern is to process security verification in real time because of the features of big data streams. 
Security verification at DSM increases the stream query processing time. The major challenge of security processing time 
is that it should not introduce any time delay at DSM. This is critical for big data stream due to the high volume and 
velocity. Slow processing leads to the requirement of higher buffer size to store data before performing security verification. 
Hence, security verification should be done on-the-fly (with minimum delay). Motivated by this problem, this paper aims 
to address the challenge of real time security verification on massive data streams at DSM.

3.2. Why symmetric key cryptography?

Symmetric keys are smaller in size than asymmetric keys, so they require less computational burden. The ECRYPT II 
recommendations on key length say that a 128-bit symmetric key provides the same strength of protection as a 3,248-bit 
asymmetric key [8]. Our aim is to perform security verification on-the-fly (real-time). Symmetric key cryptography becomes 
a natural choice for this purpose. It is mentioned with a proof that symmetric key cryptography is approximately 1000 
times faster than strong public key ciphers [7]. However, it is comparatively easy for an attacker to read/modify the data as 
the symmetric key cryptography key length is small [7]. To overcome this problem, we use a synchronized dynamic prime 
number (Pi ) generation algorithm at both source and DSM with equal interval of time in order to update cryptography keys 
dynamically to confuse malicious attackers. The procedure Prime(Pi) is calculated and synchronized on both sides as shown 
in Fig. 3. This proposal makes the process faster and prevents potential attacks on the data streams. We explain it in detail 
in a later section.
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Fig. 3. Pair of dynamic relative prime number generation, one at DSM, and another in distributed sensor node, are maintained with a standard time interval. 
Information is communicated from the sensors to the DSM only if encrypted with the Pi based secret key.

3.3. Sensor node processing power

Power consumption of the sensor node broadly divided into three domains: sensing, data processing and communication. 
The processing unit of a smart dust mote prototype is a 4 MHz Atmel AVR8535 micro-controller with 8 KB instruction 
flash memory, 512 bytes RAM and 512 bytes EEPROM [4]. TinyOS operating system is used on this processor, which has 
3500 bytes OS code space and 4500 bytes available code space [5]. In [6], the authors mentioned that the Mica2 mote 
– based on the Atmel ATMega 128L microcontroller – takes roughly 3.2 nJ per instruction; Texas Instruments MSP430 
microcontroller corresponds to an energy consumption of roughly 750 pJ per instruction and smart dust micro architecture 
designed in 0.25 μm technology system consumes 12 pJ per instruction. In [1,2], Walravens et al. proved that folded tree 
based processing is more efficient than other traditional processing techniques. The folded tree is 8 to 10 times more 
efficient that MSP430 in terms of energy and 2 to 3 times faster in terms of execution time. It also reduces the processing 
power to 80 uW or 8 pJ/cycle.

In our proposed architecture in Fig. 2, we generate prime numbers at both sensors and DSM. We adapted the folded tree 
based approach as it is suitable and capable of calculating the prime number after equal intervals of time in the range up 
to 107 within 18 milliseconds [3].

We also assume that deployed source nodes operate in two modes: trusted and untrusted. In the trusted mode, the 
nodes operate in a cryptographically secure space and adversaries cannot penetrate this space. Nodes can incorporate 
Trusted Platform Module (TPM) to design trusted mode of operation. The TPM is a dedicated security chip following the 
Trust Computing standard specification for cryptographic microcontroller systems [10]. TPM provides a cost effective way of 
“hardening” many recently deployed applications, those are previously based on software encryption algorithms with keys 
kept on a host’s disk [11]. It provides a hardware based trust, which contains cryptographic functionality like key genera-
tion, store, and management in hardware. The detailed architecture is at [11]. We assume that the proposed prime number 
generation procedure Prime(Pi) and secret key calculation operate in the trusted mode.

4. Dynamic prime-number based security verification – DPBSV

We describe our DPBSV scheme for big sensing data streams using four independent components: system setup, hand-
shaking, rekeying, and security verification. We refer readers to Table 4 for all notations used in describing our scheme. We 
have made a number of sensible a practical assumptions while characterizing our scheme. We describe those assumptions 
where necessary. We next describe four independent components in details.

4.1. DPBSV system setup

We assume that DSM has all deployed sensors’ identities (IDs) and secret keys at the time of deployment because the 
network is fully untrusted. We use a number of key exchanges between the sensors and DSM at the start to ensure that 
session key establishment process is secured. Since we are transmitting key functions such as KeyGen to individual source 
sensors later, it is important that all potential attacks are considered while establishing the session key. We also assume 
that each sensor node Si knows the identity of its DSM. Further, both DSM and sensors maintain a same secret key (i.e., k) 
for initial authentication process. In our scheme, we also assume that sensors never communicate between each other to 
reduce the communication overhead. The step wise secure authentication process shown in Fig. 4.

Step 1:
In the first step, a sensor sends {Si, r} to the DSM, where Si is the sensor identity and r a pseudorandom number. If 

there are n numbers of sensors deployed in the area such as S1, S2, S3, . . . , Sn, Si denotes the id of ith sensor.



JID:YJCSS AID:2957 /FLA [m3G; v1.175; Prn:30/03/2016; 11:58] P.9 (1-21)

D. Puthal et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Table 4
Notations.

Acronym Description

Si ith Sensor’s ID.
Ki ith Sensor’s Secret key.
Ksi ith Sensor’s Session Key.
Kenc Generated key for the authentication.
KSH Secret key calculated by the sensor and DSM.
KSH− Previous secret shared key maintain at DSM.
K/K ′ Encrypted with sensor’s secret key for user authentication.
C/C ′/C ′′ Calculated hash value.
r Pseudorandom number generated by the sensors.
t Interval time to generate the prime number.
Pi Random prime number.
Kd Secret key of the DSM.
k Initial shared key for sensor and DSM for authentication.
j Integrity checking interval.
I D Encrypted data for integrity check.
AD Secret key for authenticity check.
E() Encryption function.
H() One-way hash function.
Prime(Pi) Random prime number generation function.
KeyGen Key generation procedure.
⊕ Bitwise X-OR operation.
‖ Concatenation operation.
DATA Fresh data at sensor before encryption.
RetriveKey() Retrieve key from DSM database by knowing specific source.
radomdKey() Randomly generate the key.

Fig. 4. Secure Authentication process between source sensing device and DSM, and Handshaking.
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1) Si → DSM : {Si, r}.

Step 2:
When the DSM receives {Si, r} from a sensor Si , it first retrieves Si ’s secret key, i.e., Ki ← RetriveKey(Si). DSM then 

generates a random session key Ksi . In order to share this with the corresponding senor (Si ), DSM generates a key using the 
session key and the corresponding sensor’s private key (i.e., Kenc = Ksi ⊕ Ki ). Then DSM encrypts the generated key with the 
shared key k (i.e., K = Ek (Ksi, Kenc)) and performs the hash function to generate C (i.e. C = H (Kenc ‖ K ‖ r)). Finally, DSM 
sends the value of C and Kenc to Si . The complete computational steps is listed below.

Ki ← RetrieveKey(Si),

Ksi ← radomdKey(),

Kenc = Ksi ⊕ Ki,

K = Ek (Ksi, Kenc)

C = H (Kenc ‖ K ‖ r) (1)

2) Si ← DSM : {C, Kenc}.

Step 3:
The corresponding sensor gets {C , Kenc} from DSM and starts calculating its session key from Kenc based on its own secret 

key (i.e., Ksi = Kenc ⊕ Ki ). The sensor finds out the value of K ′ based on the value of Ksi and Kenc (i.e. K ′ = Ek(Ksi, Kenc)) by 
using the initial secret key k. It then gets the hash H(Kenc ‖ K ′ ‖ r) from Equation (1) and checks whether or not it is equal 
to C . If the hashes are equal and K = K ′ , DSM is authenticated to the sensor Si . However, if it is not equal, then Si ends 
the protocol. Following the authentication, it transmits C ′ = H(1 ‖ Kenc ‖ K ′ ‖ r) to DSM as follows.

Ksi = Kenc ⊕ Ki .

K ′ = Ek(Ksi, Kenc)

H(Kenc ‖ K ′ ‖ r)

K = K ′, to authenticate the DSM

C ′ = H(1 ‖ Kenc ‖ K ′ ‖ r) (2)

3) Si → DSM : {C ′}.

Step 4:
When the DSM receives C ′ from the sensor, it compares the value of with H(1 ‖ Kenc ‖ K ‖ r), which is computed from 

Equation (2) to see whether they are equal. Si is authenticated by DMS id the values are equal Otherwise, the protocol 
is terminated. After authentication of both parties, the DSM and sensors have the session key Ksi . DSM sends C ′′ = H(2 ‖
Kenc ‖ K ‖ r) to complete the protocol.

C ′′ = H(2 ‖ Kenc ‖ K ‖ r) (3)

4) Si ← DSM : {C ′′}.

4.2. DPBSV handshaking

The individual session keys are established using the DPBSV system setup described in the earlier sub-section. Using 
the established session keys, the DSM sends its all properties (shows in step 5) to sensors (S1, S2, S2, . . . , Sn). In general, 
if a larger prime number of secret shares is used in the pairwise key establishment process, the better security will the 
pairwise key achieve. However, using a larger prime number for the secret shares requires a greater computation time. In 
order to make the security verification lighter and faster, we reduce the prime number size. Towards this, we have defined 
a new dynamic prime number generation function Prime (Pi), which will be described later in Theorem 2. Our aim is to 
calculate the prime number on both sensor and DSM sides to reduce communication overhead and minimize the chances 
of disclosing the shared key. This is achieved by installing the same function at both sides as follows:

Step 5:
Prime (Pi) computes the relative prime number on both sides with a time interval t . In the handshaking process, DSM 

transmits all its procedures to generate the key and prime number like (Kd, t, Pi,Prime (Pi) , KSH,KeyGen) to individual 
sensors by encrypting with the initial shared key (k). These parameters and procedures are explained in a later section in 
details.
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5) Si ← DSM : {Ek (Kd, t, Pi,Prime (Pi) , KSH,KeyGen)}.

In this step, DSM sends all the parameters and properties of KeyGen to source sensors. All of this transferred information 
is stored in trusted parts of sensor (e.g. TPM). Fig. 4 shows the handshaking after authentication between source sensor 
and DSM. It is important to note that once the function is compromised, the whole security protocol and system is also 
compromise. Hence, it is important to ensure that the sensors have trusted part built in.

4.3. DPBSV rekeying

We propose a novel rekeying concept by calculating prime numbers dynamically on both source sensors and DSM. Fig. 3
shows the synchronization of the shared key. In our scheme, a smaller size of the key makes the security verification faster. 
But we change the key very frequently in the DPBSV rekeying process to ensure that the protocol remains secure. If any 
types of damage happens at the source, the corresponding sensor is desynchronized with DSM. The source sensor follows 
Step 3 to reinitialize and synchronize with DSM. According to our assumption, we store all the secret information at a 
trusted part of the sensor. So the sensor can reinitialize the synchronization by sending its own identity to DSM. Once DSM 
authenticates the source sensor, it sends the current key and time of key generation. Authenticated sensors can update the 
next key by using the key generation process from a secure module of the sensor (TPM). In several situations, data blocks 
can arrive at DSM after rekeying process, those data blocks encrypted with previous shared key. We add a time stamp field 
to individual data packet to identify the encrypted shared key. If the data is encrypted using previous shared key then the 
DSM uses KSH− key for the security verification; otherwise, it follows the normal process. The shared key KSH− always 
initialize the with current KSH before KSH update.

Rekeying is often accomplished by running initial exchanges all over again. The following presents an alternative ap-
proach to rekeying and the corresponding analysis in terms of efficiency.

Step 6:
The above defined DPBSV Handshaking process makes sensors aware about the Prime(Pi) and KeyGen. We now describe 

the complete secure data transmission and verification process using those functions and keys. As mentioned above, our 
scheme uses the synchronized dynamic prime number generation Prime(Pi) on both sides, i.e., sensors and DSM as shown 
in Fig. 3. At the end of the handshaking process, sensors have their own secret keys, initial prime number and initial 
shared key generated by the DSM. The next prime generation process is based on the current prime number and the given 
time interval. Sensors generate the shared key KSH = H (E (Pi, Kd)) using the prime number Pi and DSM secret key Kd . 
Each data block is associated with the authentication tag and contains two different parts. One is encrypted DATA based 
on its secret key Ki and shared key KSH for integrity checking (i.e., I D = DATA ⊕ KSH ⊕ Ki ), and the other part is for 
the authentication checking (i.e., AD = Si ⊕ KSH). The resulting data block is: ((DATA ⊕ KSH ⊕ Ki) ‖ (Si ⊕ KSH)). The key 
generation and individual block encryption process listed are as follows.

KSH = H (E (Pi, Kd))

I D = DATA ⊕ KSH ⊕ Ki

AD = Si ⊕ KSH (4)

6) Si → DSM : {Ek (I D ‖ AD)}.

4.4. DPBSV security verification

Security verification should be performed in real time (with minimal delay) based on the features of big data streams 
stated above. In the following step we perform the security verification of our proposed scheme. In this step, DSM verifies 
for authenticity in each individual data block and for integrity in specific selected data blocks. The aim is to maintain the 
end-to-end security of the proposed scheme.

Step 7:
The DSM verifies whether the data is modified or comes from an authenticated node. As DSM has the common initial 

shared key, it decrypts the complete block to find out the individual data blocks for the integrity and authenticity check. 
The DSM first checks for the authenticity in each data block AD and checks for the integrity with random of interval data 
blocks I D . This random value is calculated based on the corresponding prime number i.e. j = Pi%7. The calculated values 
vary from 0 to 6, i.e., the maximum interval of 6 blocks and if the value of j is 0, then it will not skip any data block. 
For the authenticity check, the DSM decrypts AD with shared key Si = AD ⊕ KSH . Once Si is obtained, the DSM checks its 
source database and extracts the corresponding secret key Ki for the integrity check according to the value of j. Given Ki , 
the DSM calculates/decrypts data and checks MAC for integrity check DATA = I D ⊕ KSH ⊕ Ki . All the security verification 
process from based on shared key from Equation (4). Fig. 5 shows the security verification with rekeying process.
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Fig. 5. Shared key update and security verification process.

Si = AD ⊕ KSH

DATA = I D ⊕ KSH ⊕ Ki

The complete mechanism beginning from source sensing device and DSM authentication to handshaking, security veri-
fication mentioned in algorithmic format is shown in Algorithm 1. Algorithm 1 represents the description of the proposed 
mechanism in the stepwise process.

5. Security analysis of DPBSV

This section provides theoretical analysis of our scheme to show that the proposed scheme is safe against attacks on 
authenticity, confidentiality and integrity.

5.1. Assumptions

We have made a number of practical and realistic assumption in our scheme. In the following, we first describe those 
assumptions.

Assumption 1. In our scheme, the data that was encrypted by a symmetric-key algorithm cannot be decrypted by any 
parties, unless they have the session/shared key which was used to encrypt the data at the source (or sensor) side.

Assumption 2. DSM is fully trusted and no parties can access the DSM without proper authentication.

Assumption 3. Sensor’s secret key, Prime(Pi) and secret key calculation procedures reside inside trusted parts of the sensor 
(like TPM) so that no one is authorized to access and manipulate them.

5.2. Threat model

We define our threat model which is similar to the most cryptological analyses to shared-key communication protocols 
as follows:

Definition 1 (Attack on authentication). A malicious attacker Ma is an adversary who is capable of monitoring, intercepting, 
and introducing itself as an authenticated source node to send data in the data stream. The types of attacks possible in this 
category include impersonation attack, Sybil attack, and identity-based attacks [19].
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Algorithm 1 Security Framework for Big Sensing Data Stream.
Description Based on the dynamic prime number generation at both source sensor and DSMsides, the proposed security protocol for big sensing data 

streams works more efficiently without compromising security strength.
Input Prime generation process Prime (Pi), key generation process KeyGen, sensor and DSM secret key, and session key Kenc for handshaking.
Output Successful security verification without any malicious attack and comparatively faster security verification than standard symmetric key solution 

(AES).
Step 1 DPBSV System setup

1.1 Si → DSM : {Si , r}, ith sensor sends its random number with its identity.
1.2 Si ← DSM : {C, Kenc}, DSM identifies the sensor and generates the session key for it. Then DSM encrypts and sends back to the ith sensor.
1.3 Si → DSM : {C ′}, ith sensor identifies the DSM based on its own secret key. If sender is not authenticated then it starts authentication transaction.
1.4 Si ← DSM : {C ′′} DSM authenticates the last transaction and sends back to ith sensor with this format. Otherwise protocol terminates to start the new 

process.

Step 2 DPBSV Handshaking

DSM sends its properties to individual sensors based on their individual session key. It includes the prime number generation and time interval to genera-
tion etc.

2.1 DSM ← Si : {Ek(Kd, t, Pi , Prime (Pi) , KSH, KeyGen)}, for details refer Table 4.

Step 3 DPBSV Rekeying

Key updates on both source sensor and DSM and they are aware of the Prime(Pi) and KeyGen. Sensors generate the shared key KSH = H (E (Pi , Kd)) and 
each data block is associated with two different parts. One is encrypted i.e., I D = DATA ⊕ KSH ⊕ Ki and another for authenticity checking i.e., AD = Si ⊕ KSH .

3.1 Si → DSM : {Ek (I D ‖ AD )}, these blocks for authentication, integration, and confidentiality checks.

Step 4 DPBSV Security Verification

The DSM checks for authenticity in each data block AD and checks for the integrity with random interval data blocks I D and random value is calculated 
based on the corresponding prime number i.e. j = Pi %7.

4.1 Si = AD ⊕ KSH

For the authenticity check, the DSM gets source ID. Once Si obtained, the DSM checks source database and extracts corresponding secret key Ki for the 
integrity check according to the value of j.

4.2 DATA = I D ⊕ KSH ⊕ Ki

Given Ki , the DSM calculates/decrypts data and checks MAC for integrity check.

Definition 2 (Attack on confidentiality). A malicious attacker Mc is an unauthorized party who has the ability to access or 
view the unauthorized data stream before it reaches DSM. The types of attacks in this categories include phishing attack, 
packet sniffing, and dumpster driving [19].

Definition 3 (Attack on integrity). A malicious attacker Mi attack on integrity, which is an adversary capable of monitoring 
the data stream regularly and try to access and modify the data blocks before it reaches DSM. The types of attacks in this 
category includes salami attack, data diddling attacks, man in the middle attack and session hijacking attack [19].

5.3. Security proof

In this sub-section, we show that our scheme is safe against the threat model in Section 5.2 under the assumptions 
explained in Section 5.1. This is achieved through six theorems and corresponding proofs as follows.

Theorem 1. The security is not compromised against the threat model by reducing the size of shared key (KSH).

Proof. We reduce the size of the prime number to make the key generation process faster and more efficient. The ECRYPT 
II recommendations on key length say that a 128-bit symmetric key provides the same strength of protection as a 3,248-bit 
asymmetric key. Low length of key also provides more security in a symmetric key algorithm because it is never shared 
publicly. Advanced processor (Intel i7 Processor) took about 1.7 nanoseconds to try out one key from one block. With this 
speed it would take about 1.3 × 1012× the age of the universe to check all the keys from the possible key set [8]. By reducing 
the size of the prime number, we fixed the key length to 64-bit to make the security verification faster at DSM using 
the data from Table 5. From Table 5, a 64-bit symmetric key takes 3136e + 19 nanoseconds (more than a month), so we 
fixed interval time to generate prime number as a week (i.e. t = 168 hours). Dynamic shared key calculates based on the 
calculated prime number. Based on this calculation, we conclude that an attacker cannot calculate within the interval time t . 
We are changing the shared key without exchanging information between the sensors and DSM. Brute-force attack me be 
able to get the shared key once intruder have key length, but this possibilities also associate with 128-bit cryptographic 
solution. It confuses the malicious node those are listening the data flow continuously. The key has already been changed 
four times before an attacker knows the key and this knowledge is not known to the attackers. Which conclude that even 
we reduced the key size to 64 bit, we get the same security strength by changing the key in time interval t . �
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Table 5
Notations Symmetric key (AES) algorithm takes time to get all possible keys using most advanced 
Intel i7 Processor.

Key Length 8 16 32 64 128
Key domain size 256 65536 4.295e + 09 1.845e + 19 3.4028e + 38
Time (in nanoseconds) 1435.2 1e + 05 7.301e + 09 3136e + 19 5.7848e + 35

Algorithm 2 Dynamic Prime Number Generation.
Prime(Pi)

1. Pi−1 = Pi

2. Set k :=
⌈

Pi−1
6

⌉
3. Set m := 6k + 1 // Next prime number.
4. If m ≥ 107 then
5. k := k/105

6. GO TO: 3
7. If S (m) = 1 then // From Equation (5).
8. GO TO: 14 // If m is a prime number.
9. Set m := 6k + 5 // Next possible prime number.

10. If S (m) = 1 then // From Equation (5).
11. GO TO: 14 // If m is a prime number.

12. k :=
⌊

k3 + √
k
⌋

mod 17 + k // Relative number calculation.

13. GO TO: 3
14. Pi = m
15. Return (Pi ) // Calculated new prime number.

It is important to note that a malicious attacker can find a key and decrypt the data if it can hold the data longer than 
the time interval t . Even in such situation, the scheme is safe from attacks on authentication and integrity, but not strong 
confidentiality. This means the scheme supports weak confidentiality. However, this scheme is equally safe to use in scenario 
where confidentiality of the data expired after certain time like in emergency management scenario (where the authenticity 
and integrity of the data is important). We plan to address this issue in our future work.

Theorem 2. Relative prime number Pi calculated in Algorithm 2 synchronizes between the source sensors (Si) and DSM.

Proof. The normal method to check the prime number is 6k + 1, ∀k ∈ N+ (an integer). Here, we initially initialize the value 
of k based on this primary test formula. Our prime generation method is based on this concept and from the extended 
idea of [3]. In our scheme, the input Pi is the currently used prime number (initialized by DSM) and the return Pi is the 
calculated new prime number. Initially Pi is initialized by the DSM at DPBSV Handshaking process and the interval time is 
t seconds.

From Algorithm 2, we calculate the new prime number Pi based on the previous one Pi−1. The complete process of the 
prime number calculation is based on the value of m and m is initialized from the value k which itself is derived using 
Pi . The value of k is constant at source because it is calculated from the current prime number, which is initialized during 
DPBSV Handshaking. Since the value of k is the same on both sides, the procedure Prime(Pi) returns identical values. In 
Algorithm 2, the value of S(m) is computed as follows.

S1(x) = (−1)⌊⌊√
x
⌋

6

⌋
+ 1

⌊ ⌊√
x
⌋

6

⌋
+1∑

k=1

⌊⌊
x

6k + 1

⌋
− x

6k + 1

⌋

S2(x) = (−1)⌊⌊√
x
⌋

6

⌋
+ 1

⌊ ⌊√
x
⌋

6

⌋
+1∑

k=1

⌊⌊
x

6k − 1

⌋
− x

6k − 1

⌋

S(x) = S1 (x) + S2 (x)

2
(5)

If S (x) = 1 from equation (5) then x is prime, otherwise x is not a prime.
The following procedure validates the above features

x �≡ 0 mod i∀1 ≤ i ≤ x − 1, if x is prime

Then put the value of x as a prime number, then

⇒
⌊⌊

x
⌋

− x
⌋

= −1

6k + 1 6k + 1
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Same as⌊⌊
x

6k − 1

⌋
− x

6k − 1

⌋
= −1

∀k within the specified range i.e. 107, then

S1 (x) = (−1)⌊⌊√
x
⌋

6

⌋
+ 1

⌊ ⌊√
x
⌋

6

⌋
+1∑

k=1

(−1) = 1 (6)

Same S2 (x) is also 1 as shown in Equation (6) and then

S(x) = S1 (x) + S2 (x)

2
= 1

Hence, the property of S (x) is proved. �
Theorem 3. Shared key (KSH) is always synchronize between Source sensor (Si) and DSM in DPBSV security mechanism.

Proof. From our proposed mechanism KSH− always initialize by the value of KSH , before KSH update. According to the 
shared key generation process (i.e. KSH = H (E (Pi, Kd))), rekeying process need the value of dynamic prime number (Pi ) 
and other than this value are constant. So computed value of KSH is always same if rekeying process use same Pi , and from 
Theorem 2 we conclude that the value of Pi always same at Si and DSM in time interval t . So there is always same shared 
key (KSH) for Si and DSM in the time interval. �
Theorem 4. An attacker Ma cannot read the secret information from sensor node (Si) or introduce itself as an authenticated node in 
DPBSV.

