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a b s t r a c t 

A disruptive technology that is influencing not only computing paradigm but every other business is the 

rise of big data. Internet of Things (IoT) applications are considered to be a major source of big data. Such 

IoT applications are in general supported through clouds where data is stored and processed by big data 

processing systems. In order to improve the efficiency of cloud infrastructure so that they can efficiently 

support IoT big data applications, it is important to understand how these applications and the corre- 

sponding big data processing systems will perform in cloud computing environments. However, given 

the scalability and complex requirements of big data processing systems, an empirical evaluation on ac- 

tual cloud infrastructure can hinder the development of timely and cost effective IoT solutions. Therefore, 

a simulator supporting IoT applications in cloud environment is highly demanded, but such work is still 

in its infancy. To fill this gap, we have designed and implemented IOTSim which supports and enables 

simulation of IoT big data processing using MapReduce model in cloud computing environment. A real 

case study validates the efficacy of the simulator. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

According to a study by IBM, we are creating 2.5 quintillion

2.5 ×1018) bytes of data every day as of 2012 through different

ensing devices [1, 2] . IDC (International Data Corporation) predicts

hat from 2005 to 2020, the digital universe will grow by a factor

f 300, from 130 exabytes to 40,0 0 0 exabytes, or 40 trillion giga-

ytes (more than 5200 gigabytes for every man, woman, and child

n 2020). From 2012 until 2020, the digital universe will double

very two years. It can be declared that we are in the era of “Big

ata” which is accelerated by the Internet of Things (IoT) [3] . Such

Data Explosions” have led to the next grand challenge in com-

uting known as the ‘Big Data’ problem [4-7] , which is defined

s the practice of collecting and analysing structured and unstruc-

ured data sets flowing at a volume and velocity that is too large

nd too fast to store, process, and interpret manually or using tra-

itional data management applications. 
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Gartner forecasted that there will be nearly 50 to 100 billion

evices and sensors in the Internet of Things ecosystem by 2020

8] . Once all these devices and sensors are connected with each

ther, IoT will enable more new and innovative applications that

upport not only our daily basic needs but also solve economic,

nvironmental and health problems. Such enormous number of de-

ices connected to internet provide many kinds of services and

enerate Big Data [9] that needs to be processed and analysed

or knowledge extraction. Due to their intrinsic nature, IoT appli-

ations require lots of IT resources if users want fast analysis of

heir large datasets. Thousands of CPUs, hundreds of terabytes of

torages and very high speed interconnections are demanded. In

rder to support these IoT applications, a reliable, elastic and ag-

le platform is essential. Cloud computing is one of the enabling

latforms to support IoT applications. 

Cloud computing [10–13] is a model for on-demand access

o a shared pool of configurable resources (e.g. compute, net-

orks, servers, storage, applications, services, and software) that

an be easily provisioned by three commonly deployed cloud ser-

ice models namely Infrastructure as a Service (laaS), Platform as a

ervice (PaaS), Software as a Service (SaaS). For example, IaaS can

e used to implement custom gateway interfaces to support IoT

evices or sensors. Consumers can set up arbitrary services and

anage the devices or sensors via cloud resource access control.
alysing IoT applications, Journal of Systems Architecture (2016), 
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PaaS can provide a platform to access IoT data and on which cus-

tom IoT applications (or host-acquired IoT applications) can be de-

veloped. SaaS can be provided on top of the PaaS solutions to offer

the provider’s own SaaS platform for specific IoT domains such as

smart city, healthcare, video surveillance etc. 

Therefore, It is well understood that cloud computing platforms

are well suited for hosting IoT applications as they offer an elas-

tic hardware resources (e.g. CPU, Storage, and Network) that can

be scaled on-demand for handling large quantities of data from

IoT applications with uncertain volume, variety, velocity, and query

types [14-16] . These two technologies are inherently and increas-

ingly getting entwined with each other. Because of this, evaluation

and analysis of IoT applications in a real cloud computing environ-

ment can be a challenge for several reasons: 

• It is not cost-effective to procure or rent a large scale datacen-

tre resource pool that will accurately reflect realistic applica-

tion deployment and let practitioners experiment with dynamic

hardware resource and big data processing framework configu-

rations, and changing data volume, velocity, and variety 
• Frequently changing experiment configurations in a large-scale

real test bed involves lot of manual configuration, making the

performance analysis itself time-consuming. As a result, the re-

production of results becomes extremely difficult 
• The real experiments on such large-scale distributed platform

are sometimes impossible due to multiple test runs in different

conditions 
• It is almost impractical to set up a very large cluster consisting

hundreds or thousands of nodes to test the scalability of the

system 

An obvious solution to the aforementioned problems is to use

a simulator supporting IoT application processing. A simulator not

only allows us to measure scalability of computing resources for

IoT applications efficiently, but also enables to determine the ef-

fects of various independent variables (i.e., datacentre configura-

tion, Virtual Machine (VM) configuration, VM number, job configu-

ration, MapReduce (MR) combination) on different dependent vari-

ables (i.e., average execution time, maximum execution time, min-

imum execution time, make span, VM computation cost, network

cost) which will be detailed in Section 5.2 and Section 5.3 respec-

tively. Thus, IoT simulator will be a very useful tool to facilitate

both researchers and commercial entities equally to analyse, test

and design IoT applications with far less cost and time. 

As the Cloudsim simulation software is the best choice to simu-

late cloud computing resources [17] , we have designed and imple-

mented a simulator called IOTSim on top of Cloudsim, where we

can simulate the behaviour of IoT applications utilizing MapReduce

framework to process the big data generated from different sensing

devices. The key contributions of IOTSim lie in extending Cloudsim

with 1) IoT application model support and 2) enabling processing

of IoT data using big data system (i.e., MapReduce) in Cloud Com-

puting environment. The proposed simulator also allows modelling

and simulation of network usage between storage and processing

virtual machines, and between individual VM. 

The rest of this paper is organized as follows: Section 2 presents

the general IoT architecture with its definition described and

discusses the requirements for modelling IoT-based applications

within a simulator. Section 3 conducts an extensive litera-

ture review of simulators in cloud computing environment and

those simulators that specifically targets the MapReduce model.

