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Abstract—Cloud computing becomes a well-adopted computing paradigm. With the unprecedented scalability and flexibility, the
computational cloud is able to carry out large scale computing tasks in the parallel fashion. The datacenter cloud is a new cloud
computing model that use multi-datacenter architectures for large scale massive data processing or computing.

In datacenter cloud computing, the overall efficiency of the cloud depends largely on the workload scheduler, which allocates clients’
tasks to different Cloud datacenters. Developing high performance workload scheduling techniques in Cloud computing imposes a
great challenge which has been extensively studied. Most previous works aim only at minimizing the completion time of all tasks.
However, timeliness is not the only concern, while reliability and security are also very important. In this work, a comprehensive Quality
of Service (QoS) model is proposed to measure the overall performance of datacenter clouds. An advanced Cross-Entropy based
stochastic scheduling (CESS) algorithm is developed to optimize the accumulative QoS and sojourn time of all tasks. Experimental
results show that our algorithm improves accumulative QoS and sojourn time by up to 56.1% and 25.4% compared to the baseline
algorithm, respectively. The runtime of our algorithm grows only linearly with the number of Cloud datacenters and tasks. Given the
same arrival rate and service rate ratio, our algorithm steadily generates scheduling solutions with satisfactory QoS without sacrificing

sojourn time.

Index Terms—Cloud Computing, DataCenter Clouds, Quality of Service, Workload Scheduling

1 INTRODUCTION

LOUD computing [1], which delivers computing as a
C service, has emerged as a well-adopted computing
paradigm which offers vast computing power and flexibili-
ty, and an increasing number of commercial cloud comput-
ing services are deployed into the market such as Amazon
EC2 [2], Google Compute Engine [3], and Rackspace Cloud
[4]. The new computing paradigms of “Cloud of Clouds” [5]
and “datacenter clouds” [6], [7] are a creation of federated
Cloud computing environment that coordinates distributed
datacenter computing and achieves high QoS for Cloud
applications. Large-scale data-intensive applications across
distributed modern datacenter infrastructures is a good
implementation and use case of the “Cloud of Clouds”
paradigm. A good example for data-intensive analysis is
the field of High Energy Physics (HEP). The four main
detectors including ALICE, ATLAS, CMS and LHCb at the
Large Hadron Collider (LHC) produced about 13 petabyes
of data in 2010 [8]. This huge amount of data are stored on
the Worldwide LHC Computing Grid that consists of more
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than 140 computing centers distributed across 34 countries.
The central node of the Grid for data storage and first pass
reconstruction, referred to as Tier 0, is housed at European
Organization for Nuclear Research (CERN). Starting from
this Tier, a second copy of the data is distributed to 11
Tier 1 sites for storage, further reconstruction and scheduled
analysis.

Since the datacenter cloud computing paradigm offers
massive computational resources, it provides enormous op-
portunities for software designers to architect their software
in order to benefit from the massive parallelism. After a
customer submits a computational job to a cloud, task
scheduling will be performed to decide where, when and
how this job can be executed. On the other hand, cloud com-
puting features the high degree of the information hetero-
geneity which includes different processor speed, different
processor location, different processor energy consumption,
different job waiting time, different job runtime, different
communication cost as well as other uncertainties. Among
these, the security and reliability are highly important [9],
[10]. These introduce significant technical difficulty in de-
signing a high performance task scheduling framework.
Therefore, it is necessary to have a comprehensive Quality
of Service (QoS) metric to quantify the performance of a
scheduler. Since the scheduler allocates computational tasks
to heterogeneous computational resources for optimizing
QoS, it is called a QoS aware task scheduler in cloud
computing.

Our contributions are summarized as follows.
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e A comprehensive QoS model for evaluating the over-
all performance of the datacenter Cloud is proposed.
Our QoS model provides different metrics, measur-
ing the Cloud computing performance from different
angles. It guarantees satisfying performance of the
datacenter Cloud in terms of not only timeliness, but
also reliability and security.

e A QoS driven Cross-Entropy based stochastic
scheduling (CESS) algorithm is developed to opti-
mize the scheduling solution in terms of every metric
defined in the QoS model.

o The CESS algorithm improves accumulative QoS and
sojourn time by up to 56.1% and 25.4% compared to
the baseline algorithm, respectively.

e The CESS algorithm runs efficiently. The runtime
scales only linearly with the number of jobs and
the number of Cloud datacenters. Therefore, it has
the potential to be successfully deployed in the real
world.

e Given the same arrival rate and service rate ratio,
our CESS algorithm steadily generates scheduling
solutions with satisfactory QoS without sacrificing
sojourn time.

2 BACKGROUNDS AND RELATED WORK
2.1 Cloud of Clouds

A computing Cloud [11], [12] is a set of network enabled ser-
vices, providing scalable, QoS guaranteed, normally person-
alized, inexpensive computing infrastructures on demand,
which can be accessed in a simple and pervasive way [13],
[14], [15].

The paradigm of “Cloud of Clouds”, or InterCloud [16],
[17], [18], [19], [20], [21], is to leverage the global infrastruc-
ture based on multiple Clouds for large scale distributed
applications. The multi-datacenter infrastructure [22], [23], a
reference implementation of the “Cloud of Clouds” model,
implements a global infrastructure across distributed data-
centers, storage services or clusters for intercloud applica-
tions.

Current research on the “Cloud of Clouds” model in-
cludes the programming model & software architecture [24],
security & storage service [25], and inter-cloud computing
standards [26]. In our previous research we have imple-
mented a programming model for the paradigm of “Cloud
of Clouds” by developing the G-Hadoop system [6], [7],
a software framework for MapReduce applications across
distributed datacenters and clusters.

2.2 Datacenter Clouds

Datacenter Clouds typically refers to the software and hard-
ware infrastructures that provides general-purpose high-
performance computing capabilities [27]. Different from
conventional distributed systems such as large scale com-
puter clusters, a datacenter Cloud is composed of distribut-
ed computer centers or datacenters from multiple geograph-
ical locations across the world [28]. In general, datacenters
in clouds can communicate with each other via high-speed
network interface. With this distributed infrastructure, a
single computational task can be carried out on multiple
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machines in the parallel fashion, with the efficiency signifi-
cantly improved.

Datacenter clouds promise on-demand access to afford-
able large-scale resources in computing and storage (such as
disks) without substantial upfront investment. Thus it is nat-
urally suitable for processing big data, especially streaming
data, via allowing data processing algorithms to run at the
scale required for handling uncertain data volume, variety,
and velocity.

However, to support a complicated, dynamically con-
figurable big data ecosystem, we need to innovate and
implement novel services and techniques for orchestrating
cloud resource selection, deployment, monitoring, and QoS
control [5], [29].

The paradigm of datacenter Cloud computing has the
following features

e Resource Sharing A Virtual Organization (VO) refers
to a dynamic set of individuals and/or organizations
bounded by the same set of resource-sharing rules
and conditions. Here the resource includes not only
data represented in various formats, but also compu-
tational power and storage units. They are requested
and shared by a wide range of computational tasks
from clients in industry, as well as academia. It
becomes a technical challenge to coordinate resource
sharing among the dynamic virtual organizations
[30].

o Site Autonomy Resources shared in datacenter
Clouds are commonly owned and controlled by d-
ifferent individuals or organizations in different sites
[31], [32], [33]. Administrators of each site decide
which resource to share and how to share the re-
sources. Therefore, clients of the datacenter Cloud
may experience different scheduling policies and
security mechanisms when using datacenter Clouds.

o Hierarchy and Uncoordinated Local Queue Manage-

ment
In each geographical site, there may be a local re-
source management system, e.g., PBS [34], [35] and
Sun Grid Engine [36]. Cloud users cannot access the
individual resources inside the sites. Cloud users
submit tasks to the Global Resource Management
System (GRMS). Subsequently, GRMS submits tasks
to the Local Resource Management System (LRM-
S) [37], [38]. The LRMS schedules the tasks to the
resources inside local resource system. GRMS and
LRMS constitute hierarchical datacenter Cloud envi-
ronments.
The uncoordinated LRMS may lead a large variety
of queueing policies and queue waiting time, which
will make significant impact on Cloud data process-
ing applications. For example, the statistical analysis
[39] shows that the queue wait time of Cloud system-
s, such as World LHC Computing Grid (WLCG), is
random and highly complicated to predict.

e Heterogeneity
Datacenter Clouds a highly heterogeneous environ-
ment [40], [41]. Different sites may have different
types of resources. Even the resources of the same
type, located at different sites, may have different
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Fig. 1: Outage statistic of TeraGrid in 2009

configurations, capacities and performance.

e Large-Scale Distribution
As discussed above, datacenter Cloud enables re-
source sharing among geographically distributed
sites. These sites are connected via traditional net-
work interface. Network communication delay may
be extremely high when some communication inten-
sive applications are running among these sites. In
this scenario, network performance has an important
effect on resource management [42], [43].

o Frequent Site Outrage
The resources in Cloud datacenters could become
unavailable during a site outage due to various rea-
sons, such as power supply failure, scheduled main-
tenance, or hardware failure. As shown in Figure
1, during the year 2009, there were approximately
290 outages with total 5,000 hours on the TeraGrid
infrastructures of datacenters and computer centers.
On average, a single site experienced the outage time
around 4% of the time duration of the year 2009.
Apparently, site outages can seriously jeopardize the
performance of the datacenter Clouds.

2.3 Multi-Cluster computing

The Multi-Cluster computing paradigm [44] employs multi-
ple distributed clusters to build large computing infrastruc-
ture for HPC applications. There have been a considerable
portion of research devoted to the multi-cluster scheduling,
for example, scheduling of workflow applications [45], [46],
[47] and scheduling of independent tasks [48], [49], [50]
across the multi-cluster infrastructure. Compared with the
aforementioned work, our research in this paper is devot-
ed to scheduling of MapReduce jobs to multiple clusters,
where we use a different task model and the data-centric
scheduling heuristic.

The Gfarm file system [51] is a distributed file system
designed to share vast amounts of data between globally
distributed clusters connected via a wide-area network.
Similar to HDFS the Gfarm file system leverages the local
storage capacity available on compute nodes. In our work,
we use Gfarm file system as a global distributed file system
that supports the MapReduce framework.

In our G-Hadoop implementation, we use the Torque
[52] as a cluster resource manager. The Distributed Resource
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Management Application API (DRMAA) [53] is a high-level
API specification for the submission and control of jobs to
one or more cluster resource managers. In G-Hadoop imple-
mentation, we use DRMAA as an interface for submitting
tasks from G-Hadoop to the Torque Resource Manager.

2.4 Quality of Service (QoS)

Quality of Service (QoS) is a set metrics used to evaluate
the overall performance of the datacenter Cloud , given the
datacenter Cloud scheduling solution. Each metric evaluates
the execution of a given job from one unique perspective.
The performance is quantified by the fitness score between
0 and 1. A higher fitness score implies better execution
quality. The overall performance of the datacenter Cloud
on a specific job is determined by the summation of all
fitness scores associated with the job. An effective Cloud
computing scheduler optimizes the scheduling solution so
that all QoS requirements are satisfied for each job. Our
algorithm optimizes the scheduling using the following
three QoS metrics.

o Timeliness. This metric defines the severity of miss-
ing the deadline of a job. The fitness score when
missing the deadline is determined by the priority of
the job. For example, for a job with a hard deadline,
missing it would generate the fitness score of 0. For
a job with no deadline, the fitness score is inversely
proportional to the execution time.

o Reliability. Due to the autonomous nature of the dat-
acenter Clouds, each Cloud datacenter has its own
policy on its availability in the Cloud computing.
In other words, some Cloud datacenters offer the
computational power only in the idle state. Others
offer all of the remaining resources even when inter-
nal tasks are under execution. The reliability of the
Cloud datacenter is proportional to its availability.
In other words, the Cloud datacenter offering stable
computational power receives higher fitness score on
reliability than the one disconnecting from the Cloud
frequently.

e Security. Since there is no centralized administration
over the Cloud, not every machine connected onto
the Cloud is trustworthy. It is difficult to prevent
malicious participants from compromising the Cloud
by providing malfunctioning machines. The mal-
functioning machines generate erroneous results and
thus jeopardize the integrity of the datacenter Cloud

2.5 QoS-aware Workload scheduling in datacenter
Clouds

The traditional problem of workload scheduling for Cloud
computing has been extensively studied. Since the problem
is NP-Hard [27], many meta-heuristic algorithms have been
proposed to query the optimal solution.

Classical resource management systems were designed
for batch scheduling systems that rely on gang-scheduling
model [54], which can allocate multiple resource types.
The scheduling policies were dependent on job queues and
priorities with the goal of keeping all resources busy rather
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than focusing on optimizing application level QoS. In the
gang-scheduling model, jobs are queued and based on their
priority they are assigned to cluster resources.

Datacenter management systems such as Amazon EC2,
Microsoft Azure, and Eucalyptus, application administra-
tors specify their resource requirements in terms of hard-
ware (e.g. CPU type, CPU speed, number of cores, etc.) and
software resource (virtualization format, operating system,
etc.) configurations while ignoring specific QoS metrics such
as response time, reliability, or security. Other systems such
as YARN [55] , Apache Hadoop and Quincy [56] use a
system centric fairness (e.g. CPU share or memory share)
policy to map jobs to resources. These systems do not allow
application administrator to specify and enforce application
level QoS metrics and policies. Mesos [57] uses two-level
scheduling to manage resources of a cluster that can be
hosted within a public or private datacenter. Mesos does not
support any scheduling policy, but is a framework that can
support multiple policies. The approach proposed in this
paper can be implemented as a scheduling policy in Mesos
for ensuring application level QoS metrics.

A Chemical Reaction Optimization (CRO) is proposed
[27]. The algorithm mimics the chemical reactions during
which the potential energy of molecules is minimized. Each
candidate scheduling solution is modeled as a molecule
with certain potential energy. The potential energy is mod-
eled as the overall quality of the scheduling solution. During
each iteration, molecules are selected to perform chemical
reactions with each other, generating new molecules with
potentially lower potential energy, or solutions with better
quality. The solution quality is evaluated by timeliness and
reliability of the datacenter Cloud . The simulation results
show that CRO based algorithm can generate better so-
lutions than other meta-heuristics like Genetic Algorithm
(GA) and Simulated Annealing (SA).

The other meta-heuristic Cloud computing scheduler
combines Particle Swarm Optimization (PSO) and Gravi-
tational Emulation Local Search (GELS) [28]. The fitness
function of the PSO is inversely proportional to the com-
pletion time of the last executed job and the number of
jobs missing their deadlines. During each iteration, every
candidate scheduling solution is updated towards better
fitness values. GELS is used to improve the candidate pool
to avoid local optima. The experimental results show that
it significantly reduces the completion time of the last job
compared to other heuristics.

The common weakness of the previous works is that
their scheduling solutions are optimized in terms of only
one metric, timeliness. Since other metrics like security and
reliability are not used in the optimization, those algorithm-
s may suffer severely from sub-optimality. In this work,
the comprehensive model of Quality of Service (QoS) is
proposed for evaluating the performance of the datacenter
Cloud . The QoS model generates more practical evaluation
from various perspectives including timeliness, reliability
and security.

3 MODELS

In this section, the system model, the workload model and
the QoS model are first introduced. Based on them, the
cloud datacenter model is established.

Hi

— ]]D] Cloud data center;
GlobalJob Queue
Hy
/\2
—_— m Cloud data center,
A Ha
E——

]:D Cloud data center,

Fig. 2: System model

3.1 System model for Datacenter Cloud computing

The whole system is modeled as a M/M/1 system. The
following assumptions about the system model.

o the incoming jobs are modeled as exponential distri-
bution,

o the service rate of Cloud datacenters are exponential
distributed,

e each Cloud datacenter is modeled as one server,

e the Cloud datacenter’s service discipline is non-
preemptive and First Come First Serve (FCFS).

3.2 Workload model

It is assumed that there are m Virtual Organizations (VOs)
that share the datacenter Cloud system defined above. Each
VO is modeled as a VO Job Queue (VOJQ). All jobs from
VOJQs are submitted a Global Job Queue (GJQ). We define
that:

e A is the arrival rate of the VO;, 1 <i<m

. A; is the arrival rate of jobs of VO; on the Cloud
datacenter Site;, 1 <i<m,1<j<n

e ) isthearrival rate of jobs from all VOs on the Cloud

datacenter Site;, 1 < j <n, \; = Z /\j
i=1
e \is the arrival rate of all VOs, A\ = Z A\
i=1

The job distribution possibility matrix is defined as fol-
lows:

P11 D12 Pin
P21 D22 D2n

P =[p;] = . : 1)
Pm1  DPm2 Pmn

Dij is the possibility that a job from V' O; is scheduled to the
Cloud datacenter Site;, 1 <i <m,1 < j <n.
Therefore, the following is obtained.

Al =pij x X' )
Aj =) (pij x X') ®)
=1
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3.3 QoS model

Assume there are totally s QoS requirements, ) =
[Q1,Q2, ..., Qs]. Examples of QoS include availability, time-
liness, security, and reliability, Therefore the QoS require-
ment matrix for all VOs is as follows:

Q=lal=1| . . : (€

dm1  Gdm?2 dms

where, ¢; is a requirement of tasks in VO; for QoS Q,
1<i<m,1<k<s.

As QoS definition is associated a utility function [58],
[59], which defines the benefit received by a VO. The utility
function associated with g, is defined as:

Gk Gk — R ()

where, 1 < i <m,1 < k < sand R is the set of positive
real numbers. Examples of normalized utility functions are
shown in Figure 3, 4 and 5. Figure 3 shows a task is
associated with (a) a hard deadline, (b) a soft deadline and
(c) no deadline. A task with the reliability QoS requirement
is shown in Figure 4 and a task with the security QoS
requirement is shown in Figure 5.

The above models are limited to express an individual
QoS for a task, it is thus required to develop a further model
that can express multiple QoS requirements for different
VOs. The concept of weighted QoS achievement is proposed
to denote the concept of QoS interests obtained for a job

utility

— security

Jood
MO
3lppiw
ysy

Fig. 5: Sample utility function: security
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distribution of a VO on a Cloud datacenter. The weighted
QoS achievement for V' O; is defined as following:

S
ai =Y wir(giy? — ) (6)
k=1

where,
o 1<i<m,1<k<s

o w;j denotes the weight of QoS @, for VO;, Z Wip =

k=1
1

o ¢%" denotes the QoS Qy, allocation for VO;, and
o ¢, 7 denotes the VO,’s requirement for QoS Q.

Given the job distribution possibility matrix defined in
Equation 1, the ¢J;" can be calculated as follows:

n

@t = Z(pij X k) ()

Jj=1

where ¢}, is the QoS allocation of @, from Site S;.
The overall QoS achievement for all VOs is defined as

follows: .

A(P) = "a; ©)
=1

Where is P is a job distribution possibility matrix and
defined in Equation 1. It is thus an objective for a job
distribution to maximize the overall QoS achievement for
all VOs from a system perspective.

3.4 Cloud datacenter model

The service rate of a Cloud datacenter site is modeled as
follows:

e [1; is the service rate of the Cloud datacenter Site;,
1<j<m,

. ;L;» is the service rate of jobs of VO; on the Cloud
datacenter Site;, 1 <j<mn,1<i<m.

The following part of this section models the unreliabil-
ity of Cloud datacenters. The unreliable production Cloud
datacenter is modeled with a set of successive periods of
“up” and “down” as follows.

e 7);: the rate of up state of Cloud datacenter Site; ,
and

o 0;: the rate of Cloud datacenter down state of Cloud
datacenter Site;.

We define

« E(S]) is the sojourn time of a job from VO; at a
Cloud datacenter Site; and

« E(L}) is the queue length when the job from VO;
arrives at Cloud datacenter Site;.

E (sz) is derived as follows. In case the job meets a reliable
Cloud datacenter, the job’s sojourn time is:
E(LY) +1
E, = # )
Hj
However, the Cloud datacenter is unreliable, there exist
extra waiting time due to down states of a Cloud datacenter.
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The mean number of down states experienced by the job is
E(L})+1
j

equal to n; x , and the mean duration of each

1
down state is 7 There for the extra waiting time due to
J
down states of a Cloud datacenter is
E(L;) +1 y 1
1 0
Furthermore, the Cloud datacenter Site; is already down
when the job comes, then there is another extra delay:

1 N,
E3 = — X J
0; 05+,
Therefore the sojourn time of a job from the i*"* VO VO;
at a Cloud datacenter Site; is as follows:

Ey =mn; x (10)

(11

E(S)) = Ei+FE)+E;
E(LY)+1 E(LY) +1
1 1 0;
1 nj
+— X (12)
0; 0+,
Then, with Little’s law:
E(L;) =\ X E(S;) (13)
the following is obtained:
1
W pu %D
ES)y =L — - 14
(1) y 19
M;- X pu
where,
e pp= Zﬁ % the fraction of down state of a Cloud
n; ,
datacen%er ’
. = J__. the fraction of up state of a Cloud
SR F
datacenter.
Consequently,

E(S") = Z(Pij x E(S7)) (15)

Finally, the mean sojourn time for all VOs is as follows:

B(S)= Y (3 < B(sY)

i=1

(16)

It is thus an objective for a job distribution to minimize
the mean sojourn time for all VOs from a system perspec-
tive.

4 SCHEDULING ALGORITHMS
4.1 Research issue definition

It is assumed that there is a global scheduler that schedules
workloads in the Cloud Job Queue to multiple Cloud dat-
acenters (see also Figure 2). A global scheduler distributed
incoming workloads from various VOs to multiple Cloud
datacenters with the following objectives:

6

e minimize the mean sojourn time for all VOs E(S),
and
o minimize the QoS advantage A(P).