Proof. Following Definition 1, we know that an attacker Ma can gain access to the shared key KSH by monitoring the net-
work thoroughly, but Ma cannot get secret information such as Prime(Pi) and KeyGen. Considering the computational hard-
ness of secure module (Assumption 3), we know that Ma cannot get the secret information for Pi generation, Ki and KeyGen. 
So there are no possibilities for the malicious node to trap sensor and process according to it, but Ma can introduce him/her-
self as the authenticated node to send its information. In our scheme, sensor (Si ) sends ((DATA ⊕ KSH ⊕ Ki) ‖ (Si ⊕ KSH)), 
where the second part of the data block (Si ⊕ KSH) is used for the authentication check. DSM decrypts this part of the 
data block for an authentication check. DSM retrieves Si after decryption and matches corresponding Si within its database. 
If the calculated Si matches with the DSM database, it accepts; otherwise, it rejects the node as source and it is not an 
authenticated sensor node. All required secured information for prime number and key generation procedure is stored at 
trusted parts of the sensor node (i.e., Assumption 3). According to Assumption 3, an attacker cannot get the information as 
discussed before. Hence, we conclude that attacker Ma cannot attack big data streams. �

It is important to note that the proposed scheme avoids or drops the data blocks which are from malicious sources 
with minimum computation time by processing (Si ⊕ KSH) only during authentication. This also addresses the attacks on 
availability, one of the key security features, by avoiding potential DDoS attack.

Theorem 5. An attacker Mc cannot access or view the unauthorized data stream in our proposed DPBSV.

Proof. It is clear from Algorithm 2 that a prime number Prime(Pi) is generated at sensors and DSM dynamically without 
any further communication. Shared secret key KSH is computed using the generated prime number. Considering the As-
sumption 3, we know that Mc cannot get the secret information for Pi generation, Ki and KeyGen within the time frame. 
Following the Definition 2, we know that an attacker Mc can gain access to the shared key KSH but no other information. 
In our scheme, a source sensor (Si ) sends data blocks in the format like ((DATA ⊕ KSH ⊕ Ki) ‖ (Si ⊕ KSH)), where the first 
part of the data block (DATA ⊕ KSH ⊕ Ki) contains the original data. Getting the original data (DATA) is impossible from this 
because Mc does not have other information and at the same time shared key KSH updates dynamically at equal intervals 
of time (t). As the data is protected and cannot be read within the time frame (i.e., before the update of shared key is oc-
curred), we say that the proposed mechanism provide weak confidentiality. Though this weak confidentiality is acceptable 
in many applications, we plan to address this issue in our future work. �
Theorem 6. An attacker Mi cannot read the shared key KSH within the time interval t in DPBSV scheme.



JID:YJCSS AID:2957 /FLA [m3G; v1.175; Prn:30/03/2016; 11:58] P.16 (1-21)

16 D. Puthal et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 6. The sensors used for experiment (a) Z1 low power sensor. (b) TmoteSky ultra low power sensor.

Proof. Following Definition 3, we know that an attacker Mi has full access to the network to read the shared key KSH , 
but Mi cannot get correct secret information such as KSH . Considering the method described in Theorem 1, we know that 
Mi cannot get the currently used KSH within the time interval t , because our proposed scheme calculates Pi randomly 
after time t and then uses the value Pi to generate KSH . For more details on computation analysis, we refer readers to 
Theorem 1. �
5.4. Forward secrecy

As with other symmetric key procedures, shared keys used for encrypting communications are only used for certain 
periods of time (t) until the new prime number is generated. Thus, a previously used shared key or secret keying material 
is worthless to a malicious opponent even when a previously-used secret key is known to the attackers. This is one of 
the major advantages of frequent changing of the shared key. This is one of the reasons we did not choose symmetric key 
cryptography or an asymmetric-key encryption algorithm. However, if the attackers monitor and keep all data for a long 
period of time, they can find the keys to decrypt the data. This will break the confidentiality of the data, but the integrity 
and authenticity are maintained. However, with dynamic change of the keys and not knowing the internal process, it is 
always difficult to figure out which data to be kept for the potential confidentiality attacks.

6. Experiment and evaluation

The proposed DPBSV scheme is generic even though it is deployed in big sensing data streams in this paper. In order to 
evaluate the efficiency and effectiveness of the proposed scheme, even under adverse conditions, we observe each individual 
data blocks for authentication checks and selected data blocks for integrity attacks. The integrity attack verification interval 
is dynamic in nature and the data verification is done at the DSM only.

To validate our proposed scheme, we experimented in multiple simulation environments to validate that our security 
mechanism works perfectly in big sensing data streams. We first measured the performance of sensor nodes using COOJA 
in Contiki OS [37], then verified the security scheme using Scyther [38], and finally measured the efficiency of the scheme 
using JCE (Java Cryptographic Environment) [39]. We also checked the minimum buffer size required to process our proposed 
scheme and compared with the standard AES algorithm.

6.1. Sensor node performance

We experimented with the performance of the sensor in COOJA simulator in Contiki OS. We took the two most common 
types of sensor, i.e., Z1 and TmoteSky sensors, for our experiment and performance checking as shown in Fig. 6. In this 
experiment, we check the performance of sensors while computing or updating the shared key.

Z1 sensor nodes are produced by Zolertia, which is a low-power WSN module that is designed as a general purpose 
development platform for WSN researchers. It is designed for maximum backwards compatibility with the successful Tmote 
like family motes while improving the performance and maximum flexibility and expandability with regards to any combi-
nation of power-supplies, sensors and connectors. It supports the open source operating systems currently employed by the 
WSN community, like Contiki [37]. COOJA is a network simulator for Contiki, which provides real time sensor node features 
to simulate.

A Z1 sensor node is equipped with the low power microcontroller MSP430F2617, which features a powerful 16-bit RISC 
CPU @16 MHz clock speed, built-in clock factory calibration, 8 KB RAM and a 92 KB Flash memory. Z1 hardware selection 
guarantees maximum efficiency and robustness with low energy cost. As TmoteSky is ultra-low power sensor, it is equipped 
with the low power microcontroller MSP430F1611, which has built-in clock factory calibration, 10 KB RAM and a 48 KB 
Flash memory.

We successfully demonstrated in the COOJA Simulator that our key generation process works successfully in both types of 
sensors i.e. z1 sensor and TmoteSky sensor. These sensors support our security mechanism. The energy consumption during 
the key generation process is shown in Fig. 7. This shows the normal power consumption behavior for the key generation 
process. From this experiment we conclude that our proposed security verification mechanism DPBSV is supported by most 
common types of sensors and feasible for big sensing data streams.
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Fig. 7. Estimated power consumption during the key generation process.

Fig. 8. Scyther simulation environment with parameters and result page of successful security verification at DSM.

6.2. Security verification

The scheme is written in the Scyther simulation environment using Security Protocol Description Language (.spdl). Ac-
cording to the features of Scyther, we define the role of D and S, where S is the sender (i.e. sensor nodes) and D is the 
recipient (i.e., DSM). In our scenario, D and S have all the required information that is exchanged during the handshake 
process. This enables D and S to update their own shared key. S sends the data packets to D and D performs the security 
verification. In our simulation, we introduce three types of attacks. The first type of attack is defined for the transmission 
between S and D (integrity), the second attack is defined where an adversary acquires the property of S and sends the 
attack data packets to D (authentication) and the third attack is defined adversary try to read the data within interval t
(Confidentiality). In our experiments, we evaluated all packets at D (DSM) for security verification. We experimented with 
100 numbers of runs for each claim to found out the number of attacks at D as shown in Fig. 8. Apart from these, we follow 
the default properties of Scyther.

Attack model: Many types of cryptographic attacks can be considered. In our case, we focus on integrity attacks, confi-
dentiality attacks and authentication attacks as discussed above. In integrity attacks, an attacker can only observe encrypted 
data blocks/packets travelling on the network that contain information about sensed data as shown in Fig. 2. The attacker 
can perform a brute force attack on captured packets by systematically testing every possible key, and we assumed that 
he/she is able to determine when the attack is successful. In confidentiality attack, attacker continuously observe the data 
flow and try to read the data. In authentication attacks, an attacker can observe a source node, and try to get the behavior
of the source node. We assume that he/she is able to determine the source node’s behavior. In such cases, the attacker 
can introduce an authenticated node and act as the original source node. In our concept, we are using trusted modules in 
sensors to store the secret information and procedure for key generation and encryption (such as TPM).

Experiment model: In practice, attacks may be more sophisticated and efficient than brute force attacks. However, this 
does not affect the validity of the proposed DPBSV scheme as we are interested in efficient security verification without 
periodic key exchanges and successful attacks. Here, we model the process as described in the previous section and fixed 
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the key size at 64 bits (see Table 5). We used Scyther, an automatic security protocols verification tool, to verify our proposed 
mechanism.

Results: We did our simulation using variable numbers of data blocks in each run. Our experiment ranges from 100 to 
1000 instances with 100 intervals. We check authentication for each data block, whereas the integrity check is performed on 
the selected data blocks. As our secure information such as Kd, t, Pi, Prime (Pi) , KSH, KeyGen are stored within the trusted 
module of the sensor, no one can get access to that information except the corresponding sensor. Without this information, 
attackers cannot authenticate encrypted data blocks. Hence, we did not find any attacks for authentication checks. For 
integrity attacks, it is hard to get the shared key (KSH), as we are frequently changing the shared key (KSH) based on 
the dynamic prime number Pi on both source sensor (Si ) and DSM. In the experiment, we did not encounter any attack 
in integrity check. As the shared key is changing with time interval t , attacker cannot read data stream within the time 
interval. Which conclude that our proposed mechanism provide weak confidentiality. Fig. 8 shows the result of security 
verification experiments in the Scyther environment. This shows that our scheme is secured from integrity, authentication 
and confidential (within the time interval t) attacks even after reduced key size. As we are updating the rekey process 
in equal interval of time, we found our scheme is secured with 64 bit key length. From the observations above, we can 
conclude that our proposed scheme is secure.

6.3. Performance comparison

Experiment model: It is clear that the actual efficiency improvement brought by our scheme highly depends on the size of 
key and rekeying without further communication between sensor and DSM. We have performed experiments with different 
sizes of data blocks. The results of our experiments are given below.

The Data Encryption Standard (DES) has been a standard symmetric key algorithm since 1977. However, it can be 
cracked quickly and inexpensively. In 2000, the Advanced Encryption Standard (AES) [31] replaced the DES to meet the 
ever-increasing requirements of data security. The Advanced Encryption Standard (AES), also known as the Rijndael algo-
rithm, is a symmetric block cipher that can encrypt data blocks of 128 bits using symmetric keys of 128, 192 or 256 bits 
[31,32,35]. AES was introduced to replace the Triple DES (3DES) algorithm used for a good amount of time universally. AES 
was acquainted with supplant the Triple DES (3DES) algorithm utilized for a decent measure of time all around. Hence, we 
have compared our proposed solution against advanced encryption standard (AES), the standard symmetric key encryption 
algorithm [31,32]. Our scheme efficiency is compared with two standard symmetric key algorithm such as 128-bit AES and 
256-bit AES. This performance comparison experiment was carried out in JCE (Java Cryptographic Environment), and we 
compared the processing time with different data block size. This comparison is based on the features of JCE in Java virtual 
machine version 1.6 64 bit. JCE is the standard extension to the Java platform which provides a framework implementation 
for cryptographic methods. We experimented with many-to-one communication. All sensor nodes communicate to the sin-
gle node (DSM). All sensors have similar properties whereas the destination node has the properties of DSM (more powerful 
to initialize the process). The rekey process is executed at all the nodes without any intercommunication. Processing time 
of data verification is measured at the DSM node. Our experimental results are shown in Fig. 9; the result validates the 
theoretical analysis presented in Section 5.

Results: The performance of our scheme is better than the standard AES algorithm when different sizes of data blocks 
are considered. Fig. 9 shows the processing time of the proposed DPBSV scheme in comparison with base 128-bit AES and 
256-bit AES for different sizes of the data block. The performance comparison shows that our proposed scheme is efficient 
and faster than the baseline AES protocols.

We calculated the time taken for DPBSV encryption and decryption in AMD K7-700 MHz processor and compare with 
standard AES-128 bit algorithm [33]. Based on our calculation DPBSV takes 3.2 microseconds and AES (128-bit) 35.8 mi-
croseconds for encryption, whereas DPBSV takes 3.3 microseconds and AES (128-bit) 36 microseconds for decryption.

6.4. Required buffer size

Experiment model: We evaluated the required buffer size for DSM by using the MATLAB as the simulation tool [40]. 
The buffer size is computed using the performance time shown in Fig. 9 (i.e. security verification time). We calculated 
the minimum required buffer size for DPBSV for high speed input data stream (i.e. MB/S). The security verification time 
is measured with input data size in Byte, and we scale the data rate to MB/S for buffer computation. We compared our 
scheme with the standard 128-bit AES and 256-bit AES. We calculated the minimum buffer size required to process security 
verification at DSM with various data rate starts from 50 to 200 MB/S with 50 MB/S interval.

Results: The performance of our scheme is better than the standard AES algorithm. Fig. 10 shows the minimum buffer 
size required to perform security verification at DSM for the proposed DPBSV scheme. We also show the compare the results 
with base line 128-bit AES and 256-bit AES. The performance comparison shows that our proposed scheme is efficient and 
required less buffer to perform security verification than the baseline AES protocols.

From the above experiments, we conclude that our proposed DPBSV scheme is secured (from authenticity, confidentiality 
and integrity attacks), and efficient (compare to standard symmetric algorithms such as 128-bit AES and 256-bit AES). The 
proposed scheme also needs less buffer than the baseline methods to perform security verification.



JID:YJCSS AID:2957 /FLA [m3G; v1.175; Prn:30/03/2016; 11:58] P.19 (1-21)

D. Puthal et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
Fig. 9. Performance of our scheme compared in efficiency to 128 bit AES and 256 bit AES.

Fig. 10. Performance comparison of minimum buffer size required to process the security verification with various data rates to DSM.

7. Conclusions and future works

In this paper, we have proposed a novel authenticated key exchange scheme, namely Dynamic Prime-Number Based 
Security Verification (DPBSV), which aims to provide efficient and fast (on-the-fly) security verification scheme for big data 
streams. Our scheme has been designed based on symmetric key cryptography and random prime number generation. By 
theoretical analyses and experimental evaluations, we showed that our DPBSV scheme has provided significant improvement 
in processing time, required less buffer for processing and prevented malicious attacks on authenticity, confidentiality and 
integrity. In our scheme, we decrease the communication and computation overhead by dynamic key initialization at both 
sensor and DSM end, which in effect eliminates the need for rekeying and decreases the communication overhead. DSM 
implement before stream data processing as shown in our main architecture diagram. Several applications (e.g. emergency 
management and event detection etc.) need to discard unwanted data and get original data for stream data analysis. Pro-
posed security verification scheme (i.e. DPBSV) perform in near real time to synchronize with the performance of stream 
processing engine. Our aim is not to degrade the performance of stream processing such as Hadoop, S4, and Spark etc 
by verifying security on-the-fly. We plan to pursue a number of research avenues in future. The foremost is to perform 
a comparative study of our work with other symmetric key cryptographic techniques such as RC5, RC6. We will further 
investigate new strategies to improve the efficiency of symmetric-key encryption towards more efficient security-aware big 
data streams. We are also planning to investigate using the technique to develop a moving target defense strategy for the 
Internet of Things.
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