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he adoption of container-based microservice architec-
tures is revolutionizing application design. By adopting 
a microservice architecture, developers can engineer 
applications that are composed of multiple lightweight, 

self-contained, and portable runtime components deployed across 
a large number of geodistributed servers. 

A microservices-based cloud application in-
volves the interoperation of multiple microservices, 
each developed separately, that can be deployed, up-
dated, and redeployed independently without com-
promising the application’s ecosystem’s integrity. 
The ability to independently update and redeploy the 
code base of one or more microservices increases ap-
plications’ scalability, portability, updatability, and 
availability, but at the cost of expensive remote calls 
(instead of in-process calls) and increased overhead 
for cross-component synchronization.

The microservices approach is in contrast to the 
traditional “monolithic” development of applications, 
where each application is a single, autonomous unit. 
For example, in a client-server application, the server 
is a monolithic entity that handles HTTP requests, 
executes logic, and retrieves or updates its data. The 
problem with such monolithic architectures is that 
even a small modification of the application’s logic 
requires the deployment of a new running version of 
the entire code base. A microservice architecture is 
lightweight and easily shipped and updated. Hence, 
it’s ideal for engineering applications where we can-

not fully anticipate functional-
ities in advance (for example, 
the types of devices that might 
one day access the applica-
tion). Microservice architec-
tures are a part of a larger shift 
in IT departments towards a 
DevOps culture, in which development and opera-
tions teams work closely together to support an ap-
plication over its lifecycle, and go through a rapid or 
even continuous release cycle. 

Microservices act as standalone application 
subunits or components, implementing specific 
communication protocols for sending and receiv-
ing messages. In microservices, data flows through 
smart endpoints, which also process incoming in-
formation. Using well-defined interfaces and pro-
tocols, application developers can deploy different 
microservices on heterogeneous infrastructures 
without a specific integration framework. Gener-
ally, microservice communication uses a REST ap-
proach based on HTTP and TCP protocols, XMPP, 
or JavaScript Object Notation (JSON). However, 
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currently, there are no widely adopted standardized 
protocols or data formats for microservice com-
munication.1 Microservice deployment and execu-
tion also leads to various networking issues. To this 
end, application developers currently adopt various 
software-defined networking (SDN) and network 
function virtualization (NFV) solutions for network-
ing microservices. 

Overview of Virtualization Technologies
Hypervisor-based resource virtualization (such as 
that used by Xen and VMware) is a key concept in 
cloud computing. Hypervisor-based virtualization 
enables cloud providers to create unique virtual ma-
chines (VMs) that share a set of physical hardware re-
sources (CPU, memory, network, and disk). Each VM 
executes distinct operating system instances (rang-
ing from proprietary to open source), which supports 
fault-tolerant and isolated security context behavior. 

Container-based virtualization can be used to 
create microservices.2 A container is a collection 
of operating system kernel utilities configured to 
manage the physical hardware resources used by a 
particular application component.3 Containeriza-
tion allows cloud providers to instantiate, relocate, 
and optimize hardware resources in a more flexible 
way while providing near-native performance (if de-
ployed in “hypervisor-free” mode). Because the con-
tainers share a single operating system kernel, they 
incur lower overhead.3 However, container-based vir-

tualization leads to weaker isolation and introduces 
greater security vulnerabilities than hypervisor-based 
virtualization.4 

From the user viewpoint, each container looks 
and executes exactly like a standalone operating sys-
tem. Additionally, in a cloud computing scenario, 
developers can deploy a higher density of contain-
ers (compared to VM density in hypervisor-managed 
datacenters) on the same physical hardware. Linux 
container virtualization (LCV) is the most well-
known container-based virtualization technology. 
Popular LCV solutions include Docker, LXC, lmct-
fy, and OpenVZ. 

Figure 1 shows the key architectural differenc-
es between hypervisor-based and container-based 
virtualization. Figure 1a shows application compo-
nents deployed within a hypervisor-based VM that 
provides abstraction for full guest operating sys-
tems (one per VM). Figure 1b shows microservice 
deployment within a hypervisor-free containerized 
environment. Finally, Figure 1c shows microservice 
deployment within a containerized environment on 
a physical hardware managed by a hypervisor-based 
VM. After physical hardware (for example, a server 
or appliance), a downward-facing hypervisor is more 
suitable for managing infrastructure-as-a-service 
(IaaS) clouds, whereas containers are more suited for 
managing platform-as-a-service (PaaS) clouds. Hav-
ing said that, hypervisor-free containerization isn’t a 
replacement for traditional hypervisor technologies; 

(a) (b) (c)

Guest
processes

Guest
processes

Guest
microservice

Guest
microservice

Guest
microservice

Guest
microservice

Runtime Libs

Guest OS

Container engine

Runtime Libs Runtime Libs

Container

VM

Hypervisor Hypervisor

Physical cloud hardware Physical cloud hardware Physical cloud hardware  

Host operating system

Host operating system

Guest OS

VM

Container Container engine

Container ContainerRuntime Libs

Runtime Libs Runtime Libs

Figure 1. Comparison of cloud architectures: (a) hypervisor-based application deployment, (b) hypervisor-free containerized 

microservice, and (c) containerized microservice within a hypervisor-managed physical host.
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the two technologies complement each other and 
must be carefully analyzed during the application 
architecture design phase in terms of performance 
isolation, overhead, and security requirements.

