
Resource and Performance Distribution Prediction for
Large Scale Analytics Queries

Alireza Khoshkbarforoushha
Australian National University & CSIRO

Canberra, Australia
a.khoshkbarforoushha@anu.edu.au

Rajiv Ranjan
Newcastle University, UK

raj.ranjan@ncl.ac.uk

ABSTRACT
Efficient resource consumption and performance estimation
of data-intensive workloads is central to the design and de-
velopment of workload management techniques. Recent work
has explored the efficacy of using distribution-based esti-
mation of workload performance as opposed to single point
prediction for a number of workload management problems
such as query scheduling, admission control, and the like.
However, the proposed approaches lack an efficient work-
load performance distribution prediction in that they sim-
ply assume that the probability distribution function (pdf)
of the target value is already available. This paper aims to
address this problem for an inseparable portion of big data
analytics workloads, Hive queries. To this end, we combine
knowledge of Hive query executions with the novel usage of
mixture density networks to predict the whole spectrum of
resource and performance as probability density functions.
We evaluate our technique using the TPC-H benchmark,
showing that it not only produces accurate pdf predictions
but outperforms the state of the art single point techniques
in half of experiments.

Keywords
Query performance prediction; Distribution prediction; Hive

1. INTRODUCTION
Data-intensive workload management strategies including

resource provisioning, workload scheduling, and admission
control need the cost of a request to be specified a pri-
ori. Recent studies [14, 5, 4] detailed the advantages of
distribution-based estimation as opposed to single point pre-
diction of workload performance for profit-oriented admis-
sion control [14], efficient query scheduling [5], and cost-
optimized cloud resource provisioning [4]. These studies sim-
ply assume that the probability distribution function (pdf)
of the target value (e.g. CPU, Response time, etc.) is al-
ready available. On the other hand, the state of the art

c©2016 Association for Computing Machinery. ACM acknowledges that this contri-
bution was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICPE’16, March 12-18, 2016, Delft, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2851578

estimators [2, 6, 7, 12, 8] model resource and performance
of data-intensive workload as a single point value.

This leaves us with one key question to answer in this pa-
per: How can we predict the resource and performance dis-
tribution of data-intensive workloads? Answering this ques-
tion is important for the increasingly common data-intensive
platforms where efficient resource usage prediction is a key
operating criterion for proper cluster and resource utiliza-
tion and service level agreement (SLA) management.

Moreover, in a shared multi-system cluster, having a mix
of different applications and workloads (e.g. Pig, Hive) run-
ning concurrently is a trivial practice to utilize resources cost
efficiently, while challenging accurate workload performance
prediction. In this context, we argue that with distribution-
based prediction of data-intensive workloads we are able to
tackle properly the inevitable performance variances in the
presence of resource contention.

To this end, in the subsequent section we derive an optimal
proposal model for CPU and Runtime distribution predic-
tion of the major big data workloads, Hive queries. Apache
Hive (https://hive.apache.org/) is a data warehouse infras-
tructure built on top of Hadoop that facilitates querying and
managing large datasets residing in distributed storage. It
provides a mechanism to project structure onto this data
and query the data using a SQL-style language, HiveQL.

1.1 Overview of the Proposed Approach
Our approach combines knowledge of Hive query process-

ing with Mixture Density Networks (MDN) [3], a flexible
technique to modelling real-valued distributions with neu-
ral networks. For this purpose, we firstly execute training
Hive workloads and log their CPU usage and runtime val-
ues along with predefined query features. Secondly, we input
the query features to the MDN model. Finally, the MDN
statistically analyses the feeding features’ numbers and ac-
tual observation of the resource consumption and runtime of
training data and predicts the probability distribution pa-
rameters (i.e. mean, variance, and mixing coefficients) over
target values (i.e. CPU and query execution time).

To illustrate the gains possible by using the proposed ap-
proach, consider Fig. 1 which displays two sample predicted
pdfs for CPU usage and runtime for one of the experiments
conducted on TPC-H queries (www.tpc.org/tpch/) in this
paper. The predicted pdfs correspond to a test input from
Template-7 (Q7) of TPC-H against 100GB database size. To
demonstrate the whole possible range of performance values
under Q7, the histograms for 30 instance queries based on
Q7 from the test set are shown as well.

