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Monitoring Internet 
of Things Application 
Ecosystems for 
Failure

T
he Internet of Things 
(IoT) paradigm promis-
es to connect billions of 
devices to the Internet. 

This paradigm is well placed to 
benefit a wide range of application 
domains, including power and  
heating grids, home systems, agri-
culture, manufacturing, healthcare,  
and environmental monitoring. The  
IoT is expected to integrate het-
erogeneous data sources such as  
sensors and sensor networks (for  
instance, power grids), smart mobile  
devices, and social media (Twitter,  
Facebook, and so on) to make the  
aforementioned application do-
mains “smarter.” Cloud comput-
ing is already becoming the de 
facto platform for hosting and 
processing the big data these 
sources generate. 

The IoT Application 
Ecosystem
Figure 1 provides an overview of 
the IoT application ecosystem, de-
scribing the relationships between 
edge devices (physical layer), the 
network (communication layer), 
and the cloud (cloud layer). As 

depicted in the figure, the physi-
cal layer is composed of embedded 
systems and sensors that could in-
clude a wide range of sensing and 
actuation devices (GPS, heart rate 
monitors, temperature sensors, 
and so on), smartphones, and 
smart vehicles (such as the Google 
car). In the communication layer, 
these devices are interwoven with 
various ubiquitous communica-
tion capabilities that let them be 
networked and connected to the 
Internet. The cloud layer hosts 
hardware and software resources 
that implement big data platforms 
such as Apache Spark and Apache 
Hadoop to process, analyze, and 
visualize actionable outcomes 
from IoT data. These actionable 
responses are then propagated 
back into the physical world via 
actuators. The IoT application 
ecosystem also encompasses a 
human aspect wherein humans 
provide data, act on analyzed data, 
and make informed decisions.

Consider a healthcare applica-
tion that uses IoT wearable tech-
nologies such as a smart watch, 
heart rate monitor, and acceler-

ometers (as shown in Figure 1). 
If there is a sudden drop in the 
user’s heart rate, an ambulance 
could automatically be informed, 
find the patient location via GPS, 
and potentially save a life. But 
what if the device software crash-
es, the analytics engine running 
the cloud crashes or is unable to 
detect the event in time, or the 
communication network assigns 
these messages as low-priority 
and hence introduces delays? In 
short, the key challenge is how 
do we monitor the monitors? Ul-
timately, the success of the afore-
mentioned IoT applications will 
depend on end-to-end monitor-
ing and verification of the sensors, 
network communication resourc-
es, and the cloud systems (cloud 
layer) that form the integral parts 
of an end-to-end IoT ecosystem.1

Monitoring Techniques and 
Frameworks
Over the past 20 years, a large 
body of research has led to the de-
velopment of several techniques 
and frameworks for monitoring 
the performance of hardware and 
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application resources in distrib-
uted systems such as grids, clus-
ters, and clouds. Monitoring tools 
such as R-GMA, Hawkeye, the 
Network Weather Service (NWS), 
and the Monitoring and Direc-
tory Service (MDS) were popular 
in the grid and the cluster com-
puting era. However, these tools 
were only concerned with moni-
toring performance metrics at 
the hardware resource level (CPU 
percentage, TCP/IP performance, 
available non-paged memory, and 
so on), and not at the application 
level (event detection and deci-
sion-making delay in the context 
of particular IoT applications). 
On the other hand, cluster-wide 
monitoring frameworks (Nagios 
and Ganglia, adopted by big data 
orchestration platforms such as 
YARN, Hadoop, and Spark) pro-
vide information about hardware 
resource-level metrics (cluster, 
CPU, or memory utilization). In 
the public cloud computing space, 
monitoring frameworks (such as 
Amazon CloudWatch, used by 
Amazon Elastic MapReduce and 
Azure Fabric Controller)2-4 typical-
ly monitor an entire CPU resource 
as a black box, and cannot moni-
tor application-level performance 
metrics specific to IoT ecosystems. 
However, frameworks such as Mo-
nitis (http://portal.monitis.com) 
and Nimsoft (www.nimsoft.com/
solutions/nimsoft-monitor/cloud) 
can monitor application-specific 
performance metrics, such as 
Web server response time. CAS-
ViD is an architecture that tackles 
service-level agreement violation 
at the application level,3 but the 
application model described (for 
multilayered Web applications) is 
fundamentally different from IoT 
application ecosystems.

In summary, none of these ap-
proaches can monitor and detect 
root causes of failures and perfor-
mance degradation for entire end-
to-end IoT ecosystems across edge 

devices (physical layer), the net-
work (communications layer), and 
the big data platforms (cloud layer). 
Developing formal approaches for 
monitoring end-to-end IoT eco-
systems is what we term the “grand 
challenge.” Our recent work in 
developing performance models 
for big data applications that use 
machine learning techniques run-
ning on batch processing frame-
works such as Hadoop highlights 
the dependency between the vari-
ous components of the big data 
platforms and hardware resourc-
es, and the effects this depen-
dency has on the performance of 
application-level metrics such as 
event-detection delay.5 As we have 
discussed, current platforms and 
techniques for monitoring the IoT 
and cloud computing fall short of 
this grand challenge.