Section 4 details the design and implementation of the proposed

IOTSim simulation framework. In Section 5 , simulation results to

show the efficacy of the proposed simulation tool are discussed.

Section 6 concludes the paper and points out some future work. 
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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. Requirement for modelling IoT-based applications 

The Internet of Things (IoT) is a network of networks, in which

bjects, animals or people are provided with unique identifiers and

he ability to transfer data over a network without requiring

uman-to-human or human-to-computer interaction [18] . The IoT

llows people and things to be connected anytime, anyplace, with

nything and anyone through the information and communica-

ions infrastructure to provide value-added services [8] . The IoT

as evolved from the convergence of wireless technologies, micro-

lectromechanical systems (MEMS) and the Internet. In a general

ay, IoT is formed by three layers [19-21] . 

• Physical Layer: 

◦ Perception layer: which is the bottom layer whose function

is to gather and transform data to readable digital signals

with RFID, sensors, etc. All the data collection and data sens-

ing part is done on this layer [22] . 

◦ Network layer: a middle layer which collects the data per-

ceived by the perception layer and sends digital signals to

corresponding platforms via network. This layer may only

include a gateway, having one interface connected to the

sensor network and another to the Internet. 
• Virtual Layer: represents the cyber representation of the physi-

cal world entities. In most cases, the virtual layer is deployed

on cloud computing infrastructure eliminating the need for

owning, housing and maintaining computing resources. It lever-

ages a combination of advanced batch and streaming process-

ing technologies to provide useful analytical insight for differ-

ent type of IoT applications that have historical and real time

requirements. 
• Application layer: is on the top layer, which performs the fi-

nal presentation of data. Application layer receives information

from the lower layer and provides global management of the

application presenting that information. According to the needs

of user, Application layer presents the data in the form of:

smart city, healthcare, video surveillance and other many kinds

of applications [23] . 

A typical relationship of IoT-based applications and cloud com-

uting is shown in Fig. 1 . IoT applications currently require a com-

ination of batch and streaming data across cloud resources [24] .

ne of the well-known and established batch processing tech-

ology is MapReduce which is a distributed parallel computing

ramework [25] . Typical implementations of the MapReduce model

nclude Disco [26] , Mars [27] , Phoenix [28] , Hadoop [29] and

oogle’s implementation [30] . Among them, Hadoop, which is in-

erently designed for batch and high throughput processing jobs,

as proven itself as the de facto solution to big data processing. In

his version of the proposed IoT simulator, we have implemented

he batch processing requirements of an IoT application. 

.1. Big data processing platforms: mapreduce 

The nature of the IoT, or properly speaking, of the data that

oT devices generate, leads to the “big data approach” . This is the

dea of running data processing in a scale-out fashion on commod-

ty hardware, using distributed data processing framework such as

apReduce for data incentive IoT-based applications. 

MapReduce is a predominant framework for large-scale dis-

ributed data processing based on the divide and conquer

aradigm [30] . MapReduce works by breaking the processing into

ap and reduce phases. Map task and reduce task are executed

n parallel on the different machines within the Hadoop cluster

y MapReduce framework. Map performs filtering and sorting op-

rations, and reduce performs summary operations. The user can

pecify map/reduce functions, and types of input/output. 
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 1. Relationship of IoT-based application and cloud computing. 
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Fig. 3. The MapReduce workflow in Hadoop. 
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Fig. 2 illustrates the overall process of MapReduce. Input data

tored on the Hadoop Distributed File System (HDFS) are split into

xed-size blocks, and each block is allocated to a map. Then user-

pecified map processes each key-value pair in the block; and out-

uts the result as a list of key-value pairs. The output of the map

s partitioned by the key, and the grouped records are stored in

he local disk and transferred to the different reducers, respec-

ively (called shuffle). Then, the transferred records are merged and

orted in the node where a reduce task performs. Each reduce task

equentially reads key-value pairs, and processes them by the user-

pecified reduce function. Finally, the output records of the reduce

ask are written to the HDFS. 

Fig. 3 presents the high level workflow of how a MapReduce

ob is executed in Hadoop. Specifically, MapReduce processing in

adoop is handled by the JobTracker and TaskTracker daemons.

he JobTracker maintains a view of all available processing re-

ources in the Hadoop cluster and, as application requests come

n, it schedules and deploys them to the TaskTracker nodes for ex-

cution. As applications are running, the JobTracker receives status

pdates from the TaskTracker nodes to track their progress. The

obTracker needs to run on a master node in the Hadoop cluster as

t coordinates the execution of all the incoming jobs. An instance

f the TaskTracker daemon runs on every slave node in the Hadoop

u

Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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luster, which means that each slave node has a service that ties it

o the processing (TaskTracker) and the storage (Data Node), which

nables Hadoop to be a distributed system. As a slave process,

he TaskTracker receives processing requests from the JobTracker.

ts primary responsibility is to track the execution of MapReduce

orkloads happening locally on its slave node and to send status

pdates to the JobTracker. 
alysing IoT applications, Journal of Systems Architecture (2016), 
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2.2. Requirements for modelling IoT-based applications 

There are three main issues in supporting the modelling of IoT-

based applications within a Cloud simulator. The first issue is from

the perspective of application configuration and modelling, and an-

other is from cloud service providers’ perspective in terms of pro-

cessing and network. In the following sections, we discuss these

issues and provide features that allow support of IoT-based appli-

cations for simulation of cloud computing environments. 

2.2.1. Application requirement 

As it can be noticed from the previous section, an IoT-based ap-

plication generally processes large data sets stored in clouds after

being collected from different devices. The simulator should thus

allow modelling of different IoT-based applications depending on

used big data processing platforms such as MapReduce. For exam-

ple, a MapReduce-compatible IoT application may consist of one

or more jobs that will split into a specific number of chunks of

data. These chunks are processed as map tasks at the beginning,

and thereafter, the intermediate output of map task is processed

by the corresponding reduce task. 

2.2.2. Big data processing requirement 

To support IoT applications, big data processing technologies

plays a central role. Hence, it is mandatorily required for the pro-

posed simulator to meet the big data processing requirement. De-

pending on various IoT-based applications, the simulator should of-

fer the capability that uses different big data processing technol-

ogy to support batch processing or stream processing on the big

data. Also, it should allow modelling and simulating the execution

of multiple jobs simultaneously in a scalable manner as it happens

in the real world. 

2.2.3. Network and processing infrastructure requirements 

An IoT-based application requires different types of storage that

are commonly ambient in cloud-based data centres to store con-

tent from the various devices, thus, a storage layer should be mod-

elled to simulate storage (such as Amazon S3, Azure Blob Storage,

Hadoop HDFS) and retrieval of any amount of data, subject to the

availability of network bandwidth. It is obvious that accessing files

in storages at run-time incurs additional delay for IoT-based appli-

cation execution. This is due to the latencies between the nodes

and storages when transferring the data files through the IoT net-

work. Hence, the design of network between hosts and storage is

required to model the aforementioned delay. 

3. Related works 

Over the last decades, many simulation frameworks have been

developed to facilitate researches on the behaviour of large-scale

distributed systems for hosting various application services (e.g.,

social networking, web hosting, scientific applications, and content

delivery). It is well understood that simulators offer an environ-

ment where performance evaluation studies can be conducted in a

repeatable and controllable manner. 

To the best of our knowledge, there is no simulator available

which specifically targets the IoT environment. However, there are

some closely related in terms of cloud simulator and MapReduce

simulator. 

3.1. Cloud simulator 

Popular cloud simulators that are capable of simulating and

modelling distributed system are typically classified into the fol-

lowing categories: 
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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• Grid Computing: the typical simulation toolkits are GridSim

[31] , MicroGrid [32] , GangSim [33] , SimGrid [34] , and OptorSim

[35] . 
• Peer-to-Peer network models such as structured and unstruc-

tured overlay networks were simulated in PlanetSim [36] . In

one study [37] , PlanetSim was integrated with GridSim for

evaluating the performance of decentralized and coordinated

scheduling of scientific applications across multiple computa-

tional sites (clusters, supercomputers, etc.). 
• Cloud computing model were simulated in GreenCloud [38] ,

iCanCloud [39] , Cloudsim [40] and its variants (CloudAnalyst

[41] , NetworkCloudsim [42] , EMUSIM [43] , MDCSim [44] ) has

been described and compared [45] . 

- GreenCloud, which is a packet-level simulator (developed

by extending NS-2) is capable of modelling behaviours of

network links, switches, gateways, and other hardware re-

sources (CPU and storage) in a cloud datacentre. The goal

of this simulator is to simplify performance tests of energy-

aware scheduling algorithms in cloud environments. Green-

Cloud is a packet-level simulator hence it requires extra

memory and processing power to create and transmit pack-

ets across simulation entities. 

- iCanCloud: It is a simulation platform which is oriented to-

wards the simulation of a wide range of Cloud Computing

systems and their underlying architecture. It has the abil-

ity to model and simulate large environments (thousands

of nodes) and distributed applications with a customizable

level of detail. 

- Cloudsim is one of the widely used discrete event (its def-

inition is detailed in Section 4.3 ) simulation frameworks as

it is highly extensible and flexible. It provides models for all

hardware resources including CPUs (virtual machine), stor-

age and networks (network contention and delays) within

multiple datacentres. Cloudsim has extensive support for

application (e.g., scientific and web hosting applications)

scheduling level simulation, as it provides cloud broker and

cloud exchange (for federated datacentre resource pooling)

entities. 

.2. MapReduce simulator 

Further to the above cloud simulators, some researchers de-

igned and implemented the simulation tools specifically targeted

or MapReduce framework. Such MapReduce simulators include: 

• MRPerf [46] , which can serve as a design tool for MapReduce

infrastructure and can help in designing new high performance

MapReduce setup, and in optimizing existing ones. However,

it cannot simulate complete behaviour of a Hadoop framework

and [47] claimed that accurate results for jobs of different type

of algorithms or different cluster configurations cannot be gen-

erated based on testing they performed on the MRPerf code. 
• Mumak [48] : It is an open source Apache’s MapReduce simula-

tor which uses data from real experiments to estimate the com-

pletion time for Map and Reduce tasks with different schedul-

ing algorithms. In cases where data from real experiments do

not exist, Mumak cannot estimate completion time for Map and

Reduce tasks. 
• SimMR [49] : was developed in HP lab. It can replay execution

traces of real workloads collected in Hadoop clusters (as well

as synthetic traces based on statistical properties of workloads)

for evaluating different resource allocation and scheduling ideas

in MapReduce environments. 
• MRSim [47] : It is a discrete event based MapReduce simula-

tor. It is able to simulate different type of MapReduce applica-

tions with the ability to study with good accuracy the effect of
alysing IoT applications, Journal of Systems Architecture (2016), 

http://dx.doi.org/10.1016/j.sysarc.2016.06.008


X. Zeng et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 5 

ARTICLE IN PRESS 

JID: SYSARC [m5G; July 20, 2016;21:56 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

o  

t  

e  

t

 

 

 

 

4

 

m  

a  

c  

T  

m  

t  

t  

p  

c  

a  

c  

e  

c  

p  

f

c  

i  

s  

a

4

 

l  

b  

C  

d  

t  

p  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

4

 

i  

c  

h  

d  

d  

d  

a  

a

 

s  

c  

s  

“  
dozens of job configuration parameters on the job performance.

However, it was modelled and simulated using SimJava discrete

event engine that has intrinsic weakness such as increased ker-

nel complexity [50] and lack of support of some advanced oper-

ations [40] . Because of this, the SimJava layer has been removed

from Cloudsim 2.0 onwards. 
• MR-Cloudsim [51] was developed (by extending Cloudsim) for

simulating MapReduce big data processing model. However,

MR-Cloudsim has several limitations as it only supports sim-

plistic, single-state Map and Reduce computation. Further, it

lacks support for network link modelling, which is a critical

element affecting the performance of MapReduce applications.

Also, there is lack of support for allowing multiple MapReduce

applications. 

Although, the aforementioned two types of simulators were

idely adopted in the study of the behaviours of cloud computing

nd MapReduce in distributed computing environment, they obvi-

usly lack the support of modelling and simulation for IoT applica-

ions. In contrast, the proposed IOTSim focuses on simulating IoT

nvironment and aims to offer the following advantages compared

o those existing simulators. 

• support for simulation of IoT big data processing using MapRe-

duce model or steam model in cloud computing environment 
• support for modelling and simulation of large scale multiple IoT

applications to run simultaneously in a shared cloud data cen-

tres 
• support for modelling network and storage delays existing in

the processing of IoT applications 

. Design and implementation of IOTSIM 

Cloudsim [40] , is an extensible simulation toolkit that enables

odelling and simulation of cloud computing environments and

pplication provisioning. It has many features, which make us

hoose it for building our simulator for analysing Iota Application.

o be specific, Cloudsim supports modelling and creation of one or

ore Virtual Machines (VMs) on a simulated node of a datacen-

re with different hardware configurations, cloud-based tasks and

heir mapping to suitable VMs. It also allows simulation of multi-

le datacentres to enable a study on federated and associated poli-

ies for migration of VMs for reliability and automatic scaling of

pplications. In addition, Cloudsim helps in modelling user appli-

ations having independent jobs, and design and analysis of differ-

nt hardware configurations, VM provisioning and scheduling poli-

ies. Hence, Cloudsim can pave the way for us to design and im-

lement our simulation tool specific for IoT-based applications. In

act, Bashar [17] had done a critical evaluation on various cloud 

omputing simulators and his study has concluded that Cloudsim

s the best choice if research has to be done by using a simulation

oftware. In the following section, we will details how we design

nd implement IOTSim by extending Cloudsim. 

.1. Proposed architecture 

Illuminated by the works of Cloudsim [40] , our IOTSim simu-

ator is designed using the layered architecture with support for

ig data processing framework. Fig. 4 shows components of the

loudsim architecture with the key elements of IOTSim (shown by

ark boxes). In this section, we outline the general layered archi-

ecture of IOTSim. The detailed design and functionality of our pro-

osed IOTSim’s components will be discussed in the later sections.

• Cloudsim Core Simulation Engine Layer: the bottommost layer,

which is a simulation engine that supports several core func-

tionalities, such as queuing and processing of events, creation
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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of Cloud system entities (services, host, datacentre, broker, and

virtual machines), communication between components, and 

management of the simulation clock. 
• Cloudsim Simulation Layer: this layer provides support for

modelling and simulation of virtualized Cloud-based datacen-

tre environments including dedicated management interfaces 

for virtual machines (VMs), memory, storage, and bandwidth.

The fundamental issues such as provisioning of hosts to VMs,

managing application execution, and monitoring dynamic sys-

tem state are handled by this layer. This layer consists of sev-

eral sublayers that model the core elements of Cloud Comput-

ing. The bottommost sublayers model datacentre, cloud coor-

dinator, and network topology. These components help in de-

signing Infrastructure-as-a-Service (IaaS) environments. The VM 

Services and Cloud Services provide the functionality to design

resource (VM) and management and application scheduling al-

gorithms. 
• Storage Layer: this layer supports modelling different type of

storage such as Amazon S3, Azure Blob Storage, and HDFS etc.

where large datasets generated from devices are stored. In run

time, IoT-based applications copy the data files from these stor-

ages, and write the intermediate data files to these storages

when need. A storage delay will be incurred at this layer. 
• Big Data Processing Layer: it includes two sub-layers. MapRe-

duce sublayer is to support applications where a batch-oriented

data processing paradigm is required while Streaming Comput-

ing sublayer aims to support applications that need a real-time

processing paradigm. Depending on which IoT-based applica-

tions the customer will use, it can support processing for the

big data generated from IoT devices or sensors using MapRe-

duce or streaming computing model. Due to the limitation of

Cloudsim mentioned in Section 3 , the Big Data Processing Layer

has been highly demanded in order to simulate and analyse

IoT-based Applications. Take the MapReduce-compatible appli-

cations as an example, a MapReduce model needs to be fully

implemented here where a set of new classes or entities such

as JobTracker, TaskTracker, Mapper and Reducer work as does

the real Hadoop and a series of events occur in some specific

order to finish a Map/Reduce process. This layer plays an inte-

gral role in support big data processing towards IoT-based ap-

plications. 
• User Code Layer: the top-most layer which exposes basic en-

tities for hosts (number of machines, their specification and

so on), IoT-based applications’ configurations (Job Length and

their requirements), VMs, number of users and their application

types, and broker scheduling policies. This layer helps users to

define their own simulation scenarios and configurations for

validating their algorithms. 

.2. Design considerations 

.2.1. Application model 

The application models in IoT environment can vary from build-

ng and home automation to wearables applications areas. The

urrent generation of IoT applications (such as smart city, smart

ealthcare, and video surveillance) combines multiple independent

ata analytics models, historical data repositories, and real-time

ata streams that are likely to be available across geographically

istributed datacentres (both private and public). Typically, such

pplications need to process large amounts of data by using par-

llel big data processing technologies such as MapReduce. 

Most simulators for cloud computing generally offer limited

upport for modelling execution of parallel and distributed appli-

ations. For example, Cloudsim allows modelling an application

ervice or a cloud task by using a programming structure called

Cloudlet”, which only represents single and atomic computation
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 4. The proposed layered architecture of IOTSim. 
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needs. This approach is obviously not appropriate for IoT applica-

tions scenarios. In order to support IoT applications simulation, one

approach that could be used is to introduce two types of Cloudlet,

one is MapCloudlet, and the other is ReduceCloudlet. The details of

the two types of Cloudlets are described in the next Section 4.3.1 .

Both of them inherits from Cloudsim Cloudlet and has their own

specific attributes and will be paired during the simulation. Also,

ReduceCloudlet always runs after MapCloudlet of the same input. 

4.2.2. Big data processing model 

When dealing with IoT-based applications, parallel big data pro-

cessing system has becomes the key to IoT applications. MapRe-

duce, as a predominant big data processing framework is largely

utilized by IOT applications. In Cloudsim, when Cloudlets come in,

they are simply submitted to the cloud datacentre via broker. How-

ever, it doesn’t suit for submitting MapReduce job in the same way

due to the complexity of MapReduce workflow. Since JobTracker

and TaskTracker play an integral part during the MapReduce pro-

cessing as depicted in the above section, the IOTSim simulator

needs to fully model and implement them as well as other no-

table features that MapReduce model has. Such features include:
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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1) there will be lots of communication and interaction between

hem on top of Cloudsim during the execution; (2) every separated

ap task output has one Reduce operation; (3) Reduce operation

as to come after Map operation of corresponding input; (4) mul-

iple MapReduce jobs can be submitted and run simultaneously in

 shared cloud-based big datacentres. 

.2.3. Network and storage model 

As mentioned, a large amount of data that are generated from

evices or sensors are stored in the Storage Layer. In runtime en-

ironment, a Map instance (mapper) operates in each slave node.

t copies data which is saved in the above Storage Layer to its

wn local hard disk. When the data is copied and saved in the lo-

al hard disk, mapper starts processing the allocated map task by

askTracker. Thereafter, the intermediate output will be generated

nd are associated with the Reduce instance. The paired reducer

eads the intermediate output and starts processing the allocated

educe task. The final output will be written into the Storage Layer.

herefore, there are two typical network delay incurred that affect

he performance of map or reduce task. In this scenario, network

nd storage model must be represented in a IOTSim simulator. One
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 5. Class diagram of IOTSim. 
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f feasible methods is to calculate the network consumption when

opying data from Storage Layer by mapper or copying intermedi-

te output from local disk by reducer. It is enough to guarantee the

ccuracy of simulator while calculating and presenting the network

elay incurred during the processing. 

.3. Design of entities/classes 

We would like to introduce the core components of Cloudsim

efore we present the design of IOTSim. There are two main parts

n Cloudsim simulation: entity and event: 

• Entity: refers to something which can individually and indepen-

dently exists. It is able to send messages to other entities and

process received messages as well as trigger and handle events.

Each entity is initiated at the beginning and shutdown at the

end during the simulation. 
• Event: represents a simulation event which is passed between

the entities in the simulation. Each event carries all the related

information about an event between two or more entities such

as event type, init time, time at which the event should occur,

finish time, time at which the event should be delivered to its

destination entity, the source entity and the destination entity

as well as the data that has to be passed to the destination

entity. Since Cloudsim is a discrete event-driven simulator, it is

dependent of the series of events that are generated in some

specific order. Without this order the simulation is impossible. 

.3.1. Application modelling design 

To model the MapReduce for IoT-based applications, the follow-

ng classes have been designed. 

• MapCloudlet: This class, which is inherited from Cloudlet, mod-

els the atomic map task which will be submitted by Datacen-

terBroker and executed in VM. It extends Cloudlet with specific

attributes. 
• ReduceCloudlet: This class, which is inherited from Cloudlet,

models the atomic reduce task which will be submitted by Dat-

acenterBroker and executed in VM. It extends Cloudlet with
specific attributes. s  

Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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.3.2. MapReduce modelling design 

To model a MapReduce process and behaviour within a data-

enter, the following classes/entities have been added to the IOT-

im. 

• JobTracker: represents an entity which receives the jobs sum-

mited by user, gets the data from storage, splits the jobs accord-

ing to user requirements and schedules them to the TaskTracker

node for execution. As applications are running in VM, the Job-

Tracker receives status updates from the TaskTracker nodes to

track their progress. If JobTracker finds that all Mappers has fin-

ished their tasks successfully, then it will communicates with

TaskTracker to launch the corresponding Reducer to execute

reduce task. It produces the intermediate output results after

each Mapper finishes its work and provides input for Reducer 
• TaskTracker: These classes represent entities which receive pro-

cessing requests from the JobTracker. Its primary responsibility

is to track the execution of map and reduce tasks happening

locally on its slave node and to report the status updates of

each map and reduce tasks to the JobTracker. TaskTracker man-

ages the processing resources on each slave node in the form

of processing slots — the slots defined for map tasks and re-

duce tasks. It schedule the split map tasks and reduce tasks to

the corresponding Mapper and Reducer, and monitors the sta-

tus updates of them 

• Mapper: These classes represent entities which receive the re-

quest of TaskTracker and communicate with IoTDatacenterBro-

ker to submit the corresponding map tasks to be executed in

datacentre. It frequently reports the status of map tasks to Task-

Tracker 
• Reducer: These classes represent entities which receive the re-

quest of TaskTracker and communicate with IoTDatacenterBro-

ker to submit the corresponding reduce tasks to be executed in

datacentre. It frequently reports the status of reduce tasks to

TaskTracker. 

Fig. 5 shows the above main classes or entities and their inter-

elationship in IOTSim. 

Fig. 6 summaries the workflows of these entities. Once an IoT-

ased job has been submitted, JobTracker begins to track a simu-

ated job and split the job. It creates one map task for each split.

hen, TaskTracker starts to track each map task and sends mes-

ages to the JobTracker via event mechanism which reports the
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 6. Sequency diagram: communication between IOTSim entities. 
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task status to the JobTracker. Once TaskTracker is aware that the

current tasks are finished, then, it starts to run a new task. If all

the map tasks are finished, then TaskTracker reports it to the Job-

Tracker, and is ready to run the corresponding reduce task. 

4.4. Implementation 

As mentioned before, our simulator extends Cloudsim. Hence,

the implementation consists of two parts according to the afore-

mentioned design decisions: modification and addition. Modifica-

tions are done on the original Cloudsim code including Datacentre,

CloudTag, and DatacenterBroker etc. Upon the requirements stated

in Section 2 , the big data processing paradigm need to be imple-

mented. 

