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A disruptive technology that is influencing not only computing paradigm but every other business is the
rise of big data. Internet of Things (IoT) applications are considered to be a major source of big data. Such
IoT applications are in general supported through clouds where data is stored and processed by big data
processing systems. In order to improve the efficiency of cloud infrastructure so that they can efficiently
support IoT big data applications, it is important to understand how these applications and the corre-
sponding big data processing systems will perform in cloud computing environments. However, given
the scalability and complex requirements of big data processing systems, an empirical evaluation on ac-
tual cloud infrastructure can hinder the development of timely and cost effective IoT solutions. Therefore,
a simulator supporting IoT applications in cloud environment is highly demanded, but such work is still
in its infancy. To fill this gap, we have designed and implemented I0TSim which supports and enables
simulation of IoT big data processing using MapReduce model in cloud computing environment. A real
case study validates the efficacy of the simulator.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

According to a study by IBM, we are creating 2.5 quintillion
(2.5x1018) bytes of data every day as of 2012 through different
sensing devices [1, 2]. IDC (International Data Corporation) predicts
that from 2005 to 2020, the digital universe will grow by a factor
of 300, from 130 exabytes to 40,000 exabytes, or 40 trillion giga-
bytes (more than 5200 gigabytes for every man, woman, and child
in 2020). From 2012 until 2020, the digital universe will double
every two years. It can be declared that we are in the era of “Big
Data” which is accelerated by the Internet of Things (IoT) [3]. Such
“Data Explosions” have led to the next grand challenge in com-
puting known as the ‘Big Data’ problem [4-7], which is defined
as the practice of collecting and analysing structured and unstruc-
tured data sets flowing at a volume and velocity that is too large
and too fast to store, process, and interpret manually or using tra-
ditional data management applications.
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Gartner forecasted that there will be nearly 50 to 100 billion
devices and sensors in the Internet of Things ecosystem by 2020
[8]. Once all these devices and sensors are connected with each
other, IoT will enable more new and innovative applications that
support not only our daily basic needs but also solve economic,
environmental and health problems. Such enormous number of de-
vices connected to internet provide many kinds of services and
generate Big Data [9] that needs to be processed and analysed
for knowledge extraction. Due to their intrinsic nature, IoT appli-
cations require lots of IT resources if users want fast analysis of
their large datasets. Thousands of CPUs, hundreds of terabytes of
storages and very high speed interconnections are demanded. In
order to support these IoT applications, a reliable, elastic and ag-
ile platform is essential. Cloud computing is one of the enabling
platforms to support IoT applications.

Cloud computing [10-13] is a model for on-demand access
to a shared pool of configurable resources (e.g. compute, net-
works, servers, storage, applications, services, and software) that
can be easily provisioned by three commonly deployed cloud ser-
vice models namely Infrastructure as a Service (laaS), Platform as a
Service (PaaS), Software as a Service (SaaS). For example, [aaS can
be used to implement custom gateway interfaces to support IoT
devices or sensors. Consumers can set up arbitrary services and
manage the devices or sensors via cloud resource access control.
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PaaS can provide a platform to access IoT data and on which cus-
tom IoT applications (or host-acquired IoT applications) can be de-
veloped. SaaS can be provided on top of the PaaS solutions to offer
the provider’s own SaaS platform for specific IoT domains such as
smart city, healthcare, video surveillance etc.

Therefore, It is well understood that cloud computing platforms
are well suited for hosting IoT applications as they offer an elas-
tic hardware resources (e.g. CPU, Storage, and Network) that can
be scaled on-demand for handling large quantities of data from
IoT applications with uncertain volume, variety, velocity, and query
types [14-16]. These two technologies are inherently and increas-
ingly getting entwined with each other. Because of this, evaluation
and analysis of IoT applications in a real cloud computing environ-
ment can be a challenge for several reasons:

It is not cost-effective to procure or rent a large scale datacen-
tre resource pool that will accurately reflect realistic applica-
tion deployment and let practitioners experiment with dynamic
hardware resource and big data processing framework configu-
rations, and changing data volume, velocity, and variety
Frequently changing experiment configurations in a large-scale
real test bed involves lot of manual configuration, making the
performance analysis itself time-consuming. As a result, the re-
production of results becomes extremely difficult

The real experiments on such large-scale distributed platform
are sometimes impossible due to multiple test runs in different
conditions

It is almost impractical to set up a very large cluster consisting
hundreds or thousands of nodes to test the scalability of the
system

An obvious solution to the aforementioned problems is to use
a simulator supporting IoT application processing. A simulator not
only allows us to measure scalability of computing resources for
IoT applications efficiently, but also enables to determine the ef-
fects of various independent variables (i.e., datacentre configura-
tion, Virtual Machine (VM) configuration, VM number, job configu-
ration, MapReduce (MR) combination) on different dependent vari-
ables (i.e., average execution time, maximum execution time, min-
imum execution time, make span, VM computation cost, network
cost) which will be detailed in Section 5.2 and Section 5.3 respec-
tively. Thus, IoT simulator will be a very useful tool to facilitate
both researchers and commercial entities equally to analyse, test
and design IoT applications with far less cost and time.

As the Cloudsim simulation software is the best choice to simu-
late cloud computing resources [17], we have designed and imple-
mented a simulator called I0OTSim on top of Cloudsim, where we
can simulate the behaviour of IoT applications utilizing MapReduce
framework to process the big data generated from different sensing
devices. The key contributions of IOTSim lie in extending Cloudsim
with 1) IoT application model support and 2) enabling processing
of IoT data using big data system (i.e., MapReduce) in Cloud Com-
puting environment. The proposed simulator also allows modelling
and simulation of network usage between storage and processing
virtual machines, and between individual VM.

The rest of this paper is organized as follows: Section 2 presents
the general IoT architecture with its definition described and
discusses the requirements for modelling IoT-based applications
within a simulator. Section 3 conducts an extensive litera-
ture review of simulators in cloud computing environment and
those simulators that specifically targets the MapReduce model.
Section 4 details the design and implementation of the proposed
IOTSim simulation framework. In Section 5, simulation results to
show the efficacy of the proposed simulation tool are discussed.
Section 6 concludes the paper and points out some future work.

2. Requirement for modelling IoT-based applications

The Internet of Things (IoT) is a network of networks, in which
objects, animals or people are provided with unique identifiers and
the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction [18]. The IoT
allows people and things to be connected anytime, anyplace, with
anything and anyone through the information and communica-
tions infrastructure to provide value-added services [8]. The IoT
has evolved from the convergence of wireless technologies, micro-
electromechanical systems (MEMS) and the Internet. In a general
way, IoT is formed by three layers [19-21].

o Physical Layer:

o Perception layer: which is the bottom layer whose function
is to gather and transform data to readable digital signals
with RFID, sensors, etc. All the data collection and data sens-
ing part is done on this layer [22].

o Network layer: a middle layer which collects the data per-
ceived by the perception layer and sends digital signals to
corresponding platforms via network. This layer may only
include a gateway, having one interface connected to the
sensor network and another to the Internet.

o Virtual Layer: represents the cyber representation of the physi-
cal world entities. In most cases, the virtual layer is deployed
on cloud computing infrastructure eliminating the need for
owning, housing and maintaining computing resources. It lever-
ages a combination of advanced batch and streaming process-
ing technologies to provide useful analytical insight for differ-
ent type of IoT applications that have historical and real time
requirements.

Application layer: is on the top layer, which performs the fi-
nal presentation of data. Application layer receives information
from the lower layer and provides global management of the
application presenting that information. According to the needs
of user, Application layer presents the data in the form of:
smart city, healthcare, video surveillance and other many kinds
of applications [23].

A typical relationship of IoT-based applications and cloud com-
puting is shown in Fig. 1. IoT applications currently require a com-
bination of batch and streaming data across cloud resources [24].
One of the well-known and established batch processing tech-
nology is MapReduce which is a distributed parallel computing
framework [25]. Typical implementations of the MapReduce model
include Disco [26], Mars [27], Phoenix [28], Hadoop [29] and
Google’s implementation [30]. Among them, Hadoop, which is in-
herently designed for batch and high throughput processing jobs,
has proven itself as the de facto solution to big data processing. In
this version of the proposed IoT simulator, we have implemented
the batch processing requirements of an IoT application.

2.1. Big data processing platforms: mapreduce

The nature of the IoT, or properly speaking, of the data that
[oT devices generate, leads to the “big data approach” . This is the
idea of running data processing in a scale-out fashion on commod-
ity hardware, using distributed data processing framework such as
MapReduce for data incentive IoT-based applications.

MapReduce is a predominant framework for large-scale dis-
tributed data processing based on the divide and conquer
paradigm [30]. MapReduce works by breaking the processing into
map and reduce phases. Map task and reduce task are executed
in parallel on the different machines within the Hadoop cluster
by MapReduce framework. Map performs filtering and sorting op-
erations, and reduce performs summary operations. The user can
specify map/reduce functions, and types of input/output.
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Fig. 1. Relationship of IoT-based application and cloud computing.
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Fig. 2. The Structure of MapReduce model.

Fig. 2 illustrates the overall process of MapReduce. Input data
stored on the Hadoop Distributed File System (HDFS) are split into
fixed-size blocks, and each block is allocated to a map. Then user-
specified map processes each key-value pair in the block; and out-
puts the result as a list of key-value pairs. The output of the map
is partitioned by the key, and the grouped records are stored in
the local disk and transferred to the different reducers, respec-
tively (called shuffle). Then, the transferred records are merged and
sorted in the node where a reduce task performs. Each reduce task
sequentially reads key-value pairs, and processes them by the user-
specified reduce function. Finally, the output records of the reduce
task are written to the HDFS.

Fig. 3 presents the high level workflow of how a MapReduce
job is executed in Hadoop. Specifically, MapReduce processing in
Hadoop is handled by the JobTracker and TaskTracker daemons.
The JobTracker maintains a view of all available processing re-
sources in the Hadoop cluster and, as application requests come
in, it schedules and deploys them to the TaskTracker nodes for ex-
ecution. As applications are running, the JobTracker receives status
updates from the TaskTracker nodes to track their progress. The
JobTracker needs to run on a master node in the Hadoop cluster as
it coordinates the execution of all the incoming jobs. An instance
of the TaskTracker daemon runs on every slave node in the Hadoop

Master node

MapReduce job
submitted by client

A
7

JobTracker

Slave node Slave node Slave node
TaskTracker TaskTracker TaskTracker
Map Task or Map Task or Map Task or
Reduce Task Reduce Task Reduce Task

Fig. 3. The MapReduce workflow in Hadoop.

cluster, which means that each slave node has a service that ties it
to the processing (TaskTracker) and the storage (Data Node), which
enables Hadoop to be a distributed system. As a slave process,
the TaskTracker receives processing requests from the JobTracker.
Its primary responsibility is to track the execution of MapReduce
workloads happening locally on its slave node and to send status
updates to the JobTracker.
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2.2. Requirements for modelling loT-based applications

There are three main issues in supporting the modelling of IoT-
based applications within a Cloud simulator. The first issue is from
the perspective of application configuration and modelling, and an-
other is from cloud service providers’ perspective in terms of pro-
cessing and network. In the following sections, we discuss these
issues and provide features that allow support of IoT-based appli-
cations for simulation of cloud computing environments.

2.2.1. Application requirement

As it can be noticed from the previous section, an loT-based ap-
plication generally processes large data sets stored in clouds after
being collected from different devices. The simulator should thus
allow modelling of different IoT-based applications depending on
used big data processing platforms such as MapReduce. For exam-
ple, a MapReduce-compatible IoT application may consist of one
or more jobs that will split into a specific number of chunks of
data. These chunks are processed as map tasks at the beginning,
and thereafter, the intermediate output of map task is processed
by the corresponding reduce task.

2.2.2. Big data processing requirement

To support IoT applications, big data processing technologies
plays a central role. Hence, it is mandatorily required for the pro-
posed simulator to meet the big data processing requirement. De-
pending on various loT-based applications, the simulator should of-
fer the capability that uses different big data processing technol-
ogy to support batch processing or stream processing on the big
data. Also, it should allow modelling and simulating the execution
of multiple jobs simultaneously in a scalable manner as it happens
in the real world.

2.2.3. Network and processing infrastructure requirements

An loT-based application requires different types of storage that
are commonly ambient in cloud-based data centres to store con-
tent from the various devices, thus, a storage layer should be mod-
elled to simulate storage (such as Amazon S3, Azure Blob Storage,
Hadoop HDFS) and retrieval of any amount of data, subject to the
availability of network bandwidth. It is obvious that accessing files
in storages at run-time incurs additional delay for IoT-based appli-
cation execution. This is due to the latencies between the nodes
and storages when transferring the data files through the IoT net-
work. Hence, the design of network between hosts and storage is
required to model the aforementioned delay.

3. Related works

Over the last decades, many simulation frameworks have been
developed to facilitate researches on the behaviour of large-scale
distributed systems for hosting various application services (e.g.,
social networking, web hosting, scientific applications, and content
delivery). It is well understood that simulators offer an environ-
ment where performance evaluation studies can be conducted in a
repeatable and controllable manner.

To the best of our knowledge, there is no simulator available
which specifically targets the IoT environment. However, there are
some closely related in terms of cloud simulator and MapReduce
simulator.

3.1. Cloud simulator

Popular cloud simulators that are capable of simulating and
modelling distributed system are typically classified into the fol-
lowing categories:

e Grid Computing: the typical simulation toolkits are GridSim
[31], MicroGrid [32], GangSim [33], SimGrid [34], and OptorSim
[35].

o Peer-to-Peer network models such as structured and unstruc-
tured overlay networks were simulated in PlanetSim [36]. In
one study [37], PlanetSim was integrated with GridSim for
evaluating the performance of decentralized and coordinated
scheduling of scientific applications across multiple computa-
tional sites (clusters, supercomputers, etc.).

e Cloud computing model were simulated in GreenCloud [38],
iCanCloud [39], Cloudsim [40] and its variants (CloudAnalyst
[41], NetworkCloudsim [42], EMUSIM [43], MDCSim [44]) has
been described and compared [45].

- GreenCloud, which is a packet-level simulator (developed
by extending NS-2) is capable of modelling behaviours of
network links, switches, gateways, and other hardware re-
sources (CPU and storage) in a cloud datacentre. The goal
of this simulator is to simplify performance tests of energy-
aware scheduling algorithms in cloud environments. Green-
Cloud is a packet-level simulator hence it requires extra
memory and processing power to create and transmit pack-
ets across simulation entities.

- iCanCloud: It is a simulation platform which is oriented to-
wards the simulation of a wide range of Cloud Computing
systems and their underlying architecture. It has the abil-
ity to model and simulate large environments (thousands
of nodes) and distributed applications with a customizable
level of detail.

- Cloudsim is one of the widely used discrete event (its def-
inition is detailed in Section 4.3) simulation frameworks as
it is highly extensible and flexible. It provides models for all
hardware resources including CPUs (virtual machine), stor-
age and networks (network contention and delays) within
multiple datacentres. Cloudsim has extensive support for
application (e.g., scientific and web hosting applications)
scheduling level simulation, as it provides cloud broker and
cloud exchange (for federated datacentre resource pooling)
entities.

3.2. MapReduce simulator

Further to the above cloud simulators, some researchers de-
signed and implemented the simulation tools specifically targeted
for MapReduce framework. Such MapReduce simulators include:

o MRPerf [46], which can serve as a design tool for MapReduce
infrastructure and can help in designing new high performance
MapReduce setup, and in optimizing existing ones. However,
it cannot simulate complete behaviour of a Hadoop framework
and [47] claimed that accurate results for jobs of different type
of algorithms or different cluster configurations cannot be gen-
erated based on testing they performed on the MRPerf code.

o Mumak [48]: It is an open source Apache’s MapReduce simula-
tor which uses data from real experiments to estimate the com-
pletion time for Map and Reduce tasks with different schedul-
ing algorithms. In cases where data from real experiments do
not exist, Mumak cannot estimate completion time for Map and
Reduce tasks.

o SimMR [49]: was developed in HP lab. It can replay execution
traces of real workloads collected in Hadoop clusters (as well
as synthetic traces based on statistical properties of workloads)
for evaluating different resource allocation and scheduling ideas
in MapReduce environments.

o MRSim [47]: It is a discrete event based MapReduce simula-
tor. It is able to simulate different type of MapReduce applica-
tions with the ability to study with good accuracy the effect of
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dozens of job configuration parameters on the job performance.
However, it was modelled and simulated using SimJava discrete
event engine that has intrinsic weakness such as increased ker-
nel complexity [50] and lack of support of some advanced oper-
ations [40]. Because of this, the SimJava layer has been removed
from Cloudsim 2.0 onwards.

MR-Cloudsim [51] was developed (by extending Cloudsim) for
simulating MapReduce big data processing model. However,
MR-Cloudsim has several limitations as it only supports sim-
plistic, single-state Map and Reduce computation. Further, it
lacks support for network link modelling, which is a critical
element affecting the performance of MapReduce applications.
Also, there is lack of support for allowing multiple MapReduce
applications.

Although, the aforementioned two types of simulators were
widely adopted in the study of the behaviours of cloud computing
and MapReduce in distributed computing environment, they obvi-
ously lack the support of modelling and simulation for IoT applica-
tions. In contrast, the proposed I0TSim focuses on simulating IoT
environment and aims to offer the following advantages compared
to those existing simulators.

o support for simulation of IoT big data processing using MapRe-
duce model or steam model in cloud computing environment

o support for modelling and simulation of large scale multiple IoT
applications to run simultaneously in a shared cloud data cen-
tres

o support for modelling network and storage delays existing in
the processing of IoT applications

4. Design and implementation of IOTSIM

Cloudsim [40], is an extensible simulation toolkit that enables
modelling and simulation of cloud computing environments and
application provisioning. It has many features, which make us
choose it for building our simulator for analysing lota Application.
To be specific, Cloudsim supports modelling and creation of one or
more Virtual Machines (VMs) on a simulated node of a datacen-
tre with different hardware configurations, cloud-based tasks and
their mapping to suitable VMs. It also allows simulation of multi-
ple datacentres to enable a study on federated and associated poli-
cies for migration of VMs for reliability and automatic scaling of
applications. In addition, Cloudsim helps in modelling user appli-
cations having independent jobs, and design and analysis of differ-
ent hardware configurations, VM provisioning and scheduling poli-
cies. Hence, Cloudsim can pave the way for us to design and im-
plement our simulation tool specific for IoT-based applications. In
fact, Bashar [17] had done a critical evaluation on various cloud
computing simulators and his study has concluded that Cloudsim
is the best choice if research has to be done by using a simulation
software. In the following section, we will details how we design
and implement I0TSim by extending Cloudsim.

4.1. Proposed architecture

Illuminated by the works of Cloudsim [40], our IOTSim simu-
lator is designed using the layered architecture with support for
big data processing framework. Fig. 4 shows components of the
Cloudsim architecture with the key elements of IOTSim (shown by
dark boxes). In this section, we outline the general layered archi-
tecture of IOTSim. The detailed design and functionality of our pro-
posed I0TSim’s components will be discussed in the later sections.

e Cloudsim Core Simulation Engine Layer: the bottommost layer,
which is a simulation engine that supports several core func-
tionalities, such as queuing and processing of events, creation

of Cloud system entities (services, host, datacentre, broker, and
virtual machines), communication between components, and
management of the simulation clock.
Cloudsim Simulation Layer: this layer provides support for
modelling and simulation of virtualized Cloud-based datacen-
tre environments including dedicated management interfaces
for virtual machines (VMs), memory, storage, and bandwidth.
The fundamental issues such as provisioning of hosts to VMs,
managing application execution, and monitoring dynamic sys-
tem state are handled by this layer. This layer consists of sev-
eral sublayers that model the core elements of Cloud Comput-
ing. The bottommost sublayers model datacentre, cloud coor-
dinator, and network topology. These components help in de-
signing Infrastructure-as-a-Service (IaaS) environments. The VM
Services and Cloud Services provide the functionality to design
resource (VM) and management and application scheduling al-
gorithms.
Storage Layer: this layer supports modelling different type of
storage such as Amazon S3, Azure Blob Storage, and HDFS etc.
where large datasets generated from devices are stored. In run
time, IoT-based applications copy the data files from these stor-
ages, and write the intermediate data files to these storages
when need. A storage delay will be incurred at this layer.
Big Data Processing Layer: it includes two sub-layers. MapRe-
duce sublayer is to support applications where a batch-oriented
data processing paradigm is required while Streaming Comput-
ing sublayer aims to support applications that need a real-time
processing paradigm. Depending on which IoT-based applica-
tions the customer will use, it can support processing for the
big data generated from IoT devices or sensors using MapRe-
duce or streaming computing model. Due to the limitation of
Cloudsim mentioned in Section 3, the Big Data Processing Layer
has been highly demanded in order to simulate and analyse
loT-based Applications. Take the MapReduce-compatible appli-
cations as an example, a MapReduce model needs to be fully
implemented here where a set of new classes or entities such
as JobTracker, TaskTracker, Mapper and Reducer work as does
the real Hadoop and a series of events occur in some specific
order to finish a Map/Reduce process. This layer plays an inte-
gral role in support big data processing towards IoT-based ap-
plications.

e User Code Layer: the top-most layer which exposes basic en-
tities for hosts (number of machines, their specification and
so on), IoT-based applications’ configurations (Job Length and
their requirements), VMs, number of users and their application
types, and broker scheduling policies. This layer helps users to
define their own simulation scenarios and configurations for
validating their algorithms.

4.2. Design considerations

4.2.1. Application model

The application models in IoT environment can vary from build-
ing and home automation to wearables applications areas. The
current generation of IoT applications (such as smart city, smart
healthcare, and video surveillance) combines multiple independent
data analytics models, historical data repositories, and real-time
data streams that are likely to be available across geographically
distributed datacentres (both private and public). Typically, such
applications need to process large amounts of data by using par-
allel big data processing technologies such as MapReduce.

Most simulators for cloud computing generally offer limited
support for modelling execution of parallel and distributed appli-
cations. For example, Cloudsim allows modelling an application
service or a cloud task by using a programming structure called
“Cloudlet”, which only represents single and atomic computation
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Fig. 4. The proposed layered architecture of I0TSim.

needs. This approach is obviously not appropriate for IoT applica-
tions scenarios. In order to support IoT applications simulation, one
approach that could be used is to introduce two types of Cloudlet,
one is MapCloudlet, and the other is ReduceCloudlet. The details of
the two types of Cloudlets are described in the next Section 4.3.1.
Both of them inherits from Cloudsim Cloudlet and has their own
specific attributes and will be paired during the simulation. Also,
ReduceCloudlet always runs after MapCloudlet of the same input.

4.2.2. Big data processing model

When dealing with IoT-based applications, parallel big data pro-
cessing system has becomes the key to IoT applications. MapRe-
duce, as a predominant big data processing framework is largely
utilized by 10T applications. In Cloudsim, when Cloudlets come in,
they are simply submitted to the cloud datacentre via broker. How-
ever, it doesn't suit for submitting MapReduce job in the same way
due to the complexity of MapReduce workflow. Since JobTracker
and TaskTracker play an integral part during the MapReduce pro-
cessing as depicted in the above section, the IOTSim simulator
needs to fully model and implement them as well as other no-
table features that MapReduce model has. Such features include:

(1) there will be lots of communication and interaction between
them on top of Cloudsim during the execution; (2) every separated
Map task output has one Reduce operation; (3) Reduce operation
has to come after Map operation of corresponding input; (4) mul-
tiple MapReduce jobs can be submitted and run simultaneously in
a shared cloud-based big datacentres.

4.2.3. Network and storage model

As mentioned, a large amount of data that are generated from
devices or sensors are stored in the Storage Layer. In runtime en-
vironment, a Map instance (mapper) operates in each slave node.
It copies data which is saved in the above Storage Layer to its
own local hard disk. When the data is copied and saved in the lo-
cal hard disk, mapper starts processing the allocated map task by
TaskTracker. Thereafter, the intermediate output will be generated
and are associated with the Reduce instance. The paired reducer
reads the intermediate output and starts processing the allocated
reduce task. The final output will be written into the Storage Layer.
Therefore, there are two typical network delay incurred that affect
the performance of map or reduce task. In this scenario, network
and storage model must be represented in a IOTSim simulator. One
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Fig. 5. Class diagram of I0TSim.

of feasible methods is to calculate the network consumption when
copying data from Storage Layer by mapper or copying intermedi-
ate output from local disk by reducer. It is enough to guarantee the
accuracy of simulator while calculating and presenting the network
delay incurred during the processing.

4.3. Design of entities/classes

We would like to introduce the core components of Cloudsim
before we present the design of IOTSim. There are two main parts
in Cloudsim simulation: entity and event:

 Entity: refers to something which can individually and indepen-
dently exists. It is able to send messages to other entities and
process received messages as well as trigger and handle events.
Each entity is initiated at the beginning and shutdown at the
end during the simulation.

Event: represents a simulation event which is passed between
the entities in the simulation. Each event carries all the related
information about an event between two or more entities such
as event type, init time, time at which the event should occur,
finish time, time at which the event should be delivered to its
destination entity, the source entity and the destination entity
as well as the data that has to be passed to the destination
entity. Since Cloudsim is a discrete event-driven simulator, it is
dependent of the series of events that are generated in some
specific order. Without this order the simulation is impossible.

4.3.1. Application modelling design
To model the MapReduce for IoT-based applications, the follow-
ing classes have been designed.

o MapCloudlet: This class, which is inherited from Cloudlet, mod-
els the atomic map task which will be submitted by Datacen-
terBroker and executed in VM. It extends Cloudlet with specific
attributes.

ReduceCloudlet: This class, which is inherited from Cloudlet,
models the atomic reduce task which will be submitted by Dat-
acenterBroker and executed in VM. It extends Cloudlet with
specific attributes.

4.3.2. MapReduce modelling design

To model a MapReduce process and behaviour within a data-
center, the following classes/entities have been added to the I0T-
Sim.

o JobTracker: represents an entity which receives the jobs sum-
mited by user, gets the data from storage, splits the jobs accord-
ing to user requirements and schedules them to the TaskTracker
node for execution. As applications are running in VM, the Job-
Tracker receives status updates from the TaskTracker nodes to
track their progress. If JobTracker finds that all Mappers has fin-
ished their tasks successfully, then it will communicates with
TaskTracker to launch the corresponding Reducer to execute
reduce task. It produces the intermediate output results after
each Mapper finishes its work and provides input for Reducer
TaskTracker: These classes represent entities which receive pro-
cessing requests from the JobTracker. Its primary responsibility
is to track the execution of map and reduce tasks happening
locally on its slave node and to report the status updates of
each map and reduce tasks to the JobTracker. TaskTracker man-
ages the processing resources on each slave node in the form
of processing slots — the slots defined for map tasks and re-
duce tasks. It schedule the split map tasks and reduce tasks to
the corresponding Mapper and Reducer, and monitors the sta-
tus updates of them

Mapper: These classes represent entities which receive the re-
quest of TaskTracker and communicate with IoTDatacenterBro-
ker to submit the corresponding map tasks to be executed in
datacentre. It frequently reports the status of map tasks to Task-
Tracker

Reducer: These classes represent entities which receive the re-
quest of TaskTracker and communicate with IoTDatacenterBro-
ker to submit the corresponding reduce tasks to be executed in
datacentre. It frequently reports the status of reduce tasks to
TaskTracker.

Fig. 5 shows the above main classes or entities and their inter-
relationship in IOTSim.

Fig. 6 summaries the workflows of these entities. Once an IoT-
based job has been submitted, JobTracker begins to track a simu-
lated job and split the job. It creates one map task for each split.
Then, TaskTracker starts to track each map task and sends mes-
sages to the JobTracker via event mechanism which reports the

http://dx.doi.org/10.1016/j.sysarc.2016.06.008

Please cite this article as: X. Zeng et al., IOTSim: A simulator for analysing IoT applications, Journal of Systems Architecture (2016),



http://dx.doi.org/10.1016/j.sysarc.2016.06.008

JID: SYSARC

[m5G;July 20, 2016;21:56]

8 X. Zeng et al./Journal of Systems Architecture 000 (2016) 1-15

| JobClient ‘ | JobTracker |

| |
1: Submit Job '
Nbanit JobC) 5 2: Schedule Job( ) =

b

TaskTracker

Mapper

3: Launch MapTask( )

F-

4: Report MapTask Status( )

5: Launch Reduce Task( )

6: Report ReduceTask Status( )

Fig. 6. Sequency diagram: communication between IOTSim entities.

task status to the JobTracker. Once TaskTracker is aware that the
current tasks are finished, then, it starts to run a new task. If all
the map tasks are finished, then TaskTracker reports it to the Job-
Tracker, and is ready to run the corresponding reduce task.

4.4. Implementation

As mentioned before, our simulator extends Cloudsim. Hence,
the implementation consists of two parts according to the afore-
mentioned design decisions: modification and addition. Modifica-
tions are done on the original Cloudsim code including Datacentre,
CloudTag, and DatacenterBroker etc. Upon the requirements stated
in Section 2, the big data processing paradigm need to be imple-
mented.

Fig. 7 shows the flow of how IOTSim works. Firstly, IOTSim ini-
tializes a series of entities, for example, Datacentre, Broker, Job-
Tracker and TaskTracker. A specific number of VMs has been cre-
ated with the pre-defined configuration (stated in Table 2). It also
accepts multiple user-defined MapReduce jobs. When MapReduce
jobs come in, JobTracker splits them into a number of blocks and
schedules them to TaskTracker for execution. TaskTracker allocates
the split job into the corresponding Mapper and Reducer. Then,
Mapper and Reducer submit the corresponding map tasks and re-
duce tasks to the VMs where they are executed. The status of the
map tasks and reduce tasks are reported to TaskTracker. In the
runtime, the enhanced DatacenterBroker object works linking each
object. When the linking ends, the simulator takes an action on
captured event time. An event occurs when Cloudsim creates, ex-
ecutes, and terminates each object such as datacenter, broker, VM,
JobTracker and TaskTracker. runClockTick() function works check-
ing each SimEntity object and this state which is runnable at the
event time. If the state is runnable, each SimEntity object classi-
fies its own operable events. Each entity checks simulating tag and
operates each request. Each object has one of various tags. They
consist of entity creation, acknowledge, characteristic setting, event
pause, move, submit, migration, termination and etc. At the event
time that the cloudlet process is submitted, the simulator calcu-
lates all submitted cloudlet’s processing time. During the event
processing, a new event may be created. When new event is cre-
ated, send() or sendNow() function is called. These functions no-
tify that one event time is created. When the all event time is
over, then simulating ends and the simulation result is reported.

The simulation reports consist of each MapReduce jobs’ informa-
tion (name, split number, job length etc.), status, executed in which
datacentre and which VM, and processing result (job id, VM id,
start time, execution time, finish time, VM computation cost etc.).

4.5. Extensions to cloudsim

We have extended and enhanced Cloudsim with new function-
ality so that it can support executing multiple CloudletLists se-
quentially. The work originated from a functionality limitation ex-
isting in current Cloudsim. Internally, the broker has a very sim-
ple operation and has a single CloudletList, which means if you
submitted multiple CloudletLists to the broker, they are always
merged to a single list, and they are handled as if only one sub-
mission were made. However, it is not suitable for a real MapRe-
duce framework as the reduce operation can only start after the
corresponding map operation.

In order to solve this problem, we implemented a new bro-
ker called IOTSimBroker which inherits the original broker in
Cloudsim. This new broker can accept the multiple Cloudlets and
execute them sequentially. By virtue of this, the new broker can
guarantee execution of the reduce task after corresponding map
task has ended.

5. Evaluation

Currently, we implemented MapReduce model as one of the
big data processing paradigm while keeping the stream computing
model as future work. To evaluate the efficacy of I0TSim, we con-
duct a number of experiments and collect results. The experiment
results were collected in a machine that had one Intel i7-5500 U
Core 2.40 GHz and 16GB of RAM memory. All of these hardware
resources were made available to a VM running Windows 7 SP1
that was used for running the simulator.

5.1. Experiment scenario

IoT applications are enabling smart city initiatives all over the
world. Smart city includes many different components (i.e., smart
transportation, smart healthcare, smart energy) [52,53], where big
data processing technologies such as MapReduce play an integral
part. An example scenario could be from smart transportation that

http://dx.doi.org/10.1016/j.sysarc.2016.06.008

Please cite this article as: X. Zeng et al., I[OTSim: A simulator for analysing IoT applications, Journal of Systems Architecture (2016),



http://dx.doi.org/10.1016/j.sysarc.2016.06.008

JID: SYSARC

[m5G;July 20, 2016;21:56]

X. Zeng et al./Journal of Systems Architecture 000 (2016) 1-15 9

Datacenter Create

StartSimulation()
Pre-defined
configuration setting

Pre-defined
configuration setting

MR Jobs Queue

User-defined Input

IoTDatacenterBroker, runClockTick() Event
JobTracker, Processing
TaskTracker Create
Entities initialization
J StopSimulation()
VMs Create

Resource
Characteristics

.

VM Create

JobTracker
TaskTracker
Split the job and
schedule to the Allocate to Mapper and Reducer
TaskTracker

Mapper Reducer
Submit map task
and report its
status

Submit reduce task
and report its status

| 1

Cloudlet
submit

-

Cloudlet
Return

l

VM destroy

}

End of
simulation

Fig. 7. The basic workflow of how IOTSim works.

a city council is planning to optimise and expand its road net-
work. For such a scenario to be feasible, it is important that large
datasets such as road network, road traffic, commuter require-
ments etc. are collected and stored in the cloud infrastructure. Fur-
ther, the council needs to process and analyse this big data stem-
ming from IoT devices to extract relevant knowledge such as highly
utilized roads, traffic patterns, risky roads etc. Using such datasets
is not an easy task due to its huge size and non-standard format
[54], hence, the MapReduce paradigm is used to speed up data ex-
traction, indexing, and querying from this big data in such sce-
narios. For our experimental evaluations, we have considered the
smart city application described earlier for modelling. We consid-
ered there is one such application job or multiple jobs coming as
an input into our simulated environment. The incoming jobs are
processed using MapReduce approach which produces the corre-
sponding output once the jobs are finished. The output presents
the related information regarding the jobs including job type, job
length, job size, the VM ID where map task or reduce task is being
processed, start time, execution time, and finish time etc.

For comparisons, we have summarized four group experiments.
In each group, we change an independent variable, while keeping
others constant. Hence, we can clearly observe the result and make
an appropriate analysis on how dependent variable is impacted by
independent variable in details and if it matches the real world.

In the experiment, we define a series of key independent vari-
ables and dependent variables. independent variable include dat-
acentre configuration, VM configuration, VM number, job config-
uration, MR combination while dependent variable include aver-
age execution time, maximum execution time, minimum execution

time, make span, delay time, VM computation cost, network cost.
These independent variables are the main impact factors that af-
fect the above dependent variables. They will be detailed in the
next section.

It is worth noting that all of the above group experiments
(which are detailed in Section 5.4) are with two cases considered.

o Without Network Delay: in this scenario, JobTracker splits the
MapReduce jobs according to user requirements and schedules
them to the TaskTracker node for execution immediately when
it receives the jobs summited by user. Also, when all the Map-
pers finish the map tasks successfully, the corresponding re-
duce tasks begin to execute immediately. This scenario means
no network delay is incurred during the whole period that the
job is running in the simulated big data environment.

Network Delay: in this scenario, JobTracker firstly gets the data
from storage (HDFS) for each MapReduce job when the sim-
ulation begins, this causes the first delay that job starts af-
ter the simulation clock. By subtracting the start time of map
task and the start time of simulation clock time (also refer to
the formula of Delay Time stated in Section 5.3.5), the result
can be visualised. When all Mappers finish the map tasks, each
Mapper will produces an intermediate output, then, the corre-
sponding Reducer begins to work after it reads the intermedi-
ate output (in Hadoop, this is the shuffle process). Obviously,
this causes the second delay. The result can also be visualised
by subtracting the start time of reduce task and the finish time
of the corresponding map task.
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Table 1 ' job with Job Length and data size specified, the joining number of
Datacenter configuration. map task and reduce task in each job (which we call MR Combi-
pesNumber // number of cpus in a host 500 nation) should also be considered throughout the experiment. For
RAM //host memory (MB) 20,480 example, M1R1 means there are one map task and one reduce task
Storage //host storage (MB) 1,000,000

Bandwidth //amount of bandwidth 1000
MIPS //millions of instructions per second 1000

5.2. Independent variables

5.2.1. Datacenter configuration

Datacentre models the physical hardware that is offered by big
data application provider. It encapsulates a set of computing hosts
that can either be homogeneous or heterogeneous with their hard-
ware configurations (memory, CPU, storage) where specific number
of hosts and VMs are generated and run. Table 1 lists the data-
centre configuration that is going to be consistent throughout the
entire evaluation.

In Cloudsim, there are a few other parameters including OS,
system architect, and VMM to be defined for initialization. They
are not factors that can affect the aforementioned dependent vari-
ables. Hence, such parameters are irrelevant in our experiments.

5.2.2. VM configuration

VM component stores the following characteristics related to
a VM: processor, memory, storage size, bandwidth and MIPS in
Cloudsim. It should be submitted to the broker ahead of the sim-
ulation. VM parameters are monitored in Cloudsim, which means
each sum of VM parameter must be less than the corresponding
datacentre configuration. For a simplified reason, we define three
types of VM (Small, Medium, and Large) which is compatible with
typical computing infrastructure in Amazon etc. provider. The con-
figuration of three types of VM is listed in Table 2.

5.2.3. VM number

Further to the above VM Configuration itself, we will also spec-
ify VM Number. This independent variable refers to the quantity
of VM in Datacentre. VM, which is hosted in the host, is the basic
computing unit where the jobs will be really processed. In our ex-
periment, we will change the VM Number when required. For the
sake of simplicity, we set the VM Number to be 3, 6 or 9. We can
definitely set a very large number of VM, however, it is limited by
the capacity of the Datacentre.

5.2.4. Job configuration

In Cloudsim, the complexity of an application is abstracted in
terms of its computation requirements. Every application service
has been modelled by Cloudlet. It has a pre-assigned instruction
length and data transfer overhead that it needs to undertake dur-
ing its life cycle. For the sake of simplicity, we define three types
of job configuration as following.

5.2.5. MR combination
This represents the specific joining number of map task and re-
duce task. For the proposed I0TSim, when datacentre receives a

Table 2
VM configuration.

for this job. In the same way, M20R1 means there are twenty map
tasks and one reduce task for this job.

5.3. Dependent variables
5.3.1. Average execution time

It refers to the average execution time of Map/Reduce job. Its
value is given by

Average Execution Time =

Y et (i) D etr(i)

nm + nr ’
where ety (i) is the execution time of map task i and et,(j) is the
execution time of reduce task j. nm means the number of map
tasks in this job, and nr represents the number of reduce tasks in
this job.

5.3.2. Maximum execution time
It means the maximum execution time of MapReduce Job. Its
value is given by

Maximum Execution Time = max (et (i)) + max(et;(j))

5.3.3. Minimum execution time
It represents the minimum execution time of Map/Reduce Job.
Its value is given by

Maximum Execution Time = min (et (i)) + min(et;(j))

5.3.4. Make span

It is the time span of Map/Reduce job from start to finish. It is
calculated by
Make Span = ft, (nr),

where ft(nr) means the finished time of reduce task nr.

5.3.5. Delay time
It means the discrepancy between reduce task starts and map
task starts. It is calculated by

Delay Time = st (nm) + st (nr) — fty, (nm),

where stp(nm) means the start time of map task nm and sty(nr)
means the start time of reduce task nr.

5.3.6. VM computation cost
It refers to the CPU computation cost ($ unit) incurred when
VM runs a Cloudlet. It is calculated by

nvm nvm

VM Computing Cost = Z etm (i) + Z et:(j) ).
i1 i1

x VM Cost per Unit Time

where etp(i) means the execution time of VM i when running the
map task, while et;(j) means the execution time of VM j when run-
ning the reduce task.

VM Type Small Medium Large
Image Size /[amount of storage (MB) 10,000 20,000 40,000
Ram //VM ram (MB) 512 1024 2048
MIPS //millions of instructions per second 250 500 1000
Bandwidth //amount of bandwidth 1000 1000 1000
pesNumber //number of CPUs in a VM 1 2 4
VMCostPerSec /| the cost of processing in VM($) 1 2 4
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Table 3
Job configuration.
Job Type Small Medium  Big
Job Length // the length (expressed in millions of instructions) of this job to be executed in the Datacenter 362,880 725,760 1,451,520
Data Size /| the data size (in MB) of this job before submitting to a Datacenter 200,000 400,000 800,000

5.3.7. Network cost

This dependent variable means the network cost ($ unit) in-
curred when job task gets data from storage and reduce task gets
data from intermediate output of map task. It is calculated by

Network Cost = DelayTime x NetworkCost per Unit Time

These dependent variables are very important factors when
analysing loT-based applications. It is not hard to understand they
are functions of the aforementioned independent variables, which
means the value of these dependent variables change as the in-
dependent variables vary. For example, given the same IoT appli-
cation job, if we increase the VM number within the capability
that the datacentre can offer, then, the make span, average exe-
cution time etc. may changes because more computing resources
are leveraged by map or reduce tasks in the big data processing
process.

