J Supercomput (2016) 72:371-390 @ CrossMark
DOI 10.1007/s11227-015-1567-9

An online greedy allocation of VMs with non-increasing
reservations in clouds

Xiaohong Wu'2 . Yonggen Gu? - Jie Tao? -
Guogiang Li* - Prem Prakash Jayaraman* -
Daniel Sun® - Rajiv Ranjan® . Albert Zomaya’ -

Jingti Han!

Published online: 28 November 2015
© Springer Science+Business Media New York 2015

Abstract Dynamic VMs allocation plays an important role in resource allocation of
cloud computing. In general, a cloud provider needs both to maximize the efficiency of
resource and to improve the satisfaction of in-house users simultaneously. However,
industrial experience has often shown only maximizing the efficiency of resources

B Guogiang Li
li.g@sjtu.edu.cn

Xiaohong Wu
xhwu@hutc.zj.cn

Yonggen Gu
gyg68@hutc.zj.cn

Jie Tao
taojie@hutc.zj.cn

Prem Prakash Jayaraman
prem.jayaraman @rmit.edu.au

Daniel Sun
daniel.sun@rmit.edu.au

Rajiv Ranjan
rranjans @ gmail.com

Albert Zomaya
albert.zomaya@sydney.edu.au

Jingti Han

hanjt@mail.shufe.edu.cn

Shanghai University of Finance and Economics, Shanghai, China
Huzhou University, Huzhou, China

Shanghai Jiao Tong University, Shanghai, China

4 RMIT Universtiy, Melbourne, VIC 3000, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1567-9&domain=pdf

372 X. Wu et al.

and providing poor or little service guarantee for users. In this paper, we propose
a novel model-free virtual machine allocation, which is characterized by an online
greedy algorithm with reservation of virtual machines, and is named OGAWR. We
couple the greedy allocation algorithm with non-increasing reserving algorithms to
deal with flexible jobs and inflexible jobs. With the OGAWR, users are incentivized
to be truthful not only about their valuations, but also about their arrival, departure
and the characters of jobs (flexible or inflexible). We simulated the proposed OGAWR
using data from RICC. The results show that OGAWR can lead to high social welfare
and high percentage of served users, compared with another mechanism that adopts
the same method of allocation and reservation for all jobs. The results also prove that
the OGAWR is an appropriate market-based model for VMs allocation because it
works better for allocation efficiency and served users.

Keywords Cloud computing - Greedy allocation - Resource reservation - Online
algorithm - Incentive compatible

1 Introduction

As the development of cloud computing technology, infrastructure-as-a-service has
gained popularity in recent years due to its flexibility, scalability and reliability. A
cloud provider needs to maximize the efficiency of resource allocation and meanwhile
to improve the satisfaction of in-house users, instead of only to maximize the revenue
of cloud provider. The efficiency of resource allocation can be described by the sum
of all values of users, called social welfare in this paper. Thus, an IaaS cloud provider
has to find an optimal resource allocation for all users.

To address above concerns, VMs allocation is applicable for cloud providers. There
are mainly two kinds of allocation methods in public clouds: pay-as-you-go [3] and bid-
based allocation [2]. Pay-as-you-go is a first-come first-served allocation mechanism
which does not concern about the valuation of users for VMs. In fact, the efficiency of
an allocation can be improved if the cloud allocates VMs to users with higher valuation
by knowing user-centric valuation. Amazon has used bid-based mechanism in spot
instance market to make up for this shortcoming, where users periodically submit bids
to the provider, who in turn posts a series of spot prices. Users only hold resource
access before the spot price rises above their bids. As a result, due to the dynamic
changing of the spot price, it provides no service guarantee to those jobs which should
be completed by VMs during multiple time units. To guarantee the service, users can
choose subscription scheme. A subscription user always holds resource access during
his subscription period. In spite of the fact that the user does not need the resource
at some time units, he still has to pay a one-time subscription fee in subscription

5 NICTA, Sydney, Australia
6 Newcastle University, Tyne and Wear NE1 7RU, United Kingdom
7 The University of Sydney, New South Wales 2006, Australia

@ Springer

An online greedy allocation of VM. .. 373

period. Moreover, some other users might be rejected because they do not subscribe
the resources while some reserved resources might be idle. All of these can decrease
the efficiency of resources and are often adopted in public clouds.

In this paper, we propose an online greedy allocation with reservation, named
OGAWR, for auction-driven clouds. This work includes a formal model for studying
VMs allocation under an assumption that the users behave for their own self-interest,
and a rationality-based approach using notions from algorithmic game theory [21]
and particularly online game. OGAWR has three characteristics: first, the auction is
carried out in each time unit as long as users come, while the auction in spot instance is
carried out in each period that includes multiple time units; second, OGAWR provides
service guarantees, that is, each job which should be processed during multiple time
units will not be terminated until it is completed; third, we use different allocation
methods of VMs for the flexible jobs and inflexible jobs. Here, flexible job refers to
those jobs that users only care about whether they could be completed before their
deadlines, while the process details are ignored. For example, a finance firm has to
process the daily stock exchange data to guarantee the trading in next day. Obviously,
the finance firm only cares about whether the jobs can be finished before the deadlines
and does not care about how the jobs are processed. In contrast, inflexible job refers
to those jobs that must be processed continuously when they start to be processed.

The contributions in this papers are as follows: first, we formalize the notions
of online mechanism design for VMs allocation in cloud environments; second, we
present an online greedy allocation with reservation (OGAWR) mechanism, which
adopts different VMs reservation methods for flexible jobs and inflexible jobs. To
improve the allocation efficiency, we propose two kinds of non-increasing reserving
methods: discontinuous reserving based on reservation ratio and continuous reserv-
ing. Furthermore, we design a payment algorithm which ensures the truthfulness of
the users together with the allocation and reservation policy. Third, we simulate the
proposed OGAWR mechanism using data from RIKEN integrated cluster of clus-
ters (RICC), comparing the mechanism which adopts the same method of allocation
and reservation for all jobs, this mechanism can lead to higher social welfare and
percentage of served user. This paper is an extension of our previous work [32].

The rest of paper is organized as follows. In Sect. 2 we discuss related work. After
formalizing the problem model in Sect. 3, in Sect. 4 we design an online greedy allo-
cation with reservation(OGAWR) mechanism and analyze the properties of OGAWR
mechanism in Sect. 5. The performance evaluation are shown in Sect. 6. Finally,
conclusions appear in Sect. 7.

2 Related work

Resource management and allocation have been considered an important problem
in parallel and distributed systems for data-intensive applications, energy efficiency,
massive simulations and so on [17-19,29]. The provision and allocation of VMs in
cloud computing are closely related to the utility of both cloud users and service
providers. There are mainly two types of work. One investigates the VMs allocation
by solving an optimization problem [14,33,37]. This type focuses on the optimization

@ Springer

374 X. Wu et al.

of object functions, but generally without considering any strategic behaviours among
users (e.g.the VM allocation approach for spot markets in paper [37]). The other is
game theoretical approach. For instance, a cloud resource allocation approach assumes
that the allocation would start after all users submit their requests. An alternative
of game theoretical method is to design pricing mechanisms with maximized social
welfare or profit [22,38]. Auction-driven mechanisms can combine the two approaches
and simultaneously target both truthfulness and economic efficiency.

Classic applications of auctions can be found in a wide range of research areas,
such as network bandwidth allocation [31] and wireless spectrum allocation [39]. Auc-
tions have also been widely studied for scheduling and resource allocation [1,6,9,30].
Recently, a series of auction mechanisms are designed for VMs allocation in cloud
computing. Wang et al. [28] apply the critical value method, and derive a mechanism
that is collusion-resistant, an important property in practice. Their algorithm has a
competitive ratio 0(\/%), where k is the number of VM instances. In addition, combi-
natorial auctions are supposed to apply in VMs allocation in some literatures [5,35].
Yet all these works only consider resource allocations in one time unit and restrict
their discussions in a single offline auction period. However, in cloud computing, the
cloud users arrive and leave randomly, so the statistic analysis and design-based game
theory are not suitable for it.

Online mechanism is an important expansion of mechanism theory in the multi-
agent and economics literature, and generally applied in dynamic environment, in
which user population is dynamically changing, decisions must be made across time
and there can be uncertainty about the set of feasible decisions in future periods [23].
That is consistent with the environment features in cloud computing. Consequently,
some online methods used in other fields [4,26] are also applicable in cloud computing
[13,38].

In online mechanism, Lavi and Nisan [16] coined the term online auction and
initiated the study of incentive compatible mechanisms in dynamic environments.
Friedman and Park [8] initiated the study of VCG-based online mechanisms and coined
the term online mechanism design. According to the research on online mechanism,
there are two frameworks of research. One is model-based approach which aims at
developing online variants of Vickrey—Clarke—Groves (VCG) mechanisms [11,24].
These techniques rely on a model of future availability, as well as future supply (e.g.,
Parkes and Singh [24] used an MDP-type framework for predicting future arrivals). The
other is model-free approach which requires fewer assumptions and makes computing
allocations more tractable than the above [10,12,25].

The online mechanisms have been used in cloud computing [15,27,34,36]. [27,36]
only introduce an online mechanism framework for cloud resources allocation without
concrete allocation algorithms. The online mechanism in [15] is a resource allocation
approach for batch jobs, and the value functions for users is continuous. Zaman et
al. [34] designed a truthful mechanism that allocates the VMs to users by greedy
allocation and allows those allocated users continuously use those VMs for the entire
period requested. Ma et al. [20] focuses on designing dominant-strategy incentive
compatible (DSIC) mechanisms with good competitive ratios, assuming that agents
will not misreport their arrival times and deadlines.

@ Springer

An online greedy allocation of VM. .. 375

Based on those work in [15,34,36], we also aim to design an online truthful mech-
anism for VMs allocation, but pay attention to the following points:

1. In our model, a user requests one VM for multiple time units to finish a job during
the arrival-departure interval. According to the demand in process time, all jobs
are classified into two classes: flexible jobs and inflexible jobs.

2. We choose different allocation methods for the two classes of jobs, especially
design a discontinuous resource allocation based on reservation-ratio for the flex-
ible jobs, by which the distribution of workload of users can be adjusted at
their arrival-departure interval and the total workloads processed in cloud will
be improved.

3. We focus on all the users with single-valued preference. That is, each user could get
anon-zero constant value brought by the job only if it could be finished completely.

3 Modeling and notations

We consider a cloud provider who provides only one type of VM instances, and
the total number of VM instances is denoted by C. Consider discrete time periods
T =1,2,...,indexed by ¢ and possibly infinite.

Each user is represented by an agent. Let N = 1,2, ..., n denote the set of all
agents. Agent submits its job to the cloud randomly, which can be characterized by
thetype 6, = (a;, d;, i, e;, V;) € ®;, where O; isits type space. Here, a; and d; present
the arrival and departure time of agent i, and /; is its total computation workload, i.e,
the job size. We assume that each agent requires at most one VM in each unit time.
The workload /; is the number of time units that agent i must be allocated one VM,
so it also represents the resource demand. The last component of 6; is V;, the value
agent i obtains if its job is completed, and V; > 0.

As described in Sect. 1, the jobs are classified into flexible jobs and inflexible jobs.
In order to distinguish the job classes, a character parameter ¢; points out the agent is
flexible (¢; = 1) or inflexible (¢; = 0).

We define r; = (nia", rria"H, e rrf’) as the allocation for agent i. nl.’ = 1if agent
i is allocated one VM at time ¢ € [qa;, d;], otherwise nl.’ =0.
The allocation result for agent i is denoted by A;.

A = 1 if] 5 land X7 > 1;, 1 € [a;, d;])
0 otherwise
Each agent i is characterized by a valuation function v; defined as follows:
Vi if Aj=1
T @)
0 otherwise

The challenge of the cloud provider is to make allocation decisions 7’ dynamically
while trying to maximize the sum of agents value. The problem is described as follows:

@ Springer

376 X. Wu et al.

Table 1 Symbols definition Symbol Definition

a; Arrival time of agent i
d; Departure time of agent i
li Job size of agent i
e; Character parameter of agent i
0; Type of agent, 6; = (a;,d;, i, e;, Vi)
Type set of all agents, 6; € 6
0 Type set of agents which participate the allocation at ¢
i Allocation of agent i, 7; = (ﬂ[-ai s niai +1 A nfii)

Allocation decision at time ¢, i € ! if i is allocated at ¢

al i Allocation decision at time ¢ if agent i were not present
before time ¢ (including time ¢)

A Allocation results, A = (A1, Az, ..., Ay)

A; Allocation result of agent i. If i is allocated, A; = 1

st Supply about future period, S* = (s(), s(t + 1), ...)

st i Supply about future period if agent i were not present
before time ¢ (including time ¢)

s(t) Supply at time ¢

r(t) Reservation-ratio at time ¢, r(t) = s(t)/C

Di Payment of agent i

max Xicnv;
st. wf <1L,VieT 3)
Z‘I-":ln-’ <C,VvVteT

P

Table 1 lists main symbols defined in this paper.

4 The online greedy allocation with reservation mechanism
4.1 Description of mechanism

In this section we design a model-free online mechanism for the above setting.
Denote the number of idle VMs at time ¢ by s(¢). The definition of greedy allocation
is as follows.

Definition 4.1 (Greedy allocation) At each step ¢ allocate the s(7) VMs to the active
agents with the highest valuations.

If all agents request one VM only for one time unit, greedy allocation with appro-
priate payment could constitute a truthful mechanism [21]. However, in the case of
multiple time units demands, according to Eq. (2), whether agent i could get the value
Vi is decided by all of its allocation in period [a;, d;]. That is, the value brought by one

@ Springer

An online greedy allocation of VM. .. 377

Fig. 1 An example for

.. . Reserve a VM
multi-time unit demand (C = 1)
(ai=1, di=3, 1li=2,¢i=1, Vi=10)

agent 1 o——m —@-—— - » -

(ai=1, di=3, 1i=2, ei=1, Vi=8)

agent 2 e . . .
(ai=2, di=3, 1i=1, ei=1, Vi=3)
agent 3 e . — o
time o o)
t=1 t=2 t=3

VM at some time unit cannot be decided at first, so greedy allocation for each time
unit can not be performed. In order to maintain incentive compatibility, we extend the
greedy allocation policy by allowing the system to reserve VMs for agents. By such
allocation approach, the agent is not only allocated one VM at current time ¢ but also
reserved VMs in future time units. Define unit valuation as the valuation of one VM
per unit time, and it is expressed as V;//; for agent i.

Definition 4.2 [Online greedy allocation with reservation (OGAWR)] At each step ¢
allocate the s(¢#) VMs to the active agents with the highest unit valuations, at the same
time, make the VM reservation for allocated agent i during period [t 4 1, d;]if [; > 1.

Consider an example with 3 time units and 3 agents in Fig. 1, where 0; =
(1,3,2,1,10),6, = (1,3,2,1,8),03 = (2,3, 1,1, 3) showing the agents arrival,
departure, job size, job class and valuation. Suppose furthermore that C = 1. Sort the
agents by their unit valuation V;/I;. Because agent 1 has the highest unit valuation at
time 1, OGAWR method would allocate the VM to agent 1 and reserve one VM for
it. Since it is a flexible job (e; = 1), there are two choices for reserving: reserving at
time 2 or at time 3. In Fig. 1, the VM in time unit 2 is chosen to reserve for agent 1, so
there is no idle VM to be allocated at time 2. At time 3, although agent 2 has higher
unit valuation than agent 3, the VM is still allocated to agent 3, because agent 2 has
no sufficient time to finish the job at that time.

It is worth to note that OGAWR might not be performed in some cases. That is, an
agent with highest unit valuation cannot be allocated although there is sufficient time
to finish the job. In the above example, if the VM in time unit 3 is reserved for agent 1
at time 1. At time 2, although agent 2 has higher unit valuation than agent 3 and there
is sufficient time to process, agent 2 still cannot be allocated. The reason for this result
is that the supply in future is less than that of current time. Therefore, the OGAWR
can be realized only if it makes 'non-increasing reserving’.

Definition 4.3 (non-increasing reserving) Non-increasing reserving refers to a class
of reserving schemes which always satisfies s(¢) < s(r + 1) < s(t +2) < --- after
allocation at each time 7.

In OGAWR mechanism, the agent participating the allocation at time ¢ satisfies
three conditions: (1) it arrives before time ¢. (2) Its departure time is longer than
t +1; — 1. (3) It is still unallocated. The OGAWR mechanism consists of allocation
rule and payment rule described as follows.

@ Springer

378 X. Wu et al.

— Allocation rule
At each time ¢, it makes allocation as follows.
Stage 1 Greedy allocation Allocate the s(#) VMs using greedy allocation, breaking
ties at random.
Stage 2 Non-increasing reservation Make non-increasing reservation for agents
who are allocated in stage 1 if necessary. If one VM is reserved for agent i at time
k,wk=1.
Let 0! = (01, 02, ..., 6,) denote the set of agent types participating the allocation
at time 7, and 7’ denotes the decision policy at time ¢. The mechanism makes a
sequence of allocation decisions (711, 72, .. .), and 7’ includes all those agents
allocated at time 7. For example, in Fig. 1, 71 = (1,1,0), 7' = {1} and A; = 1
after allocation at time 1, and it is not changed at time 2. After allocation at time
3,13 =(0,1), 73 =3}, A3 = 1.

— Payment rule
We design a critical payment which is equal to the critical value for allocated
agents, and the definition of critical value is as follows.
Given type 6; = (a;, d;, l;, e;, V;), the critical value for agent i is defined as

min V/ s.t. A;(0],0-;) =1,
Viardi lnen) =) = for 6/ = (a;, d;, V) 4)
00 no such V! exists

where 0_; = (01,6, ...,60i-1,0i+1,...).
We define payment policy p;(0) as
Ve 0_;) ifA;=1
pi() = [0(”i’di'li’ei)(.)

otherwise

4.2 The algorithm design of OGAWR mechanism

In this section, the algorithm based on the proposed rules for allocation and payment is
designed. First, we introduce two reserving methods for inflexible agents and flexible
agents respectively.