Fig. 7 shows the flow of how IOTSim works. Firstly, IOTSim ini-

tializes a series of entities, for example, Datacentre, Broker, Job-

Tracker and TaskTracker. A specific number of VMs has been cre-

ated with the pre-defined configuration (stated in Table 2 ). It also

accepts multiple user-defined MapReduce jobs. When MapReduce

jobs come in, JobTracker splits them into a number of blocks and

schedules them to TaskTracker for execution. TaskTracker allocates

the split job into the corresponding Mapper and Reducer. Then,

Mapper and Reducer submit the corresponding map tasks and re-

duce tasks to the VMs where they are executed. The status of the

map tasks and reduce tasks are reported to TaskTracker. In the

runtime, the enhanced DatacenterBroker object works linking each

object. When the linking ends, the simulator takes an action on

captured event time. An event occurs when Cloudsim creates, ex-

ecutes, and terminates each object such as datacenter, broker, VM,

JobTracker and TaskTracker. runClockTick() function works check-

ing each SimEntity object and this state which is runnable at the

event time. If the state is runnable, each SimEntity object classi-

fies its own operable events. Each entity checks simulating tag and

operates each request. Each object has one of various tags. They

consist of entity creation, acknowledge, characteristic setting, event

pause, move, submit, migration, termination and etc. At the event

time that the cloudlet process is submitted, the simulator calcu-

lates all submitted cloudlet’s processing time. During the event

processing, a new event may be created. When new event is cre-

ated, send() or sendNow() function is called. These functions no-

tify that one event time is created. When the all event time is

over, then simulating ends and the simulation result is reported.
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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he simulation reports consist of each MapReduce jobs’ informa-

ion (name, split number, job length etc.), status, executed in which

atacentre and which VM, and processing result (job id, VM id,

tart time, execution time, finish time, VM computation cost etc.). 

.5. Extensions to cloudsim 

We have extended and enhanced Cloudsim with new function-

lity so that it can support executing multiple CloudletLists se-

uentially. The work originated from a functionality limitation ex-

sting in current Cloudsim. Internally, the broker has a very sim-

le operation and has a single CloudletList, which means if you

ubmitted multiple CloudletLists to the broker, they are always

erged to a single list, and they are handled as if only one sub-

ission were made. However, it is not suitable for a real MapRe-

uce framework as the reduce operation can only start after the

orresponding map operation. 

In order to solve this problem, we implemented a new bro-

er called IOTSimBroker which inherits the original broker in

loudsim. This new broker can accept the multiple Cloudlets and

xecute them sequentially. By virtue of this, the new broker can

uarantee execution of the reduce task after corresponding map

ask has ended. 

. Evaluation 

Currently, we implemented MapReduce model as one of the

ig data processing paradigm while keeping the stream computing

odel as future work. To evaluate the efficacy of IOTSim, we con-

uct a number of experiments and collect results. The experiment

esults were collected in a machine that had one Intel i7-5500 U

ore 2.40 GHz and 16GB of RAM memory. All of these hardware

esources were made available to a VM running Windows 7 SP1

hat was used for running the simulator. 

.1. Experiment scenario 

IoT applications are enabling smart city initiatives all over the

orld. Smart city includes many different com ponents (i.e., smart

ransportation, smart healthcare, smart energy) [52,53] , where big

ata processing technologies such as MapReduce play an integral

art. An example scenario could be from smart transportation that
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 7. The basic workflow of how IOTSim works. 
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 city council is planning to optimise and expand its road net-

ork. For such a scenario to be feasible, it is important that large

atasets such as road network, road traffic, commuter require-

ents etc. are collected and stored in the cloud infrastructure. Fur-

her, the council needs to process and analyse this big data stem-

ing from IoT devices to extract relevant knowledge such as highly

tilized roads, traffic patterns, risky roads etc. Using such datasets

s not an easy task due to its huge size and non-standard format

54] , hence, the MapReduce paradigm is used to speed up data ex-

raction, indexing, and querying from this big data in such sce-

arios. For our experimental evaluations, we have considered the

mart city application described earlier for modelling. We consid-

red there is one such application job or multiple jobs coming as

n input into our simulated environment. The incoming jobs are

rocessed using MapReduce approach which produces the corre-

ponding output once the jobs are finished. The output presents

he related information regarding the jobs including job type, job

ength, job size, the VM ID where map task or reduce task is being

rocessed, start time, execution time, and finish time etc. 

For comparisons, we have summarized four group experiments.

n each group, we change an independent variable, while keeping

thers constant. Hence, we can clearly observe the result and make

n appropriate analysis on how dependent variable is impacted by

ndependent variable in details and if it matches the real world. 

In the experiment, we define a series of key independent vari-

bles and dependent variables. independent variable include dat-

centre configuration, VM configuration, VM number, job config-

ration, MR combination while dependent variable include aver-

ge execution time, maximum execution time, minimum execution
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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ime, make span, delay time, VM computation cost, network cost.

hese independent variables are the main impact factors that af-

ect the above dependent variables. They will be detailed in the

ext section. 

It is worth noting that all of the above group experiments

which are detailed in Section 5.4 ) are with two cases considered. 

• Without Network Delay: in this scenario, JobTracker splits the

MapReduce jobs according to user requirements and schedules

them to the TaskTracker node for execution immediately when

it receives the jobs summited by user. Also, when all the Map-

pers finish the map tasks successfully, the corresponding re-

duce tasks begin to execute immediately. This scenario means

no network delay is incurred during the whole period that the

job is running in the simulated big data environment. 
• Network Delay: in this scenario, JobTracker firstly gets the data

from storage (HDFS) for each MapReduce job when the sim-

ulation begins, this causes the first delay that job starts af-

ter the simulation clock. By subtracting the start time of map

task and the start time of simulation clock time (also refer to

the formula of Delay Time stated in Section 5.3.5 ), the result

can be visualised. When all Mappers finish the map tasks, each

Mapper will produces an intermediate output, then, the corre-

sponding Reducer begins to work after it reads the intermedi-

ate output (in Hadoop, this is the shuffle process). Obviously,

this causes the second delay. The result can also be visualised

by subtracting the start time of reduce task and the finish time
of the corresponding map task. 

alysing IoT applications, Journal of Systems Architecture (2016), 
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Table 1 

Datacenter configuration. 

pesNumber // number of cpus in a host 500 

RAM //host memory (MB) 20,480 

Storage //host storage (MB) 1,0 0 0,0 0 0 

Bandwidth //amount of bandwidth 10 0 0 

MIPS //millions of instructions per second 10 0 0 
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5.2. Independent variables 

5.2.1. Datacenter configuration 

Datacentre models the physical hardware that is offered by big

data application provider. It encapsulates a set of computing hosts

that can either be homogeneous or heterogeneous with their hard-

ware configurations (memory, CPU, storage) where specific number

of hosts and VMs are generated and run. Table 1 lists the data-

centre configuration that is going to be consistent throughout the

entire evaluation. 