Formally based on the job model and Cloud system
model, the schedule function is defined as follows:

f:(VO,Site) — P, feF
where F' is a set of all feasible schedule functions.

The research issue is defined as follows:

To find a schedule function f € F, which gives
the min £(S) and min A(P).

17)

4.2 Cross Entropy Theoretical Foundations

Cross entropy optimization, originally proposed in [60], is
a stochastic optimization technique based on the theory of
importance sampling. It casts a deterministic optimization
problem into a stochastic optimization problem which can
be solved to approximate the optimal solutions. This pow-
erful optimization framework has been successfully applied
to various different combinatorial optimizations problems
such as those in [61], [62], [63], [64], [65], [66], [67]. For
completeness, some details of this technique provided in
[60], [68] are elaborated as follows.

To minimize a function mingep f(z) with variables x
defined in the solution space D, cross entropy firsts converts
it into a stochastic optimization problem. That is, it uses a set
of probability density functions (PDF) g(z,p) defined in the
space D to model the possible distributions on the solutions
of the minimization problem. Given a set of random samples
X = {X3,Xs,..., X, } generated according to g(x, p), one
can define 6(a) as

6(a) = P[f(X) <], (18)

where a is a parameter. Define an indicator function I(-)
such that f(z) < a if and only if I¢(;)<, = 1. Therefore,
P[f(X) < a] = E[l§(x)<a] where E denotes the expecta-
tion. It is clear that if one can computes the largest a which
makes 6(a) approach zero, this a gives a near optimal solu-
tion for the minimization problem min,ecp f(x). This is the
basic idea of the conversion of a deterministic minimization
problem to a stochastic minimization problem.

However, when ¢(a) approaches zero, it is difficult to
evaluate its value. If one uses the straightforward Monte
Carlo simulations based technique, a large number of sam-
ples will be needed which is computationally expensive.
That is, one can generate a set of samples according to
g(x,u) and an unbiased estimator is

5(a) =137 Iy(x)<a

As the solution approaches the optimal solution, 6(a) will
approach zero, which means that a large number of samples
are needed. In other words, f(X) < a becomes a rare event.
This is why cross entropy technique uses the importance
sampling to tackle this technical difficulty.

In contrast to using g(x,p), the importance sampling
in the cross entropy technique uses a variant probability
density function k(z,p) also defined on D. 6(a) can then
be approximated by

-~ n Xi
5(a) = 230 Trix<a B3

(19)

(20)
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Suppose that one can compute k*(x) such that k*(z) =

I(x,)<a9(m,u)
T. One has

3(a) = £ 00 Tpixn<afiiny = (a)

The technical difficulty is that £* cannot be computed ex-
plicitly. Therefore, the cross entropy technique uses a PDF
which well approximates k*(z). This PDF has the property
that it minimizes the so-called cross entropy between the
two PDFs k(z) and g(x, v), which is

d(k,g9) = E4In % = [k(z) nk(z)dz — [k(z)Ing(z)dx

Plugging this into the original functions, one has
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argmaz, [ k*(z)Ing(z,v)dx (23)
which is

argmar, Byl xy<q Ing(X,v) (24)
The cross entropy technique uses importance sampling tech-
nique again with the new parameter w such that

argmaz, Byt (x)<a JJ:((;Z)) In g(X, v)

(25)

Subsequently, the solution to the original minimization
problem can be written as

v* = argmaz, L Y| If(Xi)Sa%lng(Xi,v) (26)
where the samples X are generated using g(z, w). Refer to
[60], [68] for the further details.

4.3 Cross Entropy Based Scheduling Algorithm

This work proposes a Cross Entropy based Scheduling
Scheme (CESS) Algorithm to optimize the QoS and the
waiting time. The CESS algorithm is iteratively proceeded
to the solution by updating the probability density function
(PDF) throughout the whole optimization procedure. This
PDF is used to depict the candidate job assignments and
employed to generate samples during each iteration. In this
work, the Gaussian distribution is employed as the PDF
function to solve the scheduling problem. Note that, the
sample here denotes a scenario of the job assignment. On
the other hand, the PDF are updated by elite samples in each
iteration, where elite samples are job assignments which are
high quality solutions in terms of the QoS and the waiting
time.

Figure 6 shows the details of the CESS algorithm and
Figure 7 shows an example of one iteration of the algorithm.
The proposed algorithm first initialize the PDF array for all
Cloud datacenters. Each Cloud datacenter is associated with
a PDF over the its selection index (SI), an variable indicating
the preference of our selection. A higher SI implies higher
probability for the corresponding Cloud datacenter to be
selected. If it is not the first iteration, the PDF array is
inherited from the last iteration. Otherwise, each PDF is
initialized with the same mean and variance, as indicated
in Figure 7.

Subsequently, n samples are generated according to the
PDF array. For each sample, a selection score is generated
for each Cloud datacenter according to the corresponding
PDF. The Cloud datacenter with the largest selection score

Pick a task from the queue

l

Initialize PDF array
parameters

l

Generate samples according
to the PDF array

(22) l
Evaluate samples using QoS
and waiting time

l

Update PDF array by top k
samples

Yes

No

Assign the job by the best
sample

l

Load balance driven PDF
adjustment

Check if task left?

No
Scheduling
Completed

Fig. 6: Cross Entropy Based Scheduling Algorithm Flow

Yes

is the one selected for that sample. For example, for sample
1 in Figure 7, Cloud datacenter 1 has the largest score of 0.6,
so it is selected in that sample. Similarly, Cloud datacenter 2
is selected in sample 2. For the case in which several Cloud
datacenters share the same largest selection scores, the one
with the largest mean on its PDF is selected. The reason is
that, statistically, the one with the largest mean on the PDF
performs the best.

After n samples are generated, each one is evaluated by
QoS and sojourn time. k samples with the best QoS and
Sojourn time form the set of elite samples. For the Cloud
datacenter selected for elite samples, the mean is increased
for the corresponding PDFE. For each PDEF, the variance is
decreased. For example, as shown in Figure 7, suppose
sample 1 and sample 2 are elite samples. Since Cloud
datacenter 1 and 2 are the selected for the two samples,
the PDFs are updated with larger mean. In this way, the
Cloud datacenters with better QoS and sojourn time become
more likely to be generated while the algorithm approaches
convergence. If the algorithm goes through A iterations or all
samples selects the same Cloud datacenter, the convergence
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Fig. 7: Example of one iteration of CESS algorithm. The updated PDF for each is indicated by red curves.

criterion is met. After convergence, the job is assigned to
the Cloud datacenter for the sample with the best QoS and
sojourn time.

Straight forward implementation of the CESS algorithm
would suffer from Cloud datacenter overloading issue. The
reason is that the algorithm tends to assign every job to
the Cloud datacenter with the best QoS. Consequently, the
best Cloud datacenter becomes overloaded. To alleviate the
issue, the load-balance driven PDF adjustment is proposed.
That is, the mean value of the PDF of the Cloud datacenters
selected is intentionally increased. As a result, the chance
for a Cloud datacenter to be repeated selected is decreased
and the loads are more evenly distributed over the Cloud
datacenters.

5 EXPERIMENTAL RESULTS

The proposed cross entropy based QoS-aware Workload
scheduling with the Stochastic Modeling technique is imple-
mented in C++ and tested on a machine with 2.8 GHz Intel®
Core™ i5 CPU, 4 GB memory and 64 bit operating system.
Due to inaccessibility to real world distributed datacenters,
we construct a set of 500 synthetic test cases with up to 1000
VOs and 50 Cloud datacenters.

To demonstrate the superiority of our Cross Entropy
based Scheduling Scheme (CESS) algorithm, we compare it
with the baseline greedy algorithm. The baseline algorithm
always greedily assigns the incoming jobs to the Cloud
datacenter with the best Quality of Service (QoS) and least
sojourn time. Note that, the QoS value includes the reliabil-
ity and security values with weighted factors. The solutions
to both algorithms on each test case is evaluated using the
following metrics.

e Accumulative sojourn time of all jobs. Since our
target is to minimize the average queuing time for all
jobs, the scheduling quality is inversely proportional
to this metric.

e Accumulative QoS fitness score of all jobs provided
by all Cloud datacenters. Each QoS fitness score
is the weighted sum of timeliness score, reliability
score and security score. A higher QoS fitness score
suggests faster execution time, higher reliability and

better security. Apparently, the scheduling solution
quality is proportional to this metric.

The comparison between the baseline greedy algorithm
and our CESS algorithm is shown in Table 1. We have the
following observations.

e In contrast to the baseline algorithm, our CESS al-
gorithm generates better accumulative QoS on every
test case. Statistically, the QoS is improved by 56.1%
on average from the baseline algorithm. The reason is
that our algorithm optimizes the scheduling of every
job in terms of the QoS and the sojourn time.

o Comparing with the greedy algorithm, the proposed
CESS algorithm can save up to 25.4% waiting time.
On average, the waiting time is saved by 9.2%. The
greedy algorithm tends to assign all jobs to the site
with the best QoS. Apparently it overloads the Cloud
datacenter, resulting in larger sojourn time. In con-
trast, the PDF performance-tuning in our algorithm
mitigates the overburden of Cloud datacenters. It
limits the probability that a particular Cloud data-
center is frequently selected, so that jobs are evenly
distributed over the Cloud datacenters. Consequent-
ly, the accumulative sojourn time is decreased.

e The proposed algorithm are performed very effi-
ciently. The results over all test cases can be within
864.55 seconds on average. Apparently, the runtime
scales only linearly with test cases of different sizes.

e Although the waiting time of the greedy algorithm
are quite close to the proposed algorithm, the QoS of
the proposed algorithm dominates the greedy one.

To assess the performance of our algorithm in real world,
we evaluate our CESS algorithm with different job arrival
rate and Cloud service rate. The resulting sojourn time
and QoS are shown in Figure 8. We have the following
observations.

o Within the same period of time, the accumulative
QoS and waiting time is proportional to the job
arrival rate. As the job arrival rate increases, more
jobs are handled by the Cloud datacenters. Since
each job, handled by a Cloud datacenter, produces
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TABLE 1: Comparisions of QoS, waiting time and runtime among the greedy algorithm and the proposed CESS algorithm
with varying sizes when tasks are assigned to a cluster system.

Testcase | Number of Greedy Algorithm CESS Algorithm Improvement
Size Clouds QoS [ Waiting Time | Runtime(ms) QoS Waiting Time | Runtime(s) [ QoS [ Waiting Time
50-100 10 47995.7 6748.6 1.38 64071.5 5037.7 30.11 33.5% 25.4%
101-200 20 125640.2 15984.0 4.32 180122.1 14214.51 178.37 [43.4% 11.1%
201-400 30 252917.5 55384.2 9.10 378107.5 52555.5 567.75 [49.5% 5.1%
401-600 40 409185.2| 119858.9 14.86 628853.1 115267.9 1195.19 | 53.7% 3.8%
601-1000 50 630207.1| 256373.7 25.81 983728.9 255296.8 2351.33 | 56.1% 0.0%
Average - 293189.2| 90869.88 11.09 446976.64 | 88474.49 864.55 [47.2% 9.08%

a QoS value, the accumulative QoS increases. Larg-
er waiting time can be explained by the gird site
overloading effect. With the same Cloud service rate,
increasing arrival rate requires Cloud datacenters to
handle more jobs. Consequently, the accumulative
waiting time increases.

o For the same amount of jobs with the same job
arrival rate, both the accumulative QoS and the
waiting time can be improved by increasing the
Cloud service rate. Apparently the waiting time is in-
versely proportional to Cloud service rate. The PDF
performance-tuning in our algorithm contributes to
the improved QoS. With higher Cloud service rate,
the Cloud datacenter overloading issue is mitigat-
ed. Since each Cloud datacenter is able to handle
more jobs, the PDF performance-tuning intelligently
assigns more jobs to sites with better QoS. As a result,
the accumulative QoS is improved.

e By increasing both the job arrival rate and the Cloud
service rate, both QoS and waiting time increase.
Again, increment in accumulative QoS is due to the
additional jobs, each contributing a QoS value to
the accumulative QoS. In contrast to the case with
higher job arrival rate and the same service rate,
the waiting time does not increase dramatically with
the job arrival rate. It suggests that the severity of
Cloud datacenter overloading is significantly allevi-
ated. Therefore, our algorithm has the capacity to

be deployed in the real world, given steady service
rate/job arrival rate ratio.

6 CONCLUSION

Cloud computing, which delivers computing as a service,
has emerged as a promising computing paradigm which
offers vast computing power and flexibility. However, it
faces many challenges such as system modeling with varia-
tions and optimization scheduling issues. This work pro-
poses a stochastic modeling of workload scheduling for
the cloud computing environment considering timeliness,
security and reliability. A cross entropy based QoS-aware
workload scheduling technique is developed to compute
scheduling solutions optimizing the QoS metric. Our ex-
periments on 500 testcases demonstrate that the proposed
approach significantly outperforms the greedy algorithm
with up to 56.1% QoS improvement with largest size of
testcases and 25.4% waiting time improvement with the
testcases which has the size of 50 — 100.
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