Container Engines for Microservices 
Scheduling and Management
Several tools can instantiate and manage containers 
in clouds. Docker Swarm, for example, provides na-
tive clustering for Docker containers. It turns a pool 
of Docker hosts into a single virtual Docker host. 
Because Docker Swarm serves the standard Dock-
er API, any tool that already communicates with 
a Docker daemon can use Swarm to transparently 
scale to multiple hosts. A Docker container manager 
represents the basic container-oriented technology. 

Kubernetes is an open-source technology for 
automating deployment, operations, and scaling of 
containerized applications. It groups the containers 
making up an application into logical units for easy 
management and discovery—for example, based on 
their resource requirements and other constraints. 
Kubernetes also provides horizontal scaling of ap-
plications, which can be performed manually or 
automatically based on CPU load. Finally, it pro-
vides automated rollouts and rollbacks and self-
healing features. 

Magnum is the OpenStack API service that 
makes container orchestration engines such as 
Docker Swarm and Kubernetes available as first-class 
resources in the OpenStack managed datacenter. 
Magnum uses the Heat service to schedule an operat-
ing system image, which contains Docker and Kuber-
netes, and runs this image on either VMs or a bare 
metal cluster.

The Google Container Engine provides a com-
mercial service that relies on Docker and Kuber-
netes for cluster management and orchestration. 
Similarly, the Amazon Elastic Compute Cloud 
(EC2) container service supports Docker containers 
to be deployed on a managed cluster of Amazon EC2 
instances.  Rackspace is slightly behind with respect 
to container-based offerings. Its beta service, Cari-
na, is based on Docker Swarm and doesn’t provide 
any elasticity features. 

Openstack Neutron supports the management of 
virtual LANs in cloud datacenters by creating ad hoc 
NFV. NFV uses virtualization technologies to man-

age core networking functions via software instead 
of relying on hardware to handle these functions. 

Creating NFVs using Open Virtual Network 
(OVN) technology guarantees an efficient and se-
cure use of the network. OVN complements existing 
SDN capabilities, adding native support for virtual 
network abstractions, such as virtual L1 and L2 
overlays and security groups. OVN also supports the 
security inspection of data transfer inside virtual 
networks (for example, packet inspection); hence it 
provides extra features useful for increasing custom-
er security and privacy 

Open Issues in Scheduling and Resource 
Management
Despite the clear technological advances in con-
tainer and hypervisor-based virtualization technol-
ogies, we are yet to realize a standard large-scale, 
performance-optimized scheduling platform for 
managing an ecosystem of microservices networked 
together to create a specialized application stack, 
such as a multitier Web application and Internet of 
Things (IoT) application. Future efforts will focus 
on solving the following research challenges. 

Configuration Selection and Management
A cloud application (for example, a multitier Web 
application) must typically combine multiple inter-
dependent microservices that provide diverse func-
tionalities—for example, load balancer, webserver, 
and database server. Moreover, these microservices 
have both control and dataflow dependencies. The 
challenges exist in dealing with heterogeneous con-
figurations of microservices and cloud datacenter 
resources driven by heterogeneous performance 
requirements. With the increase in microservice 
application functionality types (encryption, com-
pression, SQL/NSQL server, virtual private net-
work, and so on) and the heterogeneity of container 
engines (LXC, Docker, Google, and Amazon) and 
underlying cloud datacenter resources, the mapping 
of microservices to datacenters demands selecting 
bespoke configurations from an abundance of pos-
sibilities,5 which is impossible to resolve manually.  

Branded price calculators, available from public 
cloud providers (Amazon and Azure, for example) and 
academic projects (Cloudrado), allow comparison of 
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hardware resource leasing costs. However, these cal-
culators can’t recommend or compare configurations 
across microservices and datacenter resources. 

We therefore need new research that focuses 
on developing techniques for accurately model-
ing, representing, and querying configurations of 
microservices and datacenter resources. In addi-
tion, we need general-purpose decision-making 
techniques, driven by heterogeneous performance 
requirements, to automate the selection of mi-
croservice configurations and their mapping to het-
erogeneous datacenter resources.5

Application Topology Specification and 
Composition
To compose a microservices-based application topol-
ogy, you need to describe the microservices using a 
well-known standard. For example, you can base mi-
croservice descriptions on the Topology and Orches-
tration Specification for Cloud Applications (Tosca)/
YAML along with the usual image representation. 
Moreover, workloads pertaining to different mi-
croservices depend on each other, and changes in one 
microservice’s execution and dataflow will influence 
those of others. Overall, the topology specification 
and composition needs to cover the whole life cycle—
that is, deploy, patch, monitor, reconfigure, and shut-
down driven by the performance objectives of each 
microservice as well as the application as a whole. 

The Business Process Execution Lan-
guage  (BPEL) and Web Service Choreography 
Interface (WSCI) are examples of Web service com-
position (agnostic to microservices) languages used 
in SOAs. The Resource and Application Description 
Language (RADL) is designed for composing and 
deploying VM images to different cloud providers.6 
Some application topology composition and speci-
fication tools found in literature (Crane, Fig, and 
Maestro, for example) can’t deploy microservices 
across distributed datacenter hosts.2 Although Tosca 
supports topology pattern specification, it lacks sup-
port for describing data and control flow dependen-
cies between microservices, with a specific focus on 
identifying event coordination and dataflow mecha-
nisms; properties of microