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Abstract

During the last decade, cloud-technology has presented considerable oppor-
tunities for high-performance computing(HPC). In addition, technical com-
puting data centers have been able to maximize their return on investmen-
t(ROI). HPC system managers can leverage the benefits of a cloud model for
their traditional HPC environments to improve scalability, simplify service
access, accelerate collaboration or funding, enable pay-for-use, and improve
efficiency. Many HPC clouds assume the form of private Infrastructure as
a Service(IaaS). In practice, private cloud users may strategically misreport
task values in order to achieve a high profit, and thus cloud providers cannot
simply maximize the sum of allocated users’ value, which is called social wel-
fare. For this reason, designing a mechanism that reveals the truthful value
of users with a concern for both random arrival tasks and maximizing social
welfare is necessary. In this study, a model of an online mechanism for virtual
machines allocation is built, a preemptive online mechanism is proposed, the
truthfulness is proved, a competitive ratio is given, and several simulations
are conducted using real tasks from a data center. The total values and com-
pleted tasks are compared to the online and offline allocations, respectively,
according to different capacity. The simulations reveal that our mechanism
is more efficient than the offline mechanism.

Keywords: Cloud computing, preemptive allocation, online algorithm,
truthfulness, competitive ratio
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1. Introduction

Cloud computing has been employed by HPC and technical computing
data centers to maximize return on investment(ROI). HPC system managers
can leverage the benefits of a cloud model for their traditional HPC envi-
ronments in order to improve scalability, simplify service access, accelerate
collaboration or funding, enable pay-for-use, and improve efficiency. Many
HPC clouds assume the form of private Infrastructure as a Service(IaaS).
In private clouds, fixed price is easy to understand and primarily employed,
but it is not economically efficient. By contrast, auction-based mechanism-
s are feasible solutions for virtual machines(VMs) allocation in clouds. An
example of an auction-based VMs allocation mechanism is spot instances in
Amazon EC2 [1]. This study focuses on auction-based mechanisms for cloud
VMs allocation.

Most research has focused on resource allocation in offline situations,
which do not consider the users’ random arrival and departure at any time
over a long period. Users ofen arrive randomly and must leave at a particu-
lar moment, which can be described as the users’ lifetime. If sufficient cloud
resources are allocated to the users in their lifetime, they can obtain a value
that expresses payoff when a task is completed. This value is a user’s private
information. Our online mechanism is an appropriate response to the afore-
mentioned situations. Designing a VMs allocation mechanism in a private
cloud that maximizes the total value of the users is our primary challenge
because of self-interested users and their random arrival.

In this study, we present a truthful preemptive VMs allocation online
mechanism, and compare our mechanism with the optimal offline mechanism
through experiments. Results reveal a good actual competitive ratio. In
addition, we analyze the relationship between the performance and resource
capacity. Our main contributions are the following: our online mechanism
addresses the actual situation of a private cloud; truthfulness, which is the
most important property, is satisfied; and the social welfare is high by the
real data simulations.

This study is organized as follows. Related studies are described in Sec-
tion 2. Section 3 describes our modeling of the preemptive VMs allocation
online mechanism in cloud. Section 4 describes our online mechanism, for
which we prove its truthfulness. In addition, allocation and payment algo-
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rithms are described. Section 5 describes the numerical experiments con-
ducted to evaluate the performance of our online mechanism. We conclude
this study in Section 6.

2. Related Work

A mechanism comprises a group of rules used for an aggregative outcome
in which the participants are self-interested with the private information
about their preferences. Mechanism design aims to identify the good system-
wide means to obtain true participant preferences regarding outcomes. A
mechanism is mainly used in the field of microeconomics and resource allo-
cation. It is also used in distributed artificial intelligence and communication
networks. In [2], a VCG-Kelly mechanism for allocating network resources
was designed in which heterogeneous Internet traffic such as file transfers and
real-time streams are regarded as flows. In [3], a mechanism for auctioning
bundles of multiple divisible goods in a network was proposed and the weak
Nash implementation for social-welfare maximizing allocation was proved.
The study in [4] proposed a hierarchical auction model for network resource
allocation in which the equivalent outcome was implemented and the efficient
Nash equilibrium was proved. In [5], a double-sided auction market frame-
work to address the challenges of decentralized complex node interactions
was introduced. Its purpose was to employ bidding and charging strategies
to maximize the social welfare.

Resource management and allocation have been considered a major prob-
lem in parallel and distributed systems for data-intensive applications, energy
efficiency, massive simulations, and so on [7, 8, 9, 10]. The study in [6] con-
sidered that selfish users in a cloud environment may strategically compete
for resources with others to maximize their own benefits. However, because
this depresses overall system performance, a stochastic solution for alloca-
tion and payment outcomes was proposed to enforce cooperation and achieve
efficient resource utilization in non-cooperative cloud systems. The study in
[11] suggested three types of mechanisms: cloud-dominant strategy incen-
tive compatible, cloud-Bayesian incentive compatible, and cloud optimal in
order to prove or negate separately cloud resource procurement, incentive
compatibility, budget balancing, and individual rationality. The study in
[12] proposed a family of truthful greedy mechanisms for the allocation of
bundles of VM instances, which is viewed as a multiple-units combinatori-
al auction, by formulating the VMs provisioning and allocation problem in

3
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clouds as an integer programming. Other studies on mechanism design of
VMs provisioning in a cloud environment are provided in [13][14][15][16].

Some studies have examined cases in which resource allocation has been
solved by means of online mechanisms. For examples, as plug-in hybrid
electric vehicles have become more widespread, their charging must be coor-
dinated because of electric grid capacity constraints. Model-free online mech-
anisms have been designed to guarantee truthfulness by occasional burning
at each time step or departure [17][18]. In one study, a model-based pre-
commitment mechanism was designed by modifying a well-known online al-
gorithm consensus, and it achieved greater than 93% of the offline optimal
[19]. Additional information about online mechanisms is provided in [20].
Some online mechanism frameworks applied to cloud computing have been
built in [21][22]. In [23], a non-preemptive online mechanism for provision-
ing and allocating VM instances in clouds was proposed, which is incentive
compatible with the M competitive ratio. Performance of the online mech-
anism was evaluated through experiments. This previous study considered
the non-preemptive allocation situation only.

In this study, we consider the preemptive VMs allocation that is differ-
ent from that examined in other studies. Many aspects of this type of VMs
allocation are studied including the total value, completed tasks, actual com-
petition ratio, and total payment. Simultaneously, a grouped mechanism is
studied for additional payments.

3. VMs Allocation Online Mechanism Model

Providers of cloud computing provision VMs to users and aspire to max-
imizing revenue, utilizing resources, social welfare, and/or other objectives.
Social welfare refers to the sum of value obtained by each user under a certain
allocation. Private clouds are constructed by certain enterprises, institution-
s, and organizations. The users are limited in the internal members. Private
clouds have the advantages such as rapid deployment and resources cus-
tomization because the same principle applies to them as to public clouds.
Compared to maximizing revenue in public clouds, maximizing social welfare
is a reasonable goal in private clouds. In this study, we examine the VMs
allocation mechanism, whose objective function is expressed as:

max
∑
i

vi ∀i, πi = 1 (1)

4
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where vi is the value user i obtained if πi = 1. The definition of πi is given
in equation (2) that follows. However, vi denotes private information, which
naturally cannot be revealed to cloud providers. Therefore, the mechanism
must obtain vi from users. A mechanism is truthful or incentive compatible
if it can reveal the users’ true private information.
Where the VMs are uniform in our model, C VMs exist in the cloud resource
pool. Users come randomly and must leave at some pre-determined time.
Tasks are single-valued, which means the user will hold vi if a task is com-
pleted, otherwise he or she will hold a value of 0. Tasks are non-parallel and
every task requires one VM. In other words, we treat a parallel task as a set
of multiple independent non-parallel tasks. When one user arrives, he or she
must tell the cloud provider his or her task information θi = (ai, di, li, vi),
where ai denotes the arrival time, di refers to the departure time, li denotes
the task length, and vi refers to the user’s value if the task is completed
before departure time. If the VMs allocation mechanism is truthful, the true
θi will be reported. Otherwise, a strategic misreport may be given.

Time is divided into uniform period units and VMs are newly allocated
at every unit. VMs allocation is preemptive, meaning that a single VM is
held in unit t by user i but may be lost in t+ 1 if the task is not completed
and it is prior to di. For example, when the unit length is 10 minutes, then
(100, 200, 50, 30) means that the arrival time is the 100th unit, departure time
is the 200th unit, task length is 50 units, and the value is 30 if 50 units are
allocated in the user’s lifetime continuously or discretely.
The allocated units in user i’s lifetime [ai, di] is expressed as lai . The allocation
is effective if lai = li, whereas it is ineffective if lai < li, which is described by
the following.

πi =

{
1 if lai = li
0 if lai < li

(2)

Certainly, superfluous allocation is not required. Therefore, lai > li is not
considered. Note that πt

i refers to user i’s allocation at unit t. Thus, πt
i = 1

means that a single VM is allocated to user i at unit t, and πt
i = 0 means no

VM is allocated.
We define θ1 ≺ θ2 if satisfying

(a1 ≥ a2) ∩ (d1 ≤ d2) ∩ (v1 ≤ v2) ∩ (l1 = l2) (3)

and at least one restrict < or > is requested. The allocation rule is monotonic

5
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if it satisfies

πi(θi, θ−i) = 1 ⇒ πi(θ
′
i, θ−i) = 1 ∀i, θi ≺ θ′i (4)

4. Preemptive VMs Allocation Online Mechanism

4.1. Mechanism Description

A mechanism includes two rules: allocation and payment. Based on the
VMs allocation online mechanism model, our mechanism M is given by the
following rules:
Allocation rule: compute every effective user’s priority value

gti =
vi

li − λeti
, λ ∈ [0, 1] (5)

where eti is the implemented length of user i’s task up to t and λ is a constant
between 0 to 1 in a certain mechanism. All gti are sorted in descending
order, the first C users are each allocated one VM respectively at unit t. If
several gti are equal, user i has a prior authority with the smaller ai or earlier
submission. Considering higher utility, if the user’s remaining lifetime is less
than the remainder task length, the user is ineffective.
Payment rule: the result is returned to the user at di and the user’s payment
is computed simultaneously. If the task is completed, the user pays a critical
value vci to the cloud providers. Otherwise, no result is returned and 0 should
be paid. The critical value is defined as the lowest value that can guarantee
completing the task prior to di if the user reports it to the provider.

4.2. Example

Considering λ = 1,C = 1, and three users, their types are θ1 = (100, 104, 3, 30),
θ2 = (101, 104, 2, 25), and θ3 = (102, 108, 3, 33). The allocation process
is shown in Table 1, where Φ expresses the user who is ineffective and
allocation = 1 in column 100 expresses that the VM is allocated to User
1 in time unit 100. gt2 = ϕ in column 100 means User 2 is ineffective be-
cause his or her arrival time is 101. gt1 = ϕ in column 103, because sufficient
time units have been allocated to the User 1. Success or fail in the result
column expresses whether li units are allocated to the corresponding user.
The payment (critical value) of Users 2 and 3 is 22 for each. The analysis
is shown in Tables 2 and 3. In Table 2, Users 2 and 3 maintain fixedness,
allocation 1 occurs in v1 = 22 − ε, and allocation 2 occurs in v1 = 22 + ε,

6
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where ε is an arbitrarily small positive number. In Table 3, Users 1 and 3
maintain fixedness, allocation 1 occurs in v2 = 22−ε, and allocation 2 occurs
in v2 = 22 + ε. Table 2 shows that the task of User 1 will still be completed
if he or she reports the value as 22 + ε, but will not be completed if he or
she reports the value as 22− ε. Therefore, the critical value of User 1 is 22.
Table 3 shows the results of User 2 homoplastically.

Table 1: Allocation process

Time unit 100 101 102 103 104 Result

Allocation 1 1 1 2 2

gt1 10 15 30 Φ Φ success

gt2 Φ 12.5 12.5 12.5 25 success

gt3 Φ Φ 11 11 11

Table 2: Payment (critical value) of User 1

Time unit 100 101 102 103 104 Result

Allocation 1 1 2 2 3 3

gt1 1
22
3
− ε 11− ε 11− ε 11− ε 11− ε fail

gt2 1 Φ 12.5 25 Φ Φ

gt3 1 Φ Φ 11 11 22

Allocation 2 1 2 2 1 1

gt1 2
22
3
+ ε 11 + ε 11 + ε 11 + ε 22 + ε success

gt2 2 Φ 12.5 25 Φ Φ

gt3 2 Φ Φ 11 11 11

4.3. Truthfulness of Our Mechanism

For a single-value online mechanism, Lemma 1 has been proved in [15].

7
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Table 3: Payment (critical value) of User 2

Time unit 100 101 102 103 104 Result

Allocation 1 1 1 1 3 3

gt1 1 10 15 30 Φ Φ

gt2 1 Φ 12.5 12.5 11− ε 11− ε fail

gt3 1 Φ Φ 11 11 16.5

Allocation 2 1 1 1 2 2

gt1 2 10 15 30 Φ Φ

gt2 2 Φ 12.5 12.5 11 + ε 22 + ε success

gt3 2 Φ Φ 11 11 11

Lemma 1: The mechanism is truthful if it satisfies the following condi-
tions: (1) no early arrival and no late departures are misreported; (2) the
known interesting set exists; (3) the deterministic monotonic allocation rule
applies; and (4) the critical value is paid.

Theorem 1: The mechanism M is truthful.

Proof. No early arrival and no late departure misreports is obvious. Users
can not attend to the mechanism in advance because programs are not ready
or data are not available. Finally, users cannot misreport a late departure
in a single-value domain because 0 is held if they obtain the results after the
true di.

The interesting set is defined by:

I ⊂ ×tπ
t
i , t ∈ {ai, · · · , di}s.t.

∑
t

πt
i = li (6)

Eq. (6) means that any allocation that includes li time units in the lifetime
can satisfy the needs of user i. A shorter misreport l̂i < li is impossible
because inadequate allocated units result in a 0 value to the user. A longer
misreport or adding garbage task l̂i > li is also impossible. The allocation is
not improved when all other parameters are fixed with l̂i > li because of:

ĝti < gti (7)

8
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where ĝti =
vi

l̂i−λeti
, which means that

π̂i = 1 ⇒ πi = 1 (8)

when l̂i > li and other parameters are fixed.
According to the payment rule, we know that

vci = min vi s.t. πi = 1 (9)

We also know that

l̂i > li ⇒ v̂ci > vci if π̂i = 1, πi = 1 (10)

The users’ misreport l̂i > li result in worse allocation or higher payment.
Hence, truthful report li is the dominant strategy.

If no VMs are allocated to User 1 in [a2, a1] and [d1, d2] when θ1 ≺ θ2 ,
then allocating l1 units to User 1 requires that l2 units be allocated to User
2 because of gt1 ≤ gt2 and l1 = l2 in [a1, d1]. If at least one VM is allocated to
User 2 in [a2, a1] or [d1, d2] when θ1 ≺ θ2, then allocating l1 units to User 1
requires allocating l2 units to User 2 because of gt1 ≤ gt2 and l1 > l′2 in [a1, d1].
Thus, our allocation rule is monotonic.

In summary, our mechanism M is truthful.

4.4. Allocation and Payment Algorithm

The allocation and payment algorithms are described in Tables 4 and 5,
respectively. gtj(C + 1) expresses the priority value of user j. This priority
value is located in the C + 1 position at time unit t.

4.5. Competitive Ratio

Because of the random arrival of users, the allocation strategy at t may
not be the optimal choice in global opinion. Given period [a, d], the ratio of
the value sum between the offline optimal allocation and online allocation is
worthy of concern. This ratio is defined as follows.

cr = max

∑
i vi, ∀i, π∗

i = 1∑
i vi, ∀i, πi = 1

s.t.∀t,
∑
i

πt
i ≤ C,

∑
i

πt∗

i ≤ C
(11)

9
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Table 4: Allocation algorithm

1.allocation()

2. while(1)

3. compute gti for all effective user i

4. sort gti in descending order

5. allocation one VM to forgoing C users respectively

6. t++

7. end while

8.end allocation

where π∗
i and πt∗

i refer to the offline optimum allocation, πi and πt
i refer

to the online allocation, and cr is the competitive ratio, which expresses the
worst case of offline optimum allocation against the online allocation in all
situations. Offline optimum allocation is defined as:

π∗ = (π∗
1, · · · , π∗

N) = arg max
∑
i

vi ∀i, π∗
i = 1

s.t.∀t,
∑
i

πt∗
i ≤ C

(12)

where all user types θi are known at the start time a in [a, d]. If the (12) is
satisfied, the total user value is the maximum.
The following equation

cr′ =

∑
i vi, ∀i, π∗

i = 1∑
i vi, ∀i, πi = 1

s.t.∀t,
∑
i

πt∗
i ≤ C,

∑
i

πt
i ≤ C

(13)

expresses the actual ratio in a deterministic case. The online allocation is
generally not the worst case in this situation.

Theorem 2: Given [a, d] satisfying d − a = T − 1, C = 1, λ = 0 and
[ai, di] ⊆ [a, d], the competitive ratio will be T − ε.

10
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Table 5: Payment algorithm

1.payment()

2. while(1)

3. if t==di

4. compute vci = gtj(C + 1) ∗ (li − λei)

for all t, πt
i == 1 and t ∈ [ai, di]

5. select the biggest vci

6. allocate repeatedly by vi = vci in [ai, di]

7. if πi == 1 repeat 4.∼6.

8. end if

9. record vci

10. end if

11. end while

12.end payment

Proof. ∃ i, the user has the highest priority value vi
li
. Therefore, the worst

case is that only a single task is completed and has the lowest value, which
occurs with two users θ1 = (a, d, T, v) and θ2 = (t, t, 1, v

T
+ε), where t ∈ [a, d].

The online allocation is π1 = 0 and π2 = 1, and the offline optimum allocation
is π1 = 1 and π2 = 0, with a result of:

cr =
v

v
T
+ ε

= T − ε (14)

Corollary 1: Given [a, d] satisfying d − a = T − 1, C = N , λ = 0 and
[ai, di] ⊆ [a, d], the competitive ratio will be T − ε.

The mechanism should be evaluated for a long period. Therefore, that
cr = T − ε is poor. By contrast, the mechanism satisfies li << T , so the
worst case can never occur. Hence, we focus on the actual ratio cr′ through
a simulation that uses real records from data centers.
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5. Performance Evaluation

To the best of our knowledge, publicly available cloud computing work-
loads are not currently available. Our simulation data were obtained from
[24]. These included many workload logs from large scale parallel systems
from various countries throughout the world. We used the RICC-2010 log,
which derives from the RIKEN integrated cluster of clusters(RICC) that has
operated since August, 2009. RIKEN is an independent scientific research
and technology institution of the Japanese government.

More than 400 thousand records are included in the log, acquired over
the course of several months. Parameters for this log include submitted time
ts, waiting time, running time tr, number of allocated processors np and so
on. All time is measured in s. The non-parallel form is modeled in our
study. Therefore, a task with tr running time using np processors is divided
into np independent tasks each with tr running time. One allocation time
unit expresses 10 min in our simulation. For example, a record consists of
ts = 1000, tr = 5800, and np = 64, which expresses 64 independent tasks,
each task having ai = 3, li = 10 in our simulation. Where ts = 1000, it
falls within the second unit, so the task participates in unit allocation from
the third unit, expressed as ai = 3. Where tr = 5800, this means that
at least 10 units are required to complete the task at least. Recalling the
user’s type θi = (ai, di, li, vi) , di and vi can not be acquired from the log
directly but instead are generated through exponential distribution, where
di = ai + li + li ∗ exp(2) and vi = li ∗ exp(50).

We selected 10,000 continuous records from the log. The duration of al-
location and payment algorithms is from ta1 to max(td101, · · · , td10100), where
taj and tdj denote the arrival time and deadline time units, respectively, of
the tasks derived from the jth record. All tasks that arrive during the afore-
mentioned period participate in the algorithms. However, we record only the
task valuations and payments whose arrival time unit is in [ta101, t

a
10100]. Some

basic statistics related to the 10,000 records from the log are given in Table
6.

Table 6: Statistics of the 10,000 records

Total tasks Average li Average capacity

318265 30.3 4018

12



Page 15 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The average capacity is calculated by the following.

Cavg =

∑
i li

ta10100 − ta101 + 1
(15)

The arrival task distribution at each unit and the task distribution corre-
sponding to li are shown in Fig. 1 and 2, respectively.
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Figure 1: Task distribution at each unit

The offline optimal allocation in our problem is NP hard. An approximate
method is adopted in our simulation. All task value densities (value per unit)
that arrive during the algorithmic run are sorted by descending order. We
select tasks set L satisfying

arg max
∑
i∈L

li ≤ C ∗ T (16)

where C is the number of VMs and T is the duration units of the algorithm.
The total value of the offline optimum allocation is calculated by summing
the users’ value arriving in [ta101, t

a
10100] and contained in L. The total values

acquired in offline optimal allocation and online allocation based on different
VMs capacity are shown in Fig. 3. The total completed tasks according to
different VMs capacity are shown in Fig. 4. Obviously, the total value and
completed tasks all increase according to the increase in resource capacity. If

13
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Figure 2: Task distribution to task-length units
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Figure 3: Total values according to different capacity

the provider’s resource cost is known, a best resource capacity can be deter-
mined. The relationship between cr′ and λ in a different resource capacity
is illustrated in Fig. 5. We discover that the influence is obvious according
to inadequate resource capacity. Although completing each unit’s allocation
and payment calculation in one unit time (10 minutes in our simulation)
is easy, thousands of units exist and different parameters must be repeated
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Figure 4: Total completed tasks according to different capacity
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Figure 5: Actual competition ratio to λ in different capacity

several times. Therefore, we reduce the simulation requirement for an ap-
propriate experiments time for the total payment. One thousand records are
used, each of the 16 processor parallel tasks is equivalent to one non-parallel
task, and resource capacity is also divided by 16. The total payment and
total value according to different capacity are shown in Fig. 6.
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Figure 6: Total payment according to different capacity

The critical value is influenced by the number of users. Therefore, a ran-
dom grouped pattern is proposed to examine the effect on payments. The
cloud VMs pool is divided into several groups and tasks are randomly allo-
cated to certain groups. We still apply our proposed mechanism M to each
group. Obviously, user strategy misreports cannot turn to their interesting
groups, so the mechanism remains truthful. A five-group simulation is run
and a comparison is given in Fig. 7. Results show that the payments (cloud
provider revenue) noticeably increase.

In summary, the total value and completed task amounts are positively
correlated with the cloud resource capacity. The normally increasing speed of
the total value slows down after C/Cavg > 1, and the private cloud provider
can select an appropriate investment of the data center for economic benefits.
A good λ can increase the efficiency of resources when the capacity is fixed.
λ = 0.6 represents a quality choice when cloud resources are lacking. If
private clouds are also interested in revenue, private cloud providers should
construct a datacenter having limited capacity because the total payments
decrease as resources capacity increases. The grouped preemptive online
private cloud allocation mechanism represents an effective balance between
total value and total payments.
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Figure 7: Comparison of general and grouped mechanism

6. Conclusions

HPC on cloud often employs pay-for-use as a resource strategy. Thus,
an auction-based VMs allocation online mechanism is a promising solution
for HPC cloud resource allocation-related problems, which are based on the
randomly arriving and self-interested users. Promoting social welfare in pri-
vate cloud is a reasonable goal, but user private information must be re-
vealed. Therefore, in this study we proposed a novel truthful preemptive
online mechanism for VMs allocation. We compared our mechanism with
the offline optimal mechanism through social welfare using real tasks from a
data center. Our mechanism is proven to have a superior actual competitive
ratio. We evaluated the major parameter λ in the allocation rule. We al-
so examined allocation efficiency between average workloads with the cloud
capacity. Our mechanism is a useful solution for VMs allocation in private
clouds.

Acknowledgments

The workload log from the RICC cluster was graciously provided by Mo-
toyoshi Kurokawa. This work is supported by the National Natural Science

17



Page 20 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Foundation of China under Grant No. 61170029, 61472240, and 61373032,
and the Zhejiang Provincial Science and Technology Plan of China under
Grant No. 2013C31097.

[1] http://aws.amazon.com/ec2/spot-instances, accessed September 2014

[2] Yang,S.,Hajek,B.:“VCG-kelly mechanisms for allocation of divisible
goods: adapting VCG mechanisms to one-dimensional signals”,IEEE
Journal on Selected Areas in Communications,2007,25,(6) pp. 1237-1243

[3] Jain,R.,Walrand,J.:“An efficient Nash-implementation mechanism for
network resource allocation”, Automatica,2010,46,(8) pp. 1276-1283

[4] Tang,W.,Jain,R.:“Hierarchical auction mechanisms for network re-
source allocation”,IEEE Journal on Selected Areas in Communication-
s,2012,30,(11) pp. 2117-2125

[5] Iosifidis,G.,Koutsopoulos,I.:“Double auction mechanisms for resource al-
location in autonomous networks”, IEEE Journal on Selected Areas in
Communications,2010,28,(1) pp. 95-102

[6] Kong,Z.,Xu,C.,Guo M.:“Mechanism design for stochastic virtual resource
allocation in non-cooperative cloud systems”,Proc. 2011 IEEE Interna-
tional Conference on Cloud Computing (CLOUD),Washington DC,USA,
July 2011,pp.614-621

[7] Wang L., Tao J., Ranjan R., Marten H., Streit A., Chen J., Chen D.:“
G-Hadoop: MapReduce across distributed data centers for data-intensive
computing”, Future Generation Comp. Syst. 2013, 29(3), pp.739-750

[8] Wang L., Khan S.U., Chen D., Kolodziej J., Ranjan R., Xu C., Zomaya
A.:“ Energy-aware parallel task scheduling in a cluster”, Future Genera-
tion Comp. Syst. 2013, 29(7), pp.1661-1670

[9] Wang L., Geng H., Liu P., Lu K., Kolodziej J., Ranjan R., Zomaya A.:“
Particle Swarm Optimization based dictionary learning for remote sensing
big data”, Knowl.-Based Syst. 2015, 79, 43-50

[10] Song W., Wang L., Ranjan R., Kolodziej J., Chen D.:“ Towards Mod-
elling Large-Scale Data Flows in a Multidatacenter Computing System
With Petri Net”, IEEE Systems Journal, 2015, 9(2),416-426

18



Page 21 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[11] Prasad A.S., Rao,S.:“A mechanism design approach to resource procure-
ment in cloud computing”,IEEE Transactions on Computers,2014,63,(1)
pp. 17-30

[12] Nejad,M.M.,Mashayekhy,L.,Grosu,D.:“A family of truthful greedy
mechanisms for dynamic virtual machine provisioning and allocation in
clouds”,Proc. 2013 IEEE Sixth International Conference on Cloud Com-
puting(CLOUD),Santa Clara Marriott,CA,USA,June 2013,pp. 188-195

[13] Zaman,S.,Grosu,D.:“Combinatorial auction-based allocation of virtual
machine instances in clouds”, Journal of Parallel and Distributed Com-
puting,2013,73,(4) pp. 495-508

[14] Zhang,Q.,Zhu,Q.,Boutaba,R.:“Dynamic resource allocation for
spot markets in cloud computing environments”, Proc. 4th
IEEE International Conference on Utility and Cloud Comput-
ing,Melbourne,Australia,December 2011,pp. 178-185

[15] Mashayekhy,L.,Nejad,M.M.,Grosu,D.:“A truthful approximation mech-
anism for autonomic virtual machine provisioning and allocation in
clouds”, Proc. 2013 ACM Cloud and Autonomic Computing Confer-
ence,Miami,Florida,USA,August 2013,no.9

[16] Zhang, L.,Li,Z.,Wu,C.:“Dynamic resource provisioning in cloud com-
puting: A randomized auction approach”,Proc. of IEEE INFOCOM
2014,Toronto,Canada,April-May 2014.

[17] Gerding,E.H.,Robu,V.,Stein,S.:“Online Mechanism Design for Electric
Vehicle Charging”,Proc. 10th International Conference on Autonomous
Agents and Multiagent Systems,Taipei,Taiwan,May 2011,Vol.2,pp. 811-
818

[18] Robu,V.,Stein,S.,Gerding,E.H.,et al.:“An online mechanism for multi-
speed electric vehicle charging”, Auctions, Market Mechanisms and Their
Applications. Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering: Second Inter-
national ICST Conference AMMA,New York,USA,August 2011,pp. 100-
112

19



Page 22 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[19] Stein,S.,Gerding,E.,Robu,V.,et al.:“A model-based online mechanism
with pre-commitment and its application to electric vehicle charg-
ing”,Proc. of 11th International Conference on Autonomous Agents and
Multiagent Systems,Valencia, Spain,June 2012,pp. 669-676

[20] Nisan,N.,Roughgarden,T.,Tardos,E.,et al.:“Algorithmic Game Theo-
ry”,Cambridge University Press,New York, USA,2007

[21] Shi,W.,Zhang,L.,Wu,C.,et al.:“An online auction framework for dynamic
resource provisioning in cloud computing”, Acm Sigmetrics Performance
Evaluation Review, 2014, 42(1):1.

[22] Zhang,H.,Li,B.,Jiang,H.,et al.:“A framework for truthful online auctions
in cloud computing with heterogeneous user demands”,Proc. of IEEE
INFOCOM 2013,Turin,Italy,April 2013,pp.1510-1518

[23] Zaman,S.:“Combinat orial Auction-Based V irtual Machine Provisioning
And Allocation In Clouds”.PhD thesis,Wayne University,2013

[24] http://www.cs.huji.ac.il/labs/parallel/workload/logs.html,accessed
June 2014

20



Page 23 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

	  

*Highlights (for review)