As we can see, the predicted pdfs properly estimate the

49

Figure 1: Two sample predicted distributions for (a) CPU
and (b) Execution Time for a sample input from Q7 of TPC-
H. The histograms show respectively the actual CPU and
Runtime values for 30 different instance queries generated
based on template-7 and executed in the cluster.

CPU and Runtime distribution in which they show high
probability around the target value. More importantly, they
provide information about the whole spectrum of perfor-
mance and resource usage. Specifically, the predicted pdf
in Fig. 1(b) shows highly probable Runtime in ranges (0.1,
0.2) and (0.3, 0.5) which are consistent with the actual dis-
tribution, though the predicted pdf corresponds to one in-
put, meaning that the resulting uncertainty of pdf for the
range (0.8, 0.9) is defensible. Similarly, the predicted pdf for
CPU time (Fig. 1a) provides a complete description of the
statistical properties of the CPU usage through which we
are not only able to capture the observation point, but the
different range of resource usage. In contrast, a best predic-
tion from existing single point techniques [8, 2, 12] merely
estimates the point which is visualized by solid vertical line
through which, unlike the pdf, we are not able to directly
extract valuable statistical measures including variance, ex-
pectation, and confidence interval about the target.

1.2 Contributions
Distribution-Based Prediction: This paper transfers

solid techniques from other computer science fields to the
distributed systems community. Although other approaches
such as Conditional Density Estimation Network and Ran-
dom Vector Functional Link are also available to estimate
the pdf, the benefit of using MDN is its ability to model
unknown distributions. Put differently, the MDN does not
hold any assumption about the final shape of resource and
performance distribution of workloads.

Resource Modelling of Hive Queries: We develop a
set of black-box models for predicting CPU and runtime dis-
tribution of Hive query workloads. The models are trained
based on a set of SQL and MapReduce specific features
and the corresponding data input statistics appeared in the
HiveQL query execution plan.

Evaluation: We evaluate our approach on the TPC-H
state of the art decision support benchmark, showing that
it approximates accurate pdf predictions using proper error
metrics for evaluating distribution predictions.

2. RELATED WORK
Query processing runtime and resource usage estimation

has been investigated in the context of DBMS or MapRe-
duce [2, 7, 12, 8, 1, 6]. In the majority of related work,
different statistical ML techniques are applied for query per-
formance estimation. Specifically, techniques such as Kernel
Canonical Correlation Analysis (KCCA), Multiple Additive
Regression-Trees, and Support Vector Machine (SVM) have

been respectively built upon query plan features [7] opera-
tor level features [2, 12] or both [2]. These approaches build
statistical models using past query executions and a repre-
sentative set of query features which have high predictive
power in terms of resource or performance estimation.

In terms of concurrent workloads, [1] uses various regres-
sion models to predict the completion times of batch query
workloads when multiple queries are running concurrently.
Along similar lines, [6] argues that the buffer access latency
metric is correlated with the query runtime, and they use lin-
ear regression techniques for mapping buffer access latency
to the execution times. Though the above approaches pri-
marily use statistical ML techniques, they apply fine-grained
models in a different context, that of massively parallel data
processing in the MapReduce environment.

Another related paper applies KCCA to the Hive work-
load using two different set of features [8]. In their initial
job feature vector they consider features corresponding to
the number of occurrences of each operator in a job’s execu-
tion plan. The obtained results suggest that Hive operator
occurrence counts are insufficient for modelling Hive query
runtime which is somehow consistent with what we will re-
port and discuss in 4.4 (Fig. 4b and 5b). Following that,
they include another set of low level features pertaining to
Hive query execution such as the number of maps and re-
duces, bytes read locally, bytes read from HDFS, and bytes
input to the map stage, which lead to good prediction ac-
curacy. However, the provided low level features are not
available before the query is executed, so that it can not be
used for performance prediction of new incoming queries.

Note that all of the above studies approximate the perfor-
mance of workload as a single point value which is neither ex-
pressive enough nor does it capture performance variances.

3. PERFORMANCE MODELLING OF HIVE
To approach the problem of resource and performance dis-

tribution prediction of Hive workloads, we use knowledge of
Hive query execution in Hadoop combined with statistical
machine learning (ML) techniques.

3.1 Query Execution in HiveQL
A key to the accuracy of a prediction model is choosing

the most predictive features from the available set of features
to train the model. Therefore, we need to identify a set of
potential features that would affect the performance and
the query resource usage. To identify the potential features
we need to dissect the way a HiveQL statement is being
executed on top of a Hadoop cluster.

Once a Hive query is submitted against the chunks of data
residing in distributed file systems (e.g. HDFS, GFS), the
Hive engine compiles it to workflows of MapReduce jobs,
in which the SQL operators are plugged into map and re-
duce functions of the job. At the end of each map and
reduce phase, the intermediate results are materialized on
disk. During a Hive query execution, SQL specific opera-
tors (e.g. table scan, select) which are implemented inside
map and reduce functions along with MapReduce specific
tasks (e.g. read, spill, shuffle, write) are the main computa-
tion tasks which use cluster resources and impact the query
completion latency. The overhead of the latter is in fact the
function of the number of mappers and reducers spawned
across a cluster to execute the query’s operators against the
data blocks. This number is itself dependent on input data

50

to each query processing stage, job configurations, and avail-
able free resources in a multi-system cluster.

As we aim at resource and runtime distribution predic-
tion of Hive queries before any actual execution takes place,
we inevitably need to stick with the data provided by the
Hive query execution plan. Unlike conventional database
systems, the Hive execution plan is an intermediate step be-
fore determining the number of mappers and reducers to be
executed as a MapReduce job. However, assuming constant
configuration, the estimated input data size is a proper pre-
dictive feature for alleviating the issue of mappers/reducers
numbers and their corresponding Hadoop phases (e.g. read-
ing, spilling, shuffling, writing). Thus, our feature set in-
cludes SQL and MapReduce operator counts along with the
input record number and data size as specified in Table 1.

Table 1: Feature set for resource modelling of Hive queries.

Feature Name Description
SQL Operator No Number of SQL operators (e.g.

Table Scan) which appear in the
HiveQL query plan.

SQL Operator In-
put Records

Input Row Numbers for each oper-
ator as per the query plan.

SQL Operator In-
put Byte

Input Data Size to SQL operator.

MapReduce Op-
erator No

Number of MapReduce operators
(e.g. Reduce Output Operator),
appear in the HiveQL query plan.

MapReduce
Operator Input
Records

Input Row Numbers for each oper-
ator as per the query plan.

MapReduce Op-
erator Input Byte

Input Data Size to the MapReduce
specific operator.

We note that the resource contention among different con-
current workloads will impact the performance and following
its estimation. However we put forward the claim that with
distribution prediction of data-intensive workloads, we are
able to tackle properly the inevitable performance variances
in the presence of resource contention and runtime configu-
rations. We will discuss this issue in detail in 4.4 and 5.

3.2 Mixture Density Networks
One of the challenging decisions when using statistical

models is the choice of the underlying ML technique itself.
This is why identifying the most accurate prediction model
without training and testing multiple models is hardly pos-
sible. Nevertheless, the focus of our work which is condi-
tional probability density prediction, alleviates the prob-
lem of picking the right model. We use Mixture Density
Networks as an underlying ML technique in the proposed
approach. Our decision is backed up by i) its successful
applications in speech synthesis or meteorological domain,
and ii) its flexibility in capturing skewed and multi-modal
distributions, as exhibited by runtime and resource usage
distributions in a multi-system cluster.

A classic MDN fuses a Gaussian mixture model (GMM)
with multilayer perceptron (MLP). In MDN, the distribu-
tion of the outputs t is described by a parametric model
whose parameters are determined by the output of a neural
network, which takes x as inputs. Fig. 2 gives an overview
of MDN in which the neural network is responsible for map-
ping the input vector x to the parameters of the mixture

Figure 2: MDN approximates distribution parameters, con-
ditioned on the input vector.

model (αi, µi, σ
2), which in return provides the conditional

distribution. An MDN, in fact, maps input features x to the
parameters of a GMM: mixture weights αi, mean µi, and
variance σ2, which in turn produces the full pdf of an out-
put feature t, conditioned on the input vector p(t|x). Thus,
the conditional density function takes the form of GMM:

p(t|x) =

M∑
i=1

αi(x)φi(t|x) (1)

where M is the number of mixture components, φi is the
ith Gaussian component’s contribution to the conditional
density of the target vector t as follows:

φi(t|x) =
1

(2π)c/2σi(x)c
exp

{
− ||t−µi(x)||2

2σi(x)2

}
(2)

The MDN approximates the GMM as:

αi =
exp(zαi)∑M
j=1 exp(z

α
j)

(3)

σi = exp(zσi) (4)

µi = zµi (5)

where zαi , zσi , and zµi are the outputs of the neural network
corresponding to the mixture weights, variance, and mean
for the ith Gaussian component in the GMM, given x [3].
To constrain the mixture weights to be positive and sum to
unity, a softmax function is used in Eq. 3 which associates
the output of corresponding units in the neural network to
the mixing coefficients. Similarly, the variance parameters
(Eq. 4) are related to the outputs of the neural network
which constrains the standard deviations to be positive.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
Infrastructure Setup. We evaluate our models on CSIRO

Big Data cluster. The cluster comprises of 14 worker nodes
connected with fast Infiniband network, each featuring 2 x
Intel Xeon E5-2660 @ 2.20 GHz CPU (8 cores), 128 GB
RAM and 12 x 2 TB NL-SAS HD making up the total disk
space of 240 TB. All experiments were run on top of HiveQL
0.13.1, and Hadoop 2.3.0 in Yarn mode on.

51

Workloads. We test our approach on TPC-H bench-
mark. We execute TPC-H queries on six scaling factors: 2,
5, 25, 50, 75, and 100 GB. All databases are generated in
Apache Parquet data file format. The TPC-H workload con-
sists of all queries except the queries that are either super
slow (including Q2, Q8, Q9) or failed (e.g. Q191), thereby
we run the super slow queries for solely 2 and 5 GB database
size to keep the overall experiment duration under control.

There are approximately 11 queries from each template
in six databases. Thus, the resulting data set we used con-
tains 995 queries. Note that our cluster is shared by multi-
ple users in the organization who submit different ranges of
applications (e.g. Spark, MapReduce) for processing. More-
over, queries are either run sequentially or in parallel without
any pre-defined ordering to simulate real world conditions as
much as possible.

Training and Testing Settings. To assess how the re-
sult of a predictive model would be generalized to an inde-
pendent data set, we divide the TPC-H workload randomly
into training and testing datasets with 66% and 34% respec-
tively. Before training and testing, the input and output
features are normalized using z-score and min-max normal-
ization with range (0.1-0.9). For training and testing, we use
a Netlab toolbox [13] which is designed for the simulation of
neural network algorithms and related models, in particular
MDN. The implemented MDN model uses the MLP as a
feed forward neural network.

4.2 Error Metrics
To determine whether a probabilistic model performs well,

we need to implement a set of appropriate error metrics.
Therefore, in the following subsection three error metrics
including continuous ranked probability score (CRPS), neg-
ative log predictive density (NLPD), and root mean-square
error (RMSE) are defined. The first two measures are proper
metrics for evaluating the accuracy of a distribution predic-
tion. We also use RMSE to compare the MDN with the
state of the art single point prediction techniques.

The goal of a probabilistic prediction is to maximize the
sharpness of the predictive distributions subject to calibra-
tion [9]. Sharpness refers to the concentration of the predic-
tive distributions. Calibration refers to the statistical con-
sistency between the pdfs. The objective is to predict pdfs
that closely estimate the region in which the target lies with
proper sharpness. Thus, the CRPS [9] is a proper metric to
evaluate the accuracy of pdfs. The CRPS takes the whole
distribution into account when measuring the error:

CRPS(F, t) =

∫ ∞
−∞

[
F (x)−O(x, t)

]2
dx (6)

where F and O are the cumulative distribution functions
(cdfs) of prediction and observation distributions respec-
tively. O(x, t) is a step function that attains the value of
1 if x ≥ t and the value of 0 otherwise.

To calculate CRPS both the prediction and the observa-
tion are converted to cumulative distribution functions. The
CRPS compares the difference between cumulative distribu-
tions of prediction and observation as given by the hatched
area in Fig. 3. It can be seen that the area gets smaller
if the prediction distribution concentrates probability mass
near the observation, i.e. the better it approximates the step

1This issue is also reported by users in
https://issues.apache.org/jira/browse/HIVE-600

Figure 3: (a) predicted pdf and the observation (b)
schematic sketch of the CRPS as the difference between cdfs
of prediction and observation.

function. Moreover, the small CRPS value shows that the
prediction captures the sharpness of prediction accurately.

After calculating the CRPS for each prediction, we need
to average the values to evaluate the whole input set:

CRPS =
1

n

n∑
i=1

CRPS(Fi, ti) (7)

To evaluate the spread of predictive density in which our
targets lie, the average NLPD [10] error metric is used. Note
that unlike CRPS, it is not sensitive to distance:

NLPD =
1

n

n∑
i=1

−log(p(ti|xi)) (8)

where n is the number of observations. The NLPD evaluates
the amount of probability that the model assigns to targets
and penalizes both over- and under-confident predictions.

The last metric is the RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(ti −mi)2 (9)

where m refers to the mean of the pdfs as point predictions
for the MDNs. This metric allows us to compare the pro-
posed estimation technique with single point competitors.

4.3 State of the Art Techniques
In order to compare the performance of distribution-based

prediction with single point estimators, we study REPTree,
SVM, and MLP as the alternative techniques. REPTree and
SVM are the main prediction techniques used in [14] and [2]
respectively. Moreover, [12] also uses a variant of regression
trees as a core predictor. Since classical MDN uses MLP in
its neural network layer, we can expect that MDN as a single
point prediction shows almost the same performance and
accuracy as MLP. Thus, we report and discuss the results
under MLP as well. These three algorithms are implemented
in the well-known Weka package [11].

4.4 Evaluation: Single Point Estimators
Before presenting and discussing the results under the

MDN technique, let us first investigate how accurately the
Hive query performance and resource usage could be esti-
mated in terms of the proposed feature set (Table 1) using
well-established ML techniques.

Fig. 4 displays the performance of REPTree in CPU and
runtime estimation of Hive workloads where it approximates
resource usage more successfully than runtime. We will dis-
cuss this issue later in this section, by then we are interested
in the performance of other competing techniques as well.
Because, in general, identifying the most accurate predic-
tion model without training and testing multiple models is

52

Figure 4: (a) CPU and (b) Response time prediction for
Hive queries, modelled using the Table 1 feature set.

hardly possible, thereby the Relative Error (%) of CPU and
Runtime estimation of ∼ 1000 Hive queries using all three
alternative techniques (i.e. REPTree, SVM, and MLP) are
evaluated and shown in Fig. 5.

As we can see, REPTree outperforms the other predictors
in both CPU and Response Time estimation with relative
errors of 4.83% and 13.28% respectively. More importantly,
our classifiers are more successful in resource estimation than
runtime. The main reason behind this observation is the re-
source contention issue in a shared cluster of machines. As
stated earlier, our cluster is shared by multiple users and
various applications concurrently processing GBs or TBs of
data. Therefore, when multiple jobs and queries are sub-
mitted to the cluster, they compete for common resources
such as disk, memory, or CPU which might negatively im-
pact the performance. In terms of resource modelling, the
contention is not a challenge because our models capture the
CPU time which is the amount of time for which CPUs are
used for processing instructions, as opposed to, for example,
waiting for I/O operations. In contrast, interference of other
workloads inevitably hit the query runtime.

We argue that with the distribution of query performance
we are able properly to capture and express the whole spec-
trum of performance (i.e. here response time) and any possi-
ble variances in presence of resource contention. To capture
the impact of the concurrency and interference in perfor-
mance, there are some proposals [1, 6] for query executions
in DBMSs. However, the proposed techniques are not ap-
plicable to the Hive workloads in a multi-system cluster due
to i) different abstraction level of query processing in Hive,
and ii) lack of control on the type of concurrent workloads in
a cluster where they typically hold some assumptions about
the mixture of queries running concurrently. Nevertheless,
our approach relaxes such constraints and more importantly
it is able to estimate the performance while the concurrent
workloads are not even from the same platform, for example,
where a certain Hive query is competing with Spark jobs for
the CPU shares.

4.5 Evaluation: Distribution-Based Prediction
We now discuss the accuracy of the proposed approach.

The results for both the proposed approach using MDN and
the single point estimators under CRPS, NLPD, and RMSE
metrics are shown in Table 2. Note that the number of Gaus-
sian components is a hyper-parameter in MDN and needs to
be specified beforehand. To do so, we report the results un-
der 1, 3, and 5 mixture components (M).

All three metrics are negatively oriented scores; hence the
smaller the value the better. Let us first study the accuracy
of the MDN per se using CRPS and NLPD metric errors.
As the small numbers under CRPS and NLPD indicate, the

Figure 5: Relative error (%) for (a) CPU and (b) Response
time prediction using SVM, REPTree, and MLP techniques.

proposed model is an appropriate estimator for both CPU
and Runtime distribution prediction of Hive workloads. Un-
like single point estimators, the MDN shows slightly better
performance in Runtime prediction rather CPU. Another in-
teresting observation is that in the TPC-H workload sophis-
ticated MDN architecture with 3 and 5 mixture components
led to increased fidelity of results.

To compare the proposed approach with the competing
techniques, we need to treat it as a single point estimator,
thereby we use RMSE metric error for comparison. Accord-
ing to Table 2, the MDN outperforms SVM in CPU predic-
tion, albeit REPTree has the lowest RMSE value. Similarly,
REPTree outperforms the others in Response Time (RT)
estimation. However, this is not the whole story.

Taking the output corresponding to the mean of the pre-
dicted pdfs is almost equivalent to using an MLP with linear
output activation function, trained with a least-squares er-
ror function. It means that the MLP classifier accuracy is
comparable to the MDN. A closer look at the data indicates
that the RMSE values under the MLP are in between SVM
and REPTree. This observation is consistent with what we
saw in RMSE values for MDN.

However, the question may arise ”Why tharee RMSE val-
ues under MDN and MLP totally different?”. This observa-
tion is sourced from the different normalization and config-
uration parameters used in MLP implementation in Netlab
toolbox [13] and Weka [11] which are respectively employed
for the MDN and MLP (as a standalone technique) training.
To test our hypothesis, we replaced the default MLP con-
figuration of Weka with what is used in Netlab, observing
almost the same RMSE errors.

In summary, our approach outperforms the state of the art
single point techniques in 2 out of 4 experiments conducted
using SVM and REPTree. This result is quite promising
because it shows that our approach is not only able to pre-
dict the full distribution over targets accurately, it is also a
reliable single point estimator.

4.6 Training Times and Overhead
Table 3 denotes the training times regarding different work-

load sizes. As the results indicate, the training cost is very

Table 2: MDN performance compared with its competitors.

MDN REPT. SVM MLP
Targ. M CRPS NLPD RMSE RMSE RMSE RMSE

CPU
1 0.093 -1.2 0.077

0.005 0.08 0.0483 0.091 -2.54 0.08
5 0.024 -2.65 0.081

RT
1 0.064 -1.1 0.077

0.01 0.073 0.0313 0.031 -2.68 0.079
5 0.017 -3.2 0.08

53

Figure 6: Sample pdf predictions for (a) CPU and (b) Execution Time of Hive queries based on TPC-H workload.

small and it grows linearly in terms of the training set size.

Table 3: Training times in seconds with regard to different
workload sizes for 500 iterations.

Workload Size 1K 2K 4K 8K 16K
Elapsed Time (sec) 1.47 1.9 2.63 3.84 7.83

Apart from reasonable training time, low overhead in in-
voking a trained model at runtime is yet another critical
parameter because it has to be quick enough to get the es-
timates ready in time for decision making modules of the
workload management strategies at runtime, where unrea-
sonable delays may lead to SLA misses. To this end, we
measured the elapsed time for evaluating an MDN model
for a given input feature set on a 2.80GHz Intel Core i7, and
obtained an overhead of about 0.2 ms for each call. To put
these numbers in perspective, the execution plan generation
in Hive (using EXPLAIN command) for say Q1 of TPC-H
takes 4.97 seconds, meaning that invoking the MDN model
for each new incoming query would not be a significant fac-
tor in the overall workload management cost.

5. PREDICTION UTILIZATION
This section provides a clear picture of how the provided

prediction could be utilized and employed in workload man-
agement of data-intensive applications. We have visualized
some sample predicted pdfs from the test set of the TPC-H
workload as shown in Fig. 6. In particular, the figure plots
14 random sample predicted pdfs for CPU and execution
time. The histograms show the actual CPU and runtime
values for the whole test dataset. Each pdf may (not) belong
to different queries as they were randomly selected from the
test set, meaning they are conditioned on different inputs.
The dotted vertical line shows the observation value.

As the figures show, the pdfs accurately approximate the
resource usage and performance distributions which are pri-
marily within the range (0.1, 0.4) and (0.1, 0.25) for CPU
and runtime respectively. In a consistent manner, the mod-
els for CPU and execution time beyond the values 0.5 and
0.3 are much more uncertain. Put differently, the tendency
of all CPU and runtime pdfs is to the right hand side of
diagram and this is consistent with the plotted histograms
of actual resource and performance values in which, for ex-
ample, we hardly face resource demand above 0.5.

These sample pdfs demonstrate that the MDN is also a
reliable classifier in the classic point estimate sense, where
the pdfs cover the observation points with high probability
in all figures but pdfs number 14 in 6(a) and 8 in 6(b).
However, they locate the shape of distributions precisely.

We also argue that distribution-based prediction gives the

resource and workload management systems a concise yet lu-
cid way of interpreting workload behaviour. Such capability
is crucial for a number of resource management activities
such as run-time performance isolation or diagnosis inspec-
tion. In particular, upper and lower bounds of resource
usage simplify the task of performance isolation, since for
example our predictions in all figures capture the dominant
CPU time precisely. When it comes to performance inspec-
tion, diagnosing abnormal behaviour as per the predicted
numbers is also viable. Specifically, Fig. 6(a) reports that
for a given set of queries we will not face peak CPU time
(>0.5) very often, hence a higher peak CPU time indicates
the possible presence of a fault in the software or cluster.

6. CONCLUSIONS AND FUTURE WORK
This work presented a novel approach of using mixture

density networks for CPU and runtime distribution predic-
tion of large-scale analytics queries. We evaluated our ap-
proach on TPC-H, showing that it outperforms the state of
the art techniques in half of experiments. For future work,
we plan to devise a distribution-based admission control and
query scheduler on top of Apache Yarn to avoid resource us-
age spikes on busy clusters.

7. REFERENCES
[1] M. Ahmad et al. Predicting completion times of batch query

workloads using interaction-aware models and simulation. In
EDBT, pages 449–460. ACM, 2011.

[2] M. Akdere et al. Learning-based query performance modeling
and prediction. In ICDE, pages 390–401. IEEE, 2012.

[3] C. M. Bishop. Mixture density networks. 1994.

[4] S. Chaisiri et al. Optimization of resource provisioning cost in
cloud computing. TSC, 5(2):164–177, 2012.

[5] Y. Chi et al. Distribution-based query scheduling. VLDB,
6(9):673–684, 2013.

[6] J. Duggan et al. Performance prediction for concurrent
database workloads. In SIGMOD, pages 337–348. ACM, 2011.

[7] A. Ganapathi et al. Predicting multiple metrics for queries:
Better decisions enabled by machine learning. In ICDE, pages
592–603. IEEE, 2009.

[8] A. Ganapathi et al. Statistics-driven workload modeling for the
cloud. In ICDEW, pages 87–92. IEEE, 2010.

[9] T. Gneiting and A. E. Raftery. Strictly proper scoring rules,
prediction, and estimation. Journal of the American
Statistical Association, 102(477):359–378, 2007.

[10] I. J. Good. Rational decisions. Journal of the Royal Statistical
Society. Series B (Methodological), pages 107–114, 1952.

[11] M. Hall et al. The weka data mining software: an update.
SIGKDD, 11(1):10–18, 2009.

[12] J. Li et al. Robust estimation of resource consumption for sql
queries using statistical techniques. VLDB, 5(11):1555–1566,
2012.

[13] I. Nabney. NETLAB: algorithms for pattern recognition.
Springer Science & Business Media, 2002.

[14] P. Xiong et al. Activesla: a profit-oriented admission control
framework for database-as-a-service providers. In SoCC,
page 15. ACM, 2011.

54