Research Directions
The monitoring challenge is mul-
tilayered. For example, continuous 
sensor monitoring is essential for 
preventing data loss and enabling 
the dynamic adjustment of sensor 
performance during critical events 
(for instance, increasing the fre-
quency of the heart rate sensor 

during a heart attack, or fine tun-
ing the measurement of a moisture 
sensor during or after flooding to 
detect landslides). In many cases, 
sensor data is not recoverable if 
the loss occurs due to inefficient 
caching and inappropriate com-
munication protocols. And if the 
lost data is critical to determining 
the probability that an important 
event (such as a heart attack or 
flood) will occur, then there might 
not be enough time to respond to 
or recover from a potential disas-
ter or life-threatening situation. 
Additionally the ability to observe 
accumulated results in real time 
is necessary to ensure data integ-
rity when it is collected.6 Multiple 
factors could lead to sensor mal-
functions, such as calibration er-
rors, environmental conditions, 
attacks, decay of sensor energy, 
and so on. Different monitoring  
techniques must thus be investi-
gated, combined, and tested, rang 
ing from simple techniques such 
as profiling sensor baseline be-
havior to complex ones such as 
fine-grained diagnosis techniques 
for sensors. Also, different topolo-
gies for monitoring the IoT eco-
system need to be considered—for 

Figure 1. The Internet of Things application ecosystem. This ecosystem hinges 
on the relationships among edge devices, the network, and the cloud.
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example, whether the monitoring 
service should be distributed to 
the nodes or performed centrally. 
Furthermore, before monitoring 
services can be deployed, what 
needs to be monitored and how 
must be specified in the form of 
state-aware policies that have been 
coded correctly, and that do not 
conflict with each other.7

The monitoring problem at the 
big data platform level (the cloud 
layer; see Figure 1) is also compli-
cated.8 This is because the per-
formance metrics related to the 
big data platform (software imple-
menting programming models) 
and cloud resources are not neces-
sarily the same—these can include 
key performance metrics such as 
throughput and latency in distrib-
uted messaging queuing systems 
(Apache Kafka); response time 
for batch processing systems (Ha-
doop); response time for process-
ing top-k queries in transactional 
systems (Apache Hive); read/write 
latency and throughput for distrib-
uted file systems; and utilization 
and throughput for CPU resources. 
Therefore, future research needs 
to focus on both how these per-
formance metrics could be defined 
and formulated coherently across 
IoT application ecosystems, and 
how various performance metrics 
should be combined to give a ho-
listic view of IoT data flowing from 
sensors to multiple software frame-
works and cloud resources. Specif-
ically, there is an important need to 
investigate end-to-end and scalable 
algorithms (for example, by signifi-
cantly extending distributed data 
structures such as self-balanced 
trees and distributed hash tables) 
for monitoring performance across 
IoT sensors, big data programming 
models, and hardware resources. 
Monitoring algorithms could also 
encompass the intelligence to ca-
ter to the energy constraints of IoT 
sensors. Finally, novel IoT applica-
tion ecosystem monitoring middle-

ware that realizes such algorithms 
needs to be developed.

T he realization of useful and 
dependable services cre-
ated from the interconnec-

tion of sensors, actuators, social 
media, networks, and clouds will 
require the IoT research commu-
nity to tackle a number of impor-
tant challenges. Such services will 
require potentially billions of de-
vices to accurately sense the envi-
ronments in which they are placed, 
and then to securely transmit the 
generated data to multiple pos-
sible destinations using energy-
efficient technologies that are yet 
to be developed and refined. The 
sheer complexity of IoT applica-
tions—in which data is transmit-
ted from multiple real-time as well 
as historical data sources to the 
cloud for storage and processing—
means that we will require new 
protocols and big data processing 
frameworks that can deal with the 
volume, variety, and variability of 
the data transmission rates.

Additionally, a major challenge  
whenever data is accessed and 
transmitted across complex net-
works is security. There are many 
ways in which IoT systems can be 
targeted and attacked. Any vulner-
able component in the end-to-end 
IoT ecosystem could mean unau-
thorized access to the entire sys-
tem, disabling key components, or 
sending misleading data to users. 
We believe that our research into 
the development of sophisticated 
capabilities for monitoring IoT 
ecosystems is essential for tackling 
such important IoT research chal-
lenges. The challenge of our work 
is to provide tools and methods 
that can accurately provide fine-
grained monitoring of specific 
components and layers, not only 
to ensure that services operate 
correctly without failure, but also 
to provide researchers and devel-

opers with the ability to collect the 
data necessary for ensuring that 
IoT applications are dependable, 
secure, and efficient. 
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