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Abstract Big data trends have recently brought unrivalled opportunities to the cloud
systems. Numerous virtual machines (VMs) have been widely deployed to enable
the on-demand provisioning and pay-as-you-go services for customers. Due to the
large complexity of the current cloud systems, promising VM placement algorithm
are highly desirable. This paper focuses on the energy efficiency and thermal stability
issues of the cloud systems. A Cross Entropy based VM Placement (CEVP) algorithm
is proposed to simultaneously minimize the energy cost, total thermal cost and the
number of hot spots in the data center. Simulation results indicate that the proposed
CEVP algorithm can (1) achieve energy savings of 26.2% on average, (2) efficiently
reduce the temperature cost by up to 6.8% and (3) significantly decrease the total
number of the hot spots by 60.1% on average in the cloud systems, by comparing to
the Ant Colony System-based algorithm.
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1 Introduction

The increasing complexity of data processing has perplexed various computing
infrastructures where cloud computing has recently emerged as a promising candi-
date to tackle this big data challenge [1–3]. In cloud infrastructure, numerous virtual
machines (VMs) have been widely deployed to enable the on-demand provisioning
and pay-as-you-go services for customers [4–9]. The placement of VM has evolved as
a critical problem for cloud providers. The main technical difficulty is the unbalanced
usage of resources and the unnecessary activation of physical servers resulting from
excessive VM requests from many different users. The problem becomes more chal-
lenging since modern cloud data centers typically adopt geographically distributed
architecture due to the large complexity of the current cloud systems which consist of
many interconnected data centers [10–13]. In this context, low-quality VM placement
could lead to the large energy consumption of data centers [14–17].

This is why many existing VM placement algorithms have been designed to opti-
mize various objectives including minimizing the power consumption, balancing the
load among physical servers, maximizing resource utilization, and minimizing peak
temperature. A traffic aware VM placement method is proposed to minimize the com-
munication cost in [18], and anAntColony-basedVMplacement approach is proposed
tominimize energy consumption and reduce computing resourcewaste in [19]. In [20],
a genetic algorithm with a fuzzy logic controller cost function is designed for the VM
placement problem. In [21], a genetic algorithm and a sequential quadratic program-
ming are proposed, which considers the thermal-aware VM placement to minimize
the peak temperature in the data center.

The energy efficiency and thermal stability issues have become critical in the cloud
data center. The need to reduce power consumption and enhance the thermal profile
is pressing. Dynamic Voltage Frequency Scaling (DVFS) is a popular power manage-
ment technique to reduce the processor power and improve thermal stability. Through
dynamically scaling down the voltage and frequency of processors during idle or
non-intensive computation period, the energy consumption of the processor can be
diminished and the thermal profile of the processor can be improved. The DVFS
technique has been successfully applied in cloud computing communities [22–25]. In
fact, the thermal profile is a particularly important issue in the data center due to the
reason that the cooling cost of a data center is very significant [15]. For the thermal
profile, there are two critical thermal parameters which are often considered in the
literature, namely, the total thermal cost and the number of the hot spot. The total
thermal cost is the summation of temperature of all blocks. The number of the hot
spot is the number of blocks which has thermal values greater than a threshold. Both
of them are important, since large total thermal cost means a cooling cost [26] while
the excessive hot spot increases the possibility of transient faults [27]. Therefore, this
work proposes Cross Entropy basedVMPlacement (CEVP) algorithm tominimize the
energy cost and improve on-chip thermal profile simultaneously considering DVFS.
Our contributions are as follows.

– We propose the Cross Entropy basedVMPlacement (CEVP) algorithm to simulta-
neously minimize the energy cost, total thermal cost and the number of hot spots in
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the data center. With the power of cross entropy method, our VM placement algo-
rithm generates the solution with both energy cost and thermal profile optimized
simultaneously.

– Our CEVP algorithm incorporates Dynamic Voltage Frequency Scaling (DVFS)
for minimizing the energy cost as well as the thermal cost.

– Our algorithm reduces the energy cost by average of 26.7%, from the baseline
VM placement algorithm based on ant colony system optimization.

– The total thermal cost is reduced by 3.8% on average and the number of hot spots
is decreased significantly by 58.0%.

The remainder of the paper is organized as follows. Section 2 presents the prelim-
inaries of the VM, the power model and the thermal model. Section 3 presents the
mathematical problem formulation. Section 4 describes the proposed Cross Entropy
based VM Placement (CEVP) algorithm. Our experimental results are presented in
Sect. 5. Section 6 summarizes the paper.

2 Preliminary

In this section, the virtual cloud environment is introduced. After that, the energy
model and thermal model are presented.

2.1 Virtual cloud environment

The virtual cloud environment is the cloud computing infrastructure provided by web
service providers. Users of cloud services access the computing resources via conven-
tional computer networking interfaces, such as Ethernet. The computing tasks of the
users are carried out in the data center, each hosting a computer cluster with multiple
physical machines [9]. Each physical machine hosts a number of virtual machines
(VMs), under direct access and control of the end user. Each VM runs its own Operat-
ing System (OS) with a number of applications of the end users [28]. The hypervisor
is responsible for allocating computing resources (CPU, memory, etc.) of the physical
machine to eachVMhosted by it. This architecture is created for the ease of on-demand
creation, administration privileges and performance efficiency [29]. An example of the
virtual cloud environment has been depicted in Fig. 1. VMs are deployed on physical
computing nodes, and each of them consumes a certain amount of hardware resources.
A typical DVFS-characterized cloud computing environment has multiple voltage fre-
quencies of each computing nodes. A VM is able to be assigned to specify computing
node with which the voltage frequencies can also be specified [30].

2.2 Energy consumption model

The energy consumption model in the cloud environment is based on the model of
complementary metal-oxide semiconductor (CMOS) devices [31]. The total power
consumption is the summation of the dynamic power and the static power. The dynamic
power can be calculated as:
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Fig. 1 A virtual cloud environment illustration

Pd = C · Vdd2 f (1)

where C denotes the value of load capacitance, Vdd denotes the supply voltage, and f
denotes the operating frequency. Because of the voltage scaling technique, the supply
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voltage Vdd can be approximated proportional to the frequency f [32]. Therefore,
the dynamic power consumption of a computing node can be estimated by a convex
function Pd = C f 3. The static power consumption are mainly caused by leakage
current and the reverse bias junction current from the power supply [33]. Following
the reference [33], the static power is calculated as:

Ps = Vdd Ileakage + |Vbias |Ibias (2)

where Ileakage denotes the value of the subthreshold leakage current, Vbias denotes the
value of the body bias voltage, and Ibias denotes the value of the reverse bias junction
current.At a certain technologynode, Ileakage is a function of supply power,meanwhile
Ibias and Vbias are technology constants. As a result, for a certain technology node, the
static power consumption Ps is also a function of the supply voltage Vdd . To consider
the total energy consumption, both dynamic power and static power are included. As
in the model proposed in [34], for a computing node j with a number of VMs, the
node energy consumption can be estimated by

E j =
N∑

i=1

ci
f j

· (Pd + Ps) (3)

where N denotes the total number of VMs on the node j , ci denotes execution cycles
of task i , and f j denotes clock frequency of the node j . In case of no VMs running
on a computing node, the computing node can be turned off or halted to save power.

2.3 Thermal model

The thermal management plays a crucial role in the overall performance of the data
center. The VM scheduler targeting at reducing thermal dissipation cost significantly
reduces the operational cost. Thermal Profile is considered in the proposed VM place-
ment approach. Since the temperature of each computing node is dependent on the
thermal profile of the entire data center, this work is focused on the chip level thermal
states. The thermal dissipation is evaluated by two metrics.

– Total on-chip thermal cost, the summation of temperature of each cores. The total
thermal cost is proportional to the cooling cost [26].

– Number of hot spot, the number of blocks whose thermal values exceed δ, the user-
defined threshold. In our implementation, δ is set to be 340k. Hot spots jeopardize
the system reliability with transient faults [27].

The target of the proposed VM placement algorithm is to minimize the total thermal
cost and the number of hot spots.

In the implementation, the widely used RC thermal model [15,35,36] is used to
simulate the temperature profile of the data center. According to the model, the tem-
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perature of each computing node is determined by the power consumption, physical
dimension and location of the computing nodes. For completeness, the RC model is
outlined as follows.

Let ri j denote the thermal resistance between the computing node i and j . Thus,

ri j = ΔTi j
ΔPj

, in which ΔTi j is the temperature difference between node i and j . Pj is
the power consumption of node j , and φ is the total number of computing nodes. As
shown in [35], the temperature of each computing node can be calculated by Eq. 4.

⎡

⎢⎢⎢⎣

T1
T2
...

Tφ

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

r11 r12 · · · r1φ
r21 r22 · · · r2φ
...

...
. . .

...

rφ1 rφ2 · · · rφφ

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎣

P1
P2
...

Pφ

⎤

⎥⎥⎥⎦ , (4)

in which Ti and Pi are the temperature and power consumption of computing node i
and j , respectively.

The proposed VM placement algorithm uses Monte Carlo method to evaluate
each VM placement solution sample. Due to the significant number of samples, the
straightforward implementation of the RC model incurs prohibitively high computing
overhead. To resolve this, the temperature is estimated as the first-order estimation
of the thermal profile [37]. Mathematically, T = δ

k Pd , in which δ denotes the
thickness of the processor of the computing node, k denotes the thermal conduc-
tivity of the material, A denotes the area of the processor and Pd denotes the power
density.

With the first-order estimation, the temperature of the computing node is linearly
proportional to its power density. In other words, the temperature of the computing
node is determined by its own power consumption, as well as power consumption
profile of the neighboring nodes. Figure 2 shows an example illustrating the correlation
between the temperature and the power consumption profile of neighboring nodes. It
is generated by a thermal modeling tool HotSpot [38]. Figure 2a illustrates that nodes
consuming more power have higher temperature. Figure 2b demonstrates that even
with the same energy cost, different VM placement solutions have different peak
temperatures, due to different power consumption profiles.

3 Problem formulation

This study mainly focuses on the VM placement problem over computing nodes of the
cloud center. The target of this work is to deploy VMs to specific nodes with specific
core ID, meanwhile the voltages level of the computing node is also defined, such that
the total energy of the computing nodes are minimized and the total heat diffusion is
maximized. The mathematical formulation of the problem can be described as:
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Fig. 2 A toy example illustrating the impact of power consumption profile on thermal profile. a Nodes
consuming more power have higher temperature. b Higher level of heat diffusion introduces lower peak
temperature

minimize Etotal

maximize Htotal

subject to Etotal = ∑
Eni , ni ∈ N

Eni = ∑
Ev j , v j ∈ Vni

Htotal = ∑
Hni ,n j , ∀vi , v j ∈ Φ

Hni ,n j = |Pdni −Pdn j |
disti j

fni ≥ ḟni ∀ni ∈ N
hwni ≥ hwni ∀ni ∈ N

where Etotal denotes the total energy consumption, Eni denotes the energy consump-
tion of the computing node ni and N denotes the set of all computing nodes; Ev j

denotes the energy consumption of the VM v j running on the computing node ni ;
Htotal denotes the total heat diffusion, Hvi ,v j denotes the heat diffusion in between
the VM i and the VM j and Φ denotes the set of every touching computing nodes
pair; Pdni and Pdn j denote the power density of the computing node ni and n j ,
respectively; fni denotes the voltage frequency of the computing node ni , ḟni is the
minimum required voltage frequency of the computing node ni and N is the set of
computing nodes; hwni denotes the hardware resources of the computing node ni and
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hwni denotes the maximum hardware resource. In this formulation, the total energy
consumption is calculated through summing up the energy consumption of all running
computing nodes. The VMplacement and the voltage frequency selection, which have
to be with respect to hardware resource constraints and VM voltage frequency con-
straints, decide the energy consumption of computing nodes. Meanwhile, these also
impact the power density, as well as the heat diffusion.

The above formulation is a multi-object optimization problem with a large solu-
tion space. In this case, the traditional linear programming method cannot be applied
efficiently due to the large cost of computation. The following paragraph presents a
Cross Entropy based VM Placement (CEVP) algorithm which is able to search a good
quality solution in a large solution space for the proposed problem.

4 Cross Entropy based VM Placement (CEVP) algorithm

ACross Entropy basedVMPlacement (CEVP) algorithm is proposed in this section. It
first introduces the theoretical foundation for the cross entropy technique in Sect. 4.1.
After that, the proposed CEVP algorithm is presented with details in Sect. 4.2.

4.1 The theoretical foundation for cross entropy

The Cross-Entropy method is the stochastic optimization framework based on impor-
tance sampling, which is first proposed in [39]. For completeness, the algorithm is
briefly introduced here. Refer to [39,40] for further details.

Cross Entropy can be used to optimize a given objective function S(X) over all x ∈
X . In general, there are two major steps in each iteration of the cross-entropy method.

– Generate a set of random data samples according to the given distribution
– Update the parameters of the distribution, given the set of elite samples

Suppose that our target is to optimize function S(X) over the set x ∈ X . Denote the
probability density function (PDF) by fx (x; v), which is parameterized by a finite-
dimensional real vector v. The other version of the optimization problem is to estimate
the probability that S(x) > γ . When S(x) > γ becomes a rare event, γ is the max
value in S(x). Mathematically [39],

� = P(S(X) ≥ γ ) = Eu I{S(X)≥γ } =
∫

I{S(X)≥γ } fx (x; v) (5)

Since we are interested in the case where � is a rare-event probability which means
it should be very small, we introduced the other PDF denoted by gx (x), such that
gx (x) = 0 ⇒ I({S(X) ≥ γ }) f (x; v) = 0 for all x . Using the PDF gx (x) we can
represent � as follows [39].

� =
∫

I{S(X)≥γ } fx (x; v)

gx (xi )
gx (xi )dx (6)

Therefore, since X1, . . . , XN are independent random vectors with PDF gx (xi ), the
following is obtained [39],
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�∗ = 1

N
ΣN

i=1 I{S(X)≥γ }
fx (xi ; u)

gx (xi )
(7)

where �∗ is an unbiased estimator of �, which is called importance sampling estimator.
We need to find such a gx (xi ) to minimize the variance �∗, which is the density of X
conditional on the event S(X) > γ ; that is [39],

g∗ = I{S(X)≥γ } fx (x; v)

�
(8)

Whichmeans that we need tomake sure that theKullback–Leibler divergence between
g and g∗ is the minimal of the following equation [39].

D(g∗, g) =
∫

g∗(x)ln g
∗(x)
g(x)

dx

=
∫

g∗(x)lng∗(x)dx −
∫

g∗(x)lng(x)dx (9)

The problem is to choose a v such that − ∫
g∗(x)lng(x)dx is minimized, which is

actuallyminimizing− ∫
g∗(x)ln f (x; v)dx , equivalent to the following equation [39].

maxv

∫
g∗(x)ln f (x; v)dx

= maxv

I{S(X)≥γ } fx (x; v)

�
ln f (x; v)dx (10)

According to [39], optimal v∗ can be estimated as follows [39].

1

N
ΣN

i=1 I{S(X)≥γ }
fx (xi ; u)

fx (xi ;w)
ln f (x; v) (11)

4.2 CEVP algorithmic flow

The philosophy behind cross entropy optimization method has been briefly illustrated
in Fig. 3, which generates samples according to the PDF iteratively. Samples are
evaluated by mapping solution vectors to the solution space. Note that, in Fig. 3, θ

denotes the solution space and f (θ) denotes the objective function. At the end of
each iteration, elite samples are selected according to values of f (θ). Based on these
elite samples, the PDF can be improved by updating the characterizing parameter
v. In the new iteration, the new PDF will be utilized to generate new samples. This
procedure is executed iteratively, and in each iteration, the lower bound of the object
function τ is adaptively improved. In this work, the optimal VM placement solution
can be approached iteratively. Viewing from the high level, the VM placement can
be approached iteratively in a cross entropy optimization scheme. It first initializes
the PDF of each computing node placement, and generates VM placement samples
according to the PDF of each computing node. Note that the sample here denotes
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Fig. 3 Cross entropy optimization scheme

the VM status of its running frequency and identification. After that, the samples are
evaluated in terms of the energy consumption and the profile thermal. A certain number
of elite samples are selected for to update the PDF for next iteration.

For the practical VM placement problem, the number of VM placement solutions
can be significant. As a result, it is inefficient to enumerate all possibilities. By the
cross-entropy optimization framework, this work proposes a Cross Entropy based VM
Placement (CEVP) algorithm to determine the VM placement with both lower energy
cost and low temperature cost. The CEVP algorithm is presented in Algorithm 1.
The initializing procedures perform when the algorithm starts. PDF characterizing

parameters
−−→
μ(1) and

−−→
σ (1) for possible VM placement are initialized. Note that, in this

algorithm, μ
(1)
i implies the possibility of generating solution samples with certain

patterns; that is, assign every VM to a specific core with a specific frequency level.
Therefore, for each VM, the PDF is in a 3-D space, where the z-axis stands for
the probability of the assignment, x-axis and y-axis stands for the core ID and the
frequency ID, respectively. According to the initial parameter values, L samples can
be generated. These samples denote the candidate VM placement solution which
might have the global minimum energy cost and heat diffusion cost. Note that, in
practice, a cost function which sums up the energy cost and the heat diffusion cost
with weighted factors is employed to evaluated samples. After generating samples, the
top M̂ elite samples can be selected according to the cost function. Using elite samples,

the PDF characterizing parameters
−−→
μ(1) and

−−→
σ (1) can be updated for the next iteration.
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Algorithm 1: The Cross Entropy based VM Placement (CEVP) algorithm
1: Initialize parameters of mean and variation with Gaussian distributions for all VMs sources:−−→

μ(1) = {μ(1)
1 , μ

(1)
2 , μ

(1)
3 , ..., μ

(1)
N } and

−−→
σ (1) = {σ (1)

1 , σ
(1)
2 , σ

(1)
3 , ..., σ

(1)
N }, where μ

(i)
1 is the mean

value,
σ is the standard deviation and N denotes the total number of VMs. Initialize the threshold τ .
Set k = 1.

2: Repeat steps 3 to 9 till the pre-defined converge criteria of solutions being satisfied.

3: Generate L solution samples with respect to the PDF parameters (
−−→
μ(t),

−−→
σ (t))

4: Evaluate M solutions S = (s1, s2, s3, ..., sM ) by computing their thermal and heat diffusion cost
function.

5: Select top M̂ elite samples Ŝ = (ŝ1, ŝ2, ŝ3, ..., ŝM̂ ) according to the threshold τ of cost function
values.

6: Update PDF parameters
−−→
μ(t),

−−→
σ (t): μ(t+1)

i = μt
i +

∑
j∈I (s j−μt

i )

M̂i
and σ (t+1) =

√∑
i∈I (si−μ

(t+1)
i )2

M̂i

∀i ∈ [1, N ], where I and M̂i denote the set of and the number of solutions corresponding to μ
(t+1)
i

respectively.
7: Update the threshold value τ .
8: t = t + 1;

9: Check the converge criteria with updated
−−→
μ(t),

−−→
σ (t).

In the next iteration, a new set of solution samples are generated correspondingly. The
above proceeds iteratively, until the pre-defined stop criteria are satisfied. The stop
criterion for the proposed CEVP algorithm is constructed as follows. When the best
VM placement solution samples in the current iteration, which are close to that in
the previous iteration fair enough, the CEVP algorithm stops. Note that this CEVP
algorithm is easily parallelized in the parallel programming environment. The reason
is that, for each solution sample, the evaluation process of this solution sample are
independent from other solution samples.

5 Experimental results

The experiments are carried out on a simulated system. The proposed Cross Entropy
based VM Placement (CEVP) algorithm is implemented in C++ and tested on a dell
workstation with Intel i7 3.07 GHz CPU and 24G memory. Our experiments are
performed over a set of computer nodes with five different voltage frequency levels
ranging from 1.8 Ghz to 2.5 Ghz. Each of the computer node has four codes and
the floor planning of them are generated by following [41]. There are 500 test cases
evaluated in the experiment to avoid transient anomalies. In each test case, there are
50 to 200 VMs randomly generated with a minimum require voltage frequency-level
value, meanwhile same number of host are available as candidate hosts. To evaluate
the proposed algorithm, we compare the proposed CEVP algorithm that considers
multi-objects with an Ant Colony System algorithm which is adapted from [19] in
terms of energy consumption, thermal cost and hot spot numbers. The thermal values
are obtained using the thermal modeling tool HotSpot [38] (Table 1).

We have following observations:
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– The proposed CEVP algorithm saves the energy consumption cost up to 27.6%
from the ant colony algorithm. The average energy saving of the proposed CEVP
algorithm is 26.7% over the ant colony algorithm. The effectiveness of the pro-
posed CEVP on energy saving can be demonstrated.

– The proposed approach can improve the temperature cost up to 6.3%by comparing
to the Ant Colony System algorithm. It does not improve as much as the energy
savings due to the heat sinks of the computing cores.

Fig. 4 Case study. a The curve of the energy consumption with increasing the workloads of VMs. b The
curve of number of hot spots with increasing the workloads of VMs
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– The total number of hot spots are largely improved by our heat diffusion term in
the objective function by comparing to the Ant Colony System algorithm. The
proposed CEVP algorithm reduces the number of hot spots 58% on average. It is
a big help to reduce the transient faults of the cloud system.

– Although the running time of our algorithm is greater than the one of the Ant
Colony System algorithm, the proposed algorithm always runs within 55s. The
proposed algorithm almost linearly increases with the problem size which is quite
efficient even with hundreds of VMs.

We also perform the case study that proportionally increases the workload on VMs
with 50 available computing machines. The number of VMs ranges from 50 to 200.
Different thermal cost and numbers of hot spots are obtained. The results are shown
in Fig. 4. Following observations have been made.

– The energy consumption increases almost linearly. This is expected since the total
number of tasks for the set of VMs is linearly proportional to the number of VMs in
that set. In otherwords, the amount of tasks processed by eachVM, across different
cases, is almost constant. Consequent, the energy cost of eachVM is approximately
constant. As the number of VMs increase, the energy cost increases linearly.

– The number of hot spots does not increase at a constant rate with the number of
VMs. The reason is the energy consumption plays a more significant role than the
heat diffusion in data center management. When it is difficult to optimize against
both energy consumption and heat diffusion, our algorithm favors optimizing the
former over the latter. Therefore, our algorithm could generate solutions with the
minimum energy cost, at the cost of more hot spots.

6 Conclusion

In this work, a Cross Entropy based VM Placement (CEVP) algorithm is proposed.
It considered both the energy cost and thermal profile of the computing nodes in the
cloud environment. The simulations have been conducted using based 400 test cases,
which demonstrate the effectiveness of the proposed approach. By comparing with a
Ant Colony System algorithm, the proposed CEVP algorithm significantly saves the
energy cost by 26.7% on average and reduces the thermal cost up to 6.8%. Moreover,
the proposed CEVP algorithm can largely reduce the number of hot spots by 58% on
average. This shows the effectiveness of our algorithm.
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