In Cloudsim, there are a few other parameters including OS,

system architect, and VMM to be defined for initialization. They

are not factors that can affect the aforementioned dependent vari-

ables. Hence, such parameters are irrelevant in our experiments. 

5.2.2. VM configuration 

VM component stores the following characteristics related to

a VM: processor, memory, storage size, bandwidth and MIPS in

Cloudsim. It should be submitted to the broker ahead of the sim-

ulation. VM parameters are monitored in Cloudsim, which means

each sum of VM parameter must be less than the corresponding

datacentre configuration. For a simplified reason, we define three

types of VM (Small, Medium, and Large) which is compatible with

typical computing infrastructure in Amazon etc. provider. The con-

figuration of three types of VM is listed in Table 2 . 

5.2.3. VM number 

Further to the above VM Configuration itself, we will also spec-

ify VM Number. This independent variable refers to the quantity

of VM in Datacentre. VM, which is hosted in the host, is the basic

computing unit where the jobs will be really processed. In our ex-

periment, we will change the VM Number when required. For the

sake of simplicity, we set the VM Number to be 3, 6 or 9. We can

definitely set a very large number of VM, however, it is limited by

the capacity of the Datacentre. 

5.2.4. Job configuration 

In Cloudsim, the complexity of an application is abstracted in

terms of its computation requirements. Every application service

has been modelled by Cloudlet. It has a pre-assigned instruction

length and data transfer overhead that it needs to undertake dur-

ing its life cycle. For the sake of simplicity, we define three types

of job configuration as following. 

5.2.5. MR combination 

This represents the specific joining number of map task and re-

duce task. For the proposed IOTSim, when datacentre receives a
Table 2 

VM configuration. 

VM Type 

Image Size //amount of storage (MB) 

Ram //VM ram (MB) 

MIPS //millions of instructions per second 

Bandwidth //amount of bandwidth 

pesNumber //number of CPUs in a VM 

VMCostPerSec // the cost of processing in VM

Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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ob with Job Length and data size specified, the joining number of

ap task and reduce task in each job (which we call MR Combi-

ation) should also be considered throughout the experiment. For

xample, M1R1 means there are one map task and one reduce task

or this job. In the same way, M20R1 means there are twenty map

asks and one reduce task for this job. 

.3. Dependent variables 

.3.1. Average execution time 

It refers to the average execution time of Map/Reduce job. Its

alue is given by 

verage Execution Time = 

∑ nm 

i =1 e t m 

(i) 

nm 

+ 

∑ nr 
j=1 e t r (i) 

nr 
, 

here et m 

(i) is the execution time of map task i and et r (j) is the

xecution time of reduce task j. nm means the number of map

asks in this job, and nr represents the number of reduce tasks in

his job. 

.3.2. Maximum execution time 

It means the maximum execution time of MapReduce Job. Its

alue is given by 

aximum Execution Time = max ( e t m 

(i ) ) + max (e t r ( j)) 

.3.3. Minimum execution time 

It represents the minimum execution time of Map/Reduce Job.

ts value is given by 

aximum Execution Time = min ( e t m 

(i ) ) + min (e t r ( j)) 

.3.4. Make span 

It is the time span of Map/Reduce job from start to finish. It is

alculated by 

ake Span = f t r (nr) , 

here ft r (nr) means the finished time of reduce task nr. 

.3.5. Delay time 

It means the discrepancy between reduce task starts and map

ask starts. It is calculated by 

elay Time = s t m 

(nm ) + s t r (nr) − f t m 

(nm ) , 

here st m 

(nm) means the start time of map task nm and st r (nr)

eans the start time of reduce task nr . 

.3.6. VM computation cost 

It refers to the CPU computation cost ($ unit) incurred when

M runs a Cloudlet. It is calculated by 

M Computing Cost = 

( 

nvm ∑ 

i =1 

e t m 

(i) + 

nvm ∑ 

j=1 

e t r (j) 

) 

, 

× VM Cost per Unit Time 

here et m 

(i) means the execution time of VM i when running the

ap task, while et r (j) means the execution time of VM j when run-

ing the reduce task. 
Small Medium Large 

10,0 0 0 20,0 0 0 40,0 0 0 

512 1024 2048 

250 500 10 0 0 

10 0 0 10 0 0 10 0 0 

1 2 4 

($) 1 2 4 
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Table 3 

Job configuration. 

Job Type Small Medium Big 

Job Length // the length (expressed in millions of instructions) of this job to be executed in the Datacenter 362,880 725,760 1,451,520 

Data Size // the data size (in MB) of this job before submitting to a Datacenter 20 0,0 0 0 40 0,0 0 0 80 0,0 0 0 
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time. 
.3.7. Network cost 

This dependent variable means the network cost ($ unit) in-

urred when job task gets data from storage and reduce task gets

ata from intermediate output of map task. It is calculated by 

etwork Cost = DelayTime × NetworkCost per Unit Time 

These dependent variables are very important factors when

nalysing IoT-based applications. It is not hard to understand they

re functions of the aforementioned independent variables, which

eans the value of these dependent variables change as the in-

ependent variables vary. For example, given the same IoT appli-

ation job, if we increase the VM number within the capability

hat the datacentre can offer, then, the make span, average exe-

ution time etc. may changes because more computing resources

re leveraged by map or reduce tasks in the big data processing

rocess. 

.4. Experiment results 

In Group 1 experiment, we set specific job configuration (as

resented in Table 3 ), VM configuration and VM number, for ex-

mple job type (Small Job), VM type (Small VM), VM number = 3

nd give different MR Combination from M1R1 to M20R1. We then

tart simulation in either Without Network Delay or Network De-

ay case respectively. After the simulation successfully finishes, we

ollect the data of Average Execution Time, Max Execution Time,

in Execution Time, Make Span and VM Computing Cost and Net-

ork Cost (only applicable for Network Delay case). The results of

roup 1 experiment are presented in the following line chart. 