Continuous reserving Continuous reserving is suitable for inflexible agents, which is
similar to the allocation in MOVMPA mechanism proposed in paper [34]. If agent i
wins the auction at time 7, one VM will be reserved continuously for it in next /; — 1
units. Thatis, 7f = 1,k =t+1,...,t +1; — 1,if 7] = 1.

Discontinuous reserving based on reservation-ratio (discontinuous reserving) This
reserving method reserves one VM for agent i in next /; — 1 time units with lowest
reservation-ratio, and reserves the VM in earliest time unit if there are multiple time
units with same reservation ratio.

Reservation ratio denoted by r (k) is the ratio of the number of reserved VMs and
total supply capacity C at future time k expressed as r (k) = s(k)/C. Obviously, r (k)
is changed with time.

@ Springer

An online greedy allocation of VM. .. 379

Fig. 2 An example for Reserve a WM
continuous allocation (C = 2) (ai=1, di=3, 1i=2,€i=0, Vi=10)

agent 1 e— o - .
- Reserve a WM
(ai=1, di=3, 1i=2, ei=1, Vi=8)

agent 2 e——e . .

(ai=2, di=3, 1i=2, ei=1, Vi=3)

agent 3 e .
time o o o o
t=1 t=2 t=3
Fig‘ D example for s . . . N Reserve a WM
noncontinuous allocation based . (ai=1, di=3, 1i=2, ei=0, Vi=10)
. . -
on reservation-ratio (C = 2) agent . .
(ai=1, di=3, 1i=2, ei=1, Vi=8) — Reserve a VM
agent 2 — o . R
R W
(ai=2, di=3, 1i=2, ei=1, Vi=3) eserve a
agent 3 . - e .
time o o
t=1 t=2 t=3

For inflexible agents, continuous reserving and discontinuous reserving both could
be used. In the next example, we compare the allocation results by using above two
reserving methods respectively. Consider the example with 3 time units and 3 agents
in Figs. 2 and 3, where 0; = (1,3,2,0,10),6, = (1,3,2,1,8),65 = (2,3,2, 1, 3),
and C = 2. Figure 2 shows the results by continuous reserving for all agents. At time
1, agent 1 and agent 2 are allocated and reserved VMs continuously. At time 2 there
is no idle VMs because two VMs are both reserved at time 1, so agent 3 cannot be
allocated. At time 3, agent 3 still cannot be allocated because it has no sufficient time
from departure to complete. Figure 3 shows another results by discontinuous reserving.
At time 1, agent 1 and agent 2 all be allocated one VM. Then it reserves VM at time
2 for agent 1 and reserves VM at time 3 for agent 2 based on reservation-ratio. We
can see all agents could be allocated by this method, and the sum of users value is
higher than that of continuous reserving. In our mechanism, we choose discontinuous
reserving for inflexible agents. At each time unit ¢, the steps of allocation shown by
Algorithm 1 are as follows:

Step 1 Sort all agents which participate the allocation at time # in non-increasing order
of Vi/l;.

Step 2 Allocate s(¢) idle VMs to s(¢) agents with highest valuation, breaking ties at
random.

Step 3 Choose a suitable reserving method for each agent allocated at step 2. Con-
tinuous reserving is chosen if e; = 0 and discontinuous reserving is chosen if
e = 1.

Define a status vector S* = (s(z), s(t + 1), s(t +2), ..., s(t +m — 1)) as the VM
supplies in period [t, t +m — 1] before allocation at time ¢, where s (¢ + k) is denoted
as the supply at future time (¢ + k) € T, and m satisfies s(t + m — 1) < C and
s(t + m) = C. For computing critical value, we define US’}}, to be the mth highest of
s(t)

—it

unit valuations V;/[; from all agents j in ', j # i. Then v for supply s(7), is the

@ Springer

380 X. Wu et al.

input : 67, S’ ¢

output: S’ 7', A

if s(z) > O then

sort all 8/ C © in non-increasing order of V;/1;;
(!, A) = greedyallocate(8', S');

sortall i € 7! in non-decreasing order of d;;
foreach i € 7! do

if ¢; = 1 then
\ (m;, sh = Discontinuous Reserve(l; — 1);
end
else
\ (;, S") = ContinuousReserve(l; — 1);
end

end

end
S < S\ sk
Algorithm 1: Allocation algorithm: Allocate

lowest value that is still allocated a unit, if agent i were not present not only at current
t but also before t. Henceforth, we refer to v(())
idle VM for agent i at time ¢.

OGAWR Mechanism designed in Algorithm 2 runs in each time unit ¢, the algorithm

is described as follows:

as the marginal clearing value of the

Step 1 According to the allocation rule of OGAWR, the allocation is performed based
on §’, 0, which generates an allocation set 7 and a new status set S’*!, and
updates allocation result A.

Step 2 For each agent i who got its first unit at step 1, the critical value for agent i at
time ¢ is computed as equation vﬁ . S(Z) . Then, we execute a suppositional

allocation in which i is not present and get supposmonal results 7r_l. and S’_‘;l.
Step 3 For each i who got the allocation before time # and ¢ < d; —I; + 1, according to
the suppositional result S’ ; which suppose that i had been not present before

t, we compute the critical value for agent i as v v_l’ ;l) We also execute
a suppositional allocation in which i is not present based on the suppositional
status S ; and get suppositional results 7” ; and sttt

Step 4 For each i who satisfies t = d; — [;, the payment p; is computed. If A; = 0,

the payment p; is zero, otherwise the payment can be computed as

: C
P = min vi) -
bi (te[a,, —li+1] “’) '

Lemma 4.1 The payment in above algorithm is a critical payment. That is,

(te(a:zriliiilli—k)v = V(a & Vil e)(9 i) for each allocated agent i.

Proof Follows directly from the definition of critical value, expressed by Eq. (4). O

@ Springer

An online greedy allocation of VM. .. 381

input :¢,60" ={61,6,,..., On), St
output: St 7! p. A

7l =g

(S, 7!, Ay=Allocate(', S, 1);
foreach 7r; € 7! do

c vS(_l) .

it —i,1’

(S 7t A_p=Allocate®' ;. 8" 1);

v

end

foreach i ¢ n'and A; = 1 andt < d; —I; do
c s_i(1),

it = =i

(S 7t Ay = Allocate(®' . S . 1):

—i —i

v

end
foreach i:r =d; —; + 1 do
‘ if A; =0 then p; = Oelse p; =

min vf, -l
tela;,di—1li+11 "
end

Algorithm 2: Mechanism algorithm: OGAWR

5 Analysis of OGAWR mechanism

We assume no early-arrival no late-departure misreports with a; < alf < dlf < d,
because generally agent i does not know its type until ¢; and the value of agent will
be zero if it is finished after d;. We also assume no less job size misreports with I > [;
because the agent i will have no sufficient time to process if I < /;.

Definition 5.1 (Monotonic with resource demand) An allocation policy is monotonic
with resource demand /; if for any arrival-departure interval [a;, d;], any valuation V;
and any jobsizereportl, > [; ,wehave A; (a;, d;, Vi, I})) =1 = Ai(a;, d;, Vi, I;) = 1.

Definition 5.2 (Monotonic with arrival-departure interval) An allocation policy is
monotonic with arrival-departure time if for any job size /;, any valuation V; and any
arrival-departure time report a; > a; and d; < d; , we have A;(a;,d], V;,l;) =1 =
Ai(ai, d;, Vi, ;) = 1.

Lemma 5.1 The allocation policy in OGAWR mechanism is monotonic with resource
demand and arrival-departure interval.

Proof First, we prove the monotonicity with resource demand /;.
Assume for contradiction that I! > I; and A;(a;, d;,[}) = 1, but A;(a;, d;, [;) =

0. Because A;(a;,d;,V;,l})) = 1, it must satisfy V; > V(Z GV E‘)(Q,,‘).
Since V(Z,-,di,w,lf,e,v)(efi) = (mincpg, g,—r+1V;,) - I, it follows that V;/I/ >

minte{ai,drl,urll vit. On the other side, because A;(a;, d;, V;,1;) = 0, it must sat-
isfy

Vi < V¢ 0_;) = min ve) -
! (ai’di"/i’li’ei)(l) (ze[a,-,di—l,-+1] Lt !
Thus it follows that V;/l; < min,c[g; g, —1;+1] Vj ,-

@ Springer

382 X. Wu et al.

Since [a;, d; —ll{ + 1] C la;, d;i —1; +1] fOI‘ll{ > 1,

min Vi, < min vy
t€la;,di—li+1] 7 telaj di—1}+1]

So,

Vi/l; < min vf, < min v, < Vi/l}.
tela;,di—li+1]1 telaj di=l/+1]

Then it must satisfy /] < [;. That is a contradiction with assumption.

Second, we prove the monotonicity on arrival-departure interval. we say that an
arrival-departure interval [a;, d;] is tighter than [a], d/] if a > a; and d] < d;.

Also assume for contradiction that [¢;, d;] is tighter than [a], d!], and A; (a., d}, V;,
li) = 1, but A;(a, d;, V;, li) = 0. Because Ai(alf, di/’ Vi, ll/) =1,V >

V(Z, AV e (6—;). According to the computation of critical value,
i7 l s Vists®l

c : c :
Viardi VidienO=) = Vi ar vi iyen) @=i)

so A;j(ai, d;, Vi, l;) = 1 and a contradiction with the assumption. O

Next, we discuss whether an agent’s utility is improved by misreporting e; or not.
First, an inflexible agent would not misreport ¢; = 1 because discontinuous allocation
for this class job will cause zero value. Second, we find there is no difference in
allocation and payment to flexible agent between reporting e; = 1 and reporting
e; = 0. For allocation, due to the greedy allocation and non-increasing reserving,
whether an agent can be allocated is only decided by the order of its valuation and
not related with e;. For payment, according to the critical value Eq. (4), the critical
value of agent i would not changes when e; changes, and the payment of the agent is
equal to the critical value which is also not related to e;. We assume that each agent
is rational, that is, the agent will choose to report true type when misreport cannot
improve its utility.

Theorem 5.1 The OGAWR mechanism is incentive compatible with no-early arrival,
no-late departure misreports and no less job size misreports.

According to the Lemma 5.1, given valuation report V;, the allocation policy is
monotonic with resource demand and arrival-departure time, so agents will report
true arrival-departure interval and job size with no-early arrival, no-late departure
misreports and no less job size misreports. Assume agent i is truthful. Next, we prove
by case analysis that the agent i would get more utility if it is truthful to report the
valuation V;. (a) If agent i is not allocated, V(Z,- Vil e (6_;) > V; and tobe allocated,
the agent must report some V/ > V;. But since the critical value is greater than the

l
true valuation V;, it will cause to negative utility if i wins for V.

uip =Vi— V(Zisdi»vi»liaei)(e_i) <0.

@ Springer

An online greedy allocation of VM. .. 383

(b) If agent i is allocated, the utility is nonnegative since V(Cé;, & Vil ei)(éLi) <V,
and agent i does not want to report a lower valuation V; for which it would not be
allocated. Consider any V/ for which agent i continue to allocated. The critical value is
not changed since it is independent of the reported valuation V;. Therefore, OGAWR

is incentive compatible.

5.1 Competitive analysis

We define the competitive ratio on social welfare as follows. An auction mechanism
Misc-competitive with respect to the social welfare if for every bidding sequence 6,
Ey(0) > Eopt(9)/c. Accordingly, c is the competitive ratio of M. Where, Ey is the
sum of agents value in mechanism M and E,,c denotes the sum of agents value by the
optimal algorithm.

Assume that VM to all agents has a same maximal unit valuation vpax and same
minimal unit valuation vy, i.€, v; € [Umin, Umax]. Define N = % At the same
time, we assume the maximal job size is L and L > 2.