5.4. Experiment results

In Group 1 experiment, we set specific job configuration (as
presented in Table 3), VM configuration and VM number, for ex-
ample job type (Small Job), VM type (Small VM), VM number=3
and give different MR Combination from M1R1 to M20R1. We then
start simulation in either Without Network Delay or Network De-
lay case respectively. After the simulation successfully finishes, we
collect the data of Average Execution Time, Max Execution Time,
Min Execution Time, Make Span and VM Computing Cost and Net-
work Cost (only applicable for Network Delay case). The results of
Group 1 experiment are presented in the following line chart.

In Fig. 8(a), generally speaking, Execution Time (Average, Max,
and Min) fluctuates as MR Combination increases. When number
of map task is smaller than the VM number (equals to 3), it can
be observed the execution time (Average, Max and Min) is iden-
tical because datacentre provides more VMs than the map taks of
the job need, which means some VMs are idle. Meanwhile, execu-
tion time (Average, Max and Min) decreases rapidly because more
map tasks are generated and executed simultaneously in datacen-
tre, such that less execution time is consumed. However, if the
number of map task is greater than the VM number, execution
time (Average, Max, and Min) begins to flatten and the discrep-
ancy between them is becoming narrow as MR combination in-
creases. This is because VMs are constrained in their computing
resources and many map tasks compete to be processed in these
VMs, such that the effect on reducing execution time by increas-
ing MR combination is getting more and more insignificant. All the
above statement also apply to the situation when VM number is
larger than 3.

Fig. 8(b) compares the make span in Network Delay case with
that in Without Network Delay case. Clearly, it is observed that
the make span of former is slightly larger than the make span of
the latter and the disparity between them is getting narrow as MR
combination increases. This is because the delay incurs when copy-
ing data from storage and getting intermediate data generated by
map task in the former case, and the delay becomes less and less
as MR Combination increases.

In Group 2 experiment, we set job configuration (Small Job),
VM configuration (Small VM) and MR combination (from M1R1 to
M20R1) and keep them invariant in the experiment. But this time,

VM number varies. In order to get better visualization result, we
set the VM number with appropriate discrepancy (i.e., VM number
equals 3, 6, 9).

Fig. 9 shows the comparison of average execution time between
these three cases (i.e., VM number=3, 6, 9). When number of map
task is smaller than VM number, their average execution time are
equal. Afterwards, the chart shows more VMs results in obvious
less average execution time. To be precise, when VM number in-
creases from 3 to 6, the average execution time is reduced by 40%
on average and 50% if it further increases to 9. This is because
more VM resources are available for processing the same job.

The comparison of network cost is presented Fig. 10. Interest-
ing, even though VM number has been changed, the network cost
is identical. This is because, given the same job, the data size is
identical, which results in the same network delay.

In Group 3 experiment, we set job configuration (Small Job)
and VM number (equals 3) and provide different VM configura-
tion (from Small VM to Large VM) in our experiment. The results
of Group 3 experiment are presented in the following figure.

Fig. 11 shows average execution time decreases exponentially if
we provide higher-profile VM. Precisely, Medium VM gets approxi-
mately 60% less average execution time, while Large VM consumes
about 80% less average execution time when compared with Small
VM. As presented in Table 2, Large VM has four times MIPS as
much as Small VM, and Medium VM offers twice MIPS than Small
VM, hence, higher configured VM can definitely provide more com-
puting capacity.

In Group 4 experiment, VM configuration (Small VM) and VM
number (equals 3) are set, while job type varies (from Small Job to
Big Job) in our experiment. The VM computation cost is compared
in the following figure.

Fig. 12 shows Big Job costs VM computing resource twice as
much as Medium Job and the VM computation cost of Medium Job
is twice than Small Job. As presented in Table 3, Big Job doubles its
job length (MI) than Medium Job while Medium Job double its job
length (MI) than Small Job, hence when the same quantity of VMs
with identical VM configuration are offered, higher-workload Job
has linearly increased its VM computation cost, which matches the
real world.

In summary, we can conclude from the above observations that
efficacy of IoTSim has been proven through a number of experi-
mental results. IOTSim largely extended Cloudsim’s functionality to
support for modelling and simulation of multiple IoT applications
running simultaneously in a shared cloud data centres. In this ver-
sion of the proposed IOTSim simulator, it is capable of simulating
batch-oriented IoT applications by using MapReduce model with
a high degree of accuracy. IOTSim is able to support simulation
of IoT-based big data processing using MapReduce model with the
ability to study the correctness and effect of independent variables
i.e., VM configuration, VM number, job configuration, MR combi-
nation) on the dependent variables (i.e., average execution time,
maximum execution time, minimum execution time, make span,
VM computation cost and network cost). IOTSim enables the re-
searchers to analyse how a MapReduce-compatible IoT application
performs in certain environment. The simulation result provides
better perspective to analyse IoT-based applications using MapRe-
duce model in Cloud Computing environment with less cost and
time.
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6. Conclusion and future work

Nowadays, increasing IoT-based applications rely on Clouds
to run big data processing platform to process massive
amounts of data generated from billions of devices and con-
duct data analytics for knowledge extraction. However, setting-up
such environment is very challenging and a tedious task and
is expensive in terms of cost and time. To address this prob-
lem, we proposed designed and implemented IOTSim. [OTSim
allows simulation of IoT application by inherently supporting

big data processing system such as with MapReduce to facilitate
researchers and commercial organizations to understand and
analyse the impact and performance of IoT-based applications. Our
simulator is built on top of a widely used simulator, i.e., Cloudsim.
However, we have extensively extended and improved the existing
functions of Cloudsim.

Although MapReduce is a popular distributed processing frame-
work for batch oriented IoT applications, it has obvious restrictions
and limits to handle those IoT applications that have real-time and
low-latency requirements. Instead, stream processing is highly re-
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Fig. 12. Comparion of VM computation cost when changing job configuration.

quired and has been identified as the ideal platform to process
such IoT applications in real time. Hence, in order to achieve sim-
ulation of the stream computing sublayer in our proposed archi-
tecture, much of our future work In the future, we would like to
investigate the stream processing paradigm and techniques to de-
sign and implement stream computing model as a supplementary
to our current simulation works.
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