In Fig. 8 (a), generally speaking, Execution Time (Average, Max,

nd Min) fluctuates as MR Combination increases. When number

f map task is smaller than the VM number (equals to 3), it can

e observed the execution time (Average, Max and Min) is iden-

ical because datacentre provides more VMs than the map taks of

he job need, which means some VMs are idle. Meanwhile, execu-

ion time (Average, Max and Min) decreases rapidly because more

ap tasks are generated and executed simultaneously in datacen-

re, such that less execution time is consumed. However, if the

umber of map task is greater than the VM number, execution

ime (Average, Max, and Min) begins to flatten and the discrep-

ncy between them is becoming narrow as MR combination in-

reases. This is because VMs are constrained in their computing

esources and many map tasks compete to be processed in these

Ms, such that the effect on reducing execution time by increas-

ng MR combination is getting more and more insignificant. All the

bove statement also apply to the situation when VM number is

arger than 3. 

Fig. 8 (b) compares the make span in Network Delay case with

hat in Without Network Delay case. Clearly, it is observed that

he make span of former is slightly larger than the make span of

he latter and the disparity between them is getting narrow as MR

ombination increases. This is because the delay incurs when copy-

ng data from storage and getting intermediate data generated by

ap task in the former case, and the delay becomes less and less

s MR Combination increases. 

In Group 2 experiment, we set job configuration (Small Job),

M configuration (Small VM) and MR combination (from M1R1 to

20R1) and keep them invariant in the experiment. But this time,
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an
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M number varies. In order to get better visualization result, we

et the VM number with appropriate discrepancy (i.e., VM number

quals 3, 6, 9). 

Fig. 9 shows the comparison of average execution time between

hese three cases (i.e., VM number = 3, 6, 9). When number of map

ask is smaller than VM number, their average execution time are

qual. Afterwards, the chart shows more VMs results in obvious

ess average execution time. To be precise, when VM number in-

reases from 3 to 6, the average execution time is reduced by 40%

n average and 50% if it further increases to 9. This is because

ore VM resources are available for processing the same job. 

The comparison of network cost is presented Fig. 10 . Interest-

ng, even though VM number has been changed, the network cost

s identical. This is because, given the same job, the data size is

dentical, which results in the same network delay. 

In Group 3 experiment, we set job configuration (Small Job)

nd VM number (equals 3) and provide different VM configura-

ion (from Small VM to Large VM) in our experiment. The results

f Group 3 experiment are presented in the following figure. 

Fig. 11 shows average execution time decreases exponentially if

e provide higher-profile VM. Precisely, Medium VM gets approxi-

ately 60% less average execution time, while Large VM consumes

bout 80% less average execution time when compared with Small

M. As presented in Table 2 , Large VM has four times MIPS as

uch as Small VM, and Medium VM offers twice MIPS than Small

M, hence, higher configured VM can definitely provide more com-

uting capacity. 

In Group 4 experiment, VM configuration (Small VM) and VM

umber (equals 3) are set, while job type varies (from Small Job to

ig Job) in our experiment. The VM computation cost is compared

n the following figure. 

Fig. 12 shows Big Job costs VM computing resource twice as

uch as Medium Job and the VM computation cost of Medium Job

s twice than Small Job. As presented in Table 3 , Big Job doubles its

ob length (MI) than Medium Job while Medium Job double its job

ength (MI) than Small Job, hence when the same quantity of VMs

ith identical VM configuration are offered, higher-workload Job

as linearly increased its VM computation cost, which matches the

eal world. 

In summary, we can conclude from the above observations that

fficacy of IoTSim has been proven through a number of experi-

ental results. IOTSim largely extended Cloudsim’s functionality to

upport for modelling and simulation of multiple IoT applications

unning simultaneously in a shared cloud data centres. In this ver-

ion of the proposed IOTSim simulator, it is capable of simulating

atch-oriented IoT applications by using MapReduce model with

 high degree of accuracy. IOTSim is able to support simulation

f IoT-based big data processing using MapReduce model with the

bility to study the correctness and effect of independent variables

.e., VM configuration, VM number, job configuration, MR combi-

ation) on the dependent variables (i.e., average execution time,

aximum execution time, minimum execution time, make span,

M computation cost and network cost). IOTSim enables the re-

earchers to analyse how a MapReduce-compatible IoT application

erforms in certain environment. The simulation result provides

etter perspective to analyse IoT-based applications using MapRe-

uce model in Cloud Computing environment with less cost and
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 8. Effects of independent variables on dependent variables by changing MR Combination: (a) execution time (Average, Max, Min); (b) Make Span. 

Fig. 9. Comparison of average execution time when changing VM Number. 
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6. Conclusion and future work 

Nowadays, increasing IoT-based applications rely on Clouds

to run big data processing platform to process massive

amounts of data generated from billions of devices and con-

duct data analytics for knowledge extraction. However, setting-up

such environment is very challenging and a tedious task and

is expensive in terms of cost and time. To address this prob-

lem, we proposed designed and implemented IOTSim. IOTSim

allows simulation of IoT application by inherently supporting
Please cite this article as: X. Zeng et al., IOTSim: A simulator for an

http://dx.doi.org/10.1016/j.sysarc.2016.06.008 
ig data processing system such as with MapReduce to facilitate

esearchers and commercial organizations to understand and

nalyse the impact and performance of IoT-based applications. Our

imulator is built on top of a widely used simulator, i.e., Cloudsim.

owever, we have extensively extended and improved the existing

unctions of Cloudsim. 

Although MapReduce is a popular distributed processing frame-

ork for batch oriented IoT applications, it has obvious restrictions

nd limits to handle those IoT applications that have real-time and

ow-latency requirements. Instead, stream processing is highly re-
alysing IoT applications, Journal of Systems Architecture (2016), 
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Fig. 10. Comparision of network cost when VM Number changes. 

Fig. 11. Comparison of average execution time when changing VM configuratoin. 

Fig. 12. Comparion of VM computation cost when changing job configuration. 
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uired and has been identified as the ideal platform to process

uch IoT applications in real time. Hence, in order to achieve sim-

lation of the stream computing sublayer in our proposed archi-

ecture, much of our future work In the future, we would like to

nvestigate the stream processing paradigm and techniques to de-

ign and implement stream computing model as a supplementary

o our current simulation works. 
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