For example, consider the case C = 1, and three bids: 0; = (1, L+1, 2, 1, 2(vmin+
€),00=0Q,L+1,L,1,L-vmax) and 63 = (1, 1, 1, 1, vmin), where ¢ is a positive
quantity, and vpip — € > 0. In OGAWR agent 1 would be allocated one VM at time
1 and reserved one VM at time 2 because it has highest unit valuation at that time.
But this reserving makes agent 2 lose the allocation, although agent 2 has higher
unit valuation. Because /; = L for 6,, agent 2 should get the allocation at time 2,
otherwise it has no sufficient time to process. Therefore, VMs is only allocated to
agent 1 and get the total value 2(vpin + €) in OGAWR. On the other hand, an optimum
offline algorithm will allocate resources to agent 2 and agent 3 and get the total value
(L - Vmax + Vmin)/(2(Vmin + €)).

Theorem 5.2 OGAWR mechanism has a competitive ratio on social welfare w

ifC=1and L > 1.

Proof Consider a period of time [#,¢ 4+ L] € T. Obviously, the potential maximal
value of allocation is vyax - L. Now, we consider the potential worst case with minimal
value of allocation. The worst case is that the VM during L time units is only reserved
in one time unit and due to the reserving VMs during other L — 1 units could not
be allocated. The potential minimal value of allocated agents in [#, ¢ + L] iS Umin-
Moreover, if the minimal valuation is vy, it must exits another time unit ¢#; before
time ¢ that the agent gets allocation and reservation by bids vpip.

Now, we consider the efficiency during the time period: ¢; U [¢, t + L]. From above
analysis, we can compute the minimal value by our allocation in #; U [t, t + L], i.e.,

min EoGawR (0) = 2 - Umin-
The potential maximal value of allocation in #; U [z, + L] is

max Eqp(6) = vmax - (L + 1).

@ Springer

384 X. Wu et al.

N-(L+1)
2

So, Eogawr (0) > Eopi(0)/c, where ¢ = o

If L = 1, the case is similar to the online auction of expiring items described in
[21], and the competitive ratio is 2.

Consider there are C VMs and L > 1. We can easily deduce that the competitive
ratiois C - %H)

6 Performance evaluation

As analysed above, the competitive ratio c of OGAWR mechanism might be very large
because it is decided by L and N. That is, it may cause to very low social welfare at
the worst case. In this section, we will present the simulation results and compare the
OGAWR mechanism with two allocation methods. One is a good online mechanism
(MOVMPA) designed in paper [34]. The main difference between MOVMPA mech-
anism and OGAWR mechanism is that MOVMPA uses same continuous allocation
for all jobs while OGAWR mechanism adopts different reserving methods for flexible
jobs and inflexible jobs. The other method compared is an offline optimal approach
designed under the assumption that we know all the agents valuation beforehand and
completely ignore the allocation time constraint in [a;, d;]. Although it is not reason-
able that OGAWR mechanism is compared with the offline allocation without time
constraint, but we can understand the actual level of proposed mechanism on social
welfare and percentage of served agents by comparing the curves.

As same as [34], the input data of the experiments are collected from the parallel
workload archive [7], where collect many workload logs from large scale parallel
systems in various places around the world. We select 10 thousands continuous records
from log RICC-2010-2. In the log, the minimal time unit recorded is one second. In our
experiment, we choose 10 min as one time unit, and all records selected are distributed
randomly from time O to time 8000. Each record in the log corresponds to one task in
out experiment, and the information of a task includes arrival time, wait time, runtime,
number of allocated processors corresponding to the record information. Each task is
processed by at most 8 thousands processors. According to the number of allocated
processors k, a task can be divided into k subtasks, each of which need to be processed
serially in one processor. That is, one subtask requests at most one VM in each time
unit which is consistent with the assumption in our model. Let each agent present one
subtask(also is one job). After the step of task decomposition, there are about 285
thousands agents in these records.

Next, the type of each agent ; can be obtained, 6; = (a;, d;, l;, e;, V;). First, a; and
[; can be got from the log, where the real arrival time of the record is ¢; and the runtime
can be converted to the size /;. As described above, if k agents are generated from one
same record, they will have same arrival time and job size. Second, we produce the
other information d; and V;. Assume that the deadline and the valuation are exponential
distribution. Deadline d; and valuation V; /[; are computed as d; = a; +1; +1;-exp(dayg)
and V;/l; = exp(vayg). Finally, the parameter ¢; is generated randomly. The Table 2
shows the simulation parameters.

Figures 4 and 5 show the distribution of all those subtasks we selected. Figure 4
shows the number of arrival subtasks at each time unit, while Fig. 5 is the size distrib-

@ Springer

An online greedy allocation of VM. .. 385

Table 2 Simulation parameters

Type Notaion Value Parameter
Arrival time a; Form workload archive
Departure time d; aj +1i +1; - exp(davg) dayg =2
Job size I From workload archive
Valuation Vi Vi/li = exp(vavg) vavg = 50
Job character (flexible) e; 1 or 0, generate randomly
4
16X 10
14
12
2
810
[
o]
Qo
g2 6
=z
4
2
0

0 1000 2000 3000 4000 5000 6000 7000 8000
Arrival time

Fig. 4 Distribution of arrival time

10°%-

Number of jobs

0 100 200 300 400 500
Job size

Fig. 5 Distribution of job size

ution of all agents. Before running of the mechanism, we initialize the supply, the total
number of VMs, which is closely related to the allocation results. Define an initial
supply Co is equal to average requirement for each time unit, i.e., Co = X/ 1;/|T]|,
where |T'| = 8000 is total time units we select.

@ Springer

386 X. Wu et al.

8000 —— MOVMPA

7000 |

6000 [
5000 r w
4000 [

3000 |

2000

Number of allocated VMs

1000 |

0 2000 4000 6000 8000
Time units

Fig. 6 The distribution of allocated VMs under MOVMPA mechanism

8000
7000
6000
5000
4000

3000

Number of allocated VMs

2000

1000

0
0 2000 4000 6000 8000

Time units

Fig. 7 The distribution of allocated VMs under OGAWR mechanism

We mainly compare the results from three aspects: the percentage of allocated VMs,
the allocation efficiency and the percentage of completed jobs.

We compare the allocated VMs distribution under two online mechanisms,
MOVMPA and OGAWR with the same input data. Figures 6 and 7 show the distrib-
ution of allocated VMs in each time unit with supply capacity C = 7280. Comparing
the two figures, OGAWR presents higher number of allocated VMs than MOVMPA,
because OGAWR can adjust the distribution of demands when the workloads have
arrival bursts. To compare it in different capacities, we set the capacity C from 2600
to 7800, that is, C changes from 0.5 - Cy to 1.5 - Cy. Figure 8 shows the percentage of
allocated VMs. Obviously, OGAWR has higher VMs utilization rate than MOVMPA
in different capacities.

Although OGAWR has higher VMs utilization, how about the efficiency of the
allocated VMs? To answer this question, we compare the social welfare under different
mechanisms. Figure 9 shows the social welfare, the sum of agents value under different
C and C changes from 0.5 - Cy to 1.5 - Cy. First, we note that the trends for the
two scenarios are different—when supply is low and close to 0.5 - Cp, the OGAWR

@ Springer

An online greedy allocation of VMs. . . 387

I OGAWR

) I VIOVMPA
Z 08
kel
o
3
g o6
©
k]
o 04
()]
]
c
[0}
© 02
[0
o

0

05 06 07 08 09 10 11 12 13 14 15

C/C ,

Fig. 8 The percentage of allocated VMs under OGAWR mechanism

x 10°

Social welfare

——offline
-+~ 0GAWR
—~—MOVMPA

2.5 ‘ .
05 1 15
C/C,(C,=5200)

Fig. 9 The social welfare under three mechanisms

mechanism results only in a small overall improvement in social welfare, However,
when it grows to more than Co, there is a very marked improvement. Especially, when
C = 1.5 - Cy, the social welfare under OGAWR mechanism is very close to it under
offline allocation, while it still keep a low level in MOVMPA mechanism.

With respect to satisfaction of in-house users, the number of completed jobs of
individual agents is discussed. The results are shown as Fig. 10. The percentage of
completed jobs increases with the increase of supply in all allocation approaches, and
in OGAWR, it is obviously higher than that in MOVMPA when they are in the same

supply capacity.

7 Conclusion

In this study, we address the problem of dynamic VMs allocation, payment determi-
nation in IaaS clouds in order to maximize the efficiency of resource and improve

@ Springer

388 X. Wu et al.

——offline
-=-0OGAWR
—~—MOVMPA

Percentage of allocated agents

05 1 15
CIC,(C,=5200)

Fig. 10 The percentage of completed jobs under three mechanisms

the satisfaction of users simultaneously. We construct an online resource allocation
model in which jobs are divided into two classes: inflexible jobs and flexible jobs.
Then, an online greedy allocation with reservation (OGAWR) mechanism in dynamic
cloud environments is designed. In proposed mechanism, users are incentivized to be
truthful not only about their valuations, but also about their arrival, departure and the
characters of jobs (flexible or inflexible). Through extensive experiments that evaluate
our technique, we show that OGAWR is better than the allocation which does not dis-
tinguish the inflexible agents from flexible agents, from the perspective of improving
social welfare and the number of completed jobs. In future work, we plan to implement
our mechanism in an experimental cloud computing system, as part of an integrated
solution for the management of resources.

Acknowledgments The workload log from the RICC cluster was graciously provided by Motoyoshi
Kurokawa. This work has been supported by the National Natural Science Foundation of China (No.
61170029, 61472240, 61373032 and 71271126), Doctoral Fund of Ministry of Education of China under
Grant No. 20120078110002, and Zhejiang Provincial Science and Technology Plan of China under Grant
No. 2013C31097.

References

1. Abramson D, Buyya R, Giddy J (2002) A computational economy for grid computing and its imple-
mentation in the nimrod-g resource broker. Future Gener Computer Syst 18(8):1061-1074

2. Agmon Ben-Yehuda O, Ben-Yehuda M, Schuster A, Tsafrir D (2013) Deconstructing amazon ec2 spot
instance pricing. ACM Trans Econ Comput 1(3):16

3. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,
Stoica I et al (2010) A view of cloud computing. Commun ACM 53(4):50-58

4. Constantin F, Feldman J, Muthukrishnan S, Pdl M (2009) An online mechanism for ad slot reserva-
tions with cancellations. In: Proceedings of the twentieth annual ACM-SIAM symposium on discrete
algorithms, pp 1265-1274. Society for Industrial and Applied Mathematics

5. Danak A, Mannor S (2010) Resource allocation with supply adjustment in distributed computing
systems. In: IEEE 30th international conference on distributed computing systems (ICDCS), 2010, pp
498-506. IEEE

6. Dash RK, Vytelingum P, Rogers A, David E, Jennings NR (2007) Market-based task allocation mecha-
nisms for limited-capacity suppliers. IEEE Trans Syst Man Cybern Part A Syst Humans 37(3):391-405

@ Springer

An online greedy allocation of VM. .. 389

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Feitelson DG (2015) Parallel workloads archives: logs. http://www.cs.huji.ac.il/labs/parallel/
workload/logs.html

Friedman EJ, Parkes DC (2003) Pricing wifi at starbucks: issues in online mechanism design. In:
Proceedings of the 4th ACM conference on electronic commerce, pp 240-241. ACM

Garg SK, Venugopal S, Broberg J, BuyyaR (2013) Double auction-inspired meta-scheduling of parallel
applications on global grids. J Parallel Distrib Comput 73(4):450-464

Gerding EH, Robu V, Stein S, Parkes DC, Rogers A, Jennings NR (2011) Online mechanism design for
electric vehicle charging. In: The 10th international conference on autonomous agents and multiagent
systems, vol 2, pp 811-818. International Foundation for Autonomous Agents and Multiagent Systems
Gershkov A, Moldovanu B (2010) Efficient sequential assignment with incomplete information. Games
Econ Behav 68(1):144—-154

Hajiaghayi MT (2005) Online auctions with re-usable goods. In: Proceedings of the 6th ACM confer-
ence on electronic commerce, pp 165-174. ACM

Hao F, Kodialam M, Lakshman T, Mukherjee S (2014) Online allocation of virtual machines in a
distributed cloud. In: INFOCOM, 2014 proceedings IEEE, pp 10-18. IEEE

Hsu CH, Slagter KD, Chen SC, Chung YC (2014) Optimizing energy consumption with task consoli-
dation in clouds. Inf Sci 258:452-462

Jain N, Menache I, Naor JS, Yaniv J (2014) A truthful mechanism for value-based scheduling in cloud
computing. Theory Comput Syst 54(3):388-406

Lavi R, Nisan N (2000) Competitive analysis of incentive compatible on-line auctions. In: Proceedings
of the 2nd ACM conference on electronic commerce, pp 233-241. ACM

. Lizhe W, Hao G, Peng L, Ke L, Joanna K, Rajiv R, Y ZA (2015) Particle swarm optimization based

dictionary learning for remote sensing big data. J Knowl Based Syst 79:43-50

Lizhe W, Jie T, Rajiv R, Holger M, Achim S, Jingying C, Dan C (2013) G-hadoop: Mapreduce across
distributed data centers for data-intensive computing. J Future Gener Compter Syst 29(3):739-750
Lizhe W, Samee UK, Dan C, Joanna K, Rajiv R, Cheng-Zhong X, Y ZA (2013) Energy-aware parallel
task scheduling in a cluster. J Future Gener Compter Syst 29(7):1661-1670

Ma W, Zheng B, Qin T, Tang P, Liu T (2014) Online mechanism design for cloud computing.
arXiv:1403.1896

Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory, vol 1. Cambridge
University Press, Cambridge

Niu D, Feng C, Li B (2012) Pricing cloud bandwidth reservations under demand uncertainty. In: ACM
SIGMETRICS performance evaluation review, vol 40, pp 151-162. ACM

Parkes DC, Duong Q (2007) An ironing-based approach to adaptive online mechanism design in
single-valued domains. In: AAAL vol 7, pp 94-101

Parkes DC, Singh SP (2003) An mdp-based approach to online mechanism design. In: Advances in
neural information processing systems

Porter R (2004) Mechanism design for online real-time scheduling. In: Proceedings of the 5Sth ACM
conference on electronic commerce, pp 61-70. ACM

Robu V, Stein S, Gerding EH, Parkes DC, Rogers A, Jennings NR(2012) An online mechanism for
multi-speed electric vehicle charging. In: Auctions, market mechanisms, and their applications, pp
100-112. Springer, New York

Shi W, Zhang L, Wu C, Li Z, Lau F (2014) An online auction framework for dynamic resource
provisioning in cloud computing. In: The 2014 ACM international conference on measurement and
modeling of computer systems, pp 71-83. ACM

Wang Q, Ren K, Meng X (2012) When cloud meets ebay: towards effective pricing for cloud computing.
In: INFOCOM, 2012 proceedings IEEE, pp 936-944. IEEE

Weijing S, Lizhe W, Rajiv R, Joanna K, Dan C (2015) Towards modeling large-scale data flows in a
multidatacenter computing system with petri net. IEEE Syst J 9(2):416-426

Wolski R, Plank JS, Brevik J, Bryan T (2001) Analyzing market-based resource allocation strategies
for the computational grid. Int J High Perfor Comput Appl 15(3):258-281

WuC, LiZ, Qiu X, Lau F (2012) Auction-based p2p vod streaming: incentives and optimal scheduling.
ACM Trans Multim Comput Commun Appl (TOMCCAP) 8(1S):14

Wu X, GuY, Li G, Ma X, Tao J (2014) Online mechanism design for vms allocation in private cloud.
In: The 11th IFIP international conference on network and parallel computing (NPC’14), pp 234-246
Xu Y, Li K, HuJ, Li K (2014) A genetic algorithm for task scheduling on heterogeneous computing
systems using multiple priority queues. Inf Sci 270:255-287

@ Springer

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://arxiv.org/abs/1403.1896

390 X. Wu et al.

34. Zaman S, Grosu D (2012) An online mechanism for dynamic vm provisioning and allocation in clouds.
In: IEEE 5th international conference on cloud computing (CLOUD), 2012, pp 253-260. IEEE

35. Zaman S, Grosu D (2013) Combinatorial auction-based allocation of virtual machine instances in
clouds. J Parallel Distrib Comput 73(4):495-508

36. Zhang H, Li B, Jiang H, Liu F, Vasilakos AV, Liu J (2013) A framework for truthful online auctions
in cloud computing with heterogeneous user demands. In: INFOCOM, 2013 Proceedings IEEE, pp
1510-1518. IEEE

37. Zhang Q, Zhu Q, Boutaba R (2011) Dynamic resource allocation for spot markets in cloud computing
environments. In: 2011 Fourth IEEE international conference on utility and cloud computing (UCC),
pp 178-185. IEEE

38. Zhao J, Li H, Wu C, Li Z, Zhang Z, Lau F (2014) Dynamic pricing and profit maximization for the
cloud with geo-distributed data centers. In: INFOCOM, 2014 Proceedings IEEE, pp 118-126. IEEE

39. Zhu 'Y, Li B, Li Z (2012) Truthful spectrum auction design for secondary networks. In: INFOCOM,
2012 Proceedings IEEE, pp 873-881. IEEE

@ Springer

	An online greedy allocation of VMs with non-increasing reservations in clouds
	Abstract
	1 Introduction
	2 Related work
	3 Modeling and notations
	4 The online greedy allocation with reservation mechanism
	4.1 Description of mechanism
	4.2 The algorithm design of OGAWR mechanism

	5 Analysis of OGAWR mechanism
	5.1 Competitive analysis

	6 Performance evaluation
	7 Conclusion
	Acknowledgments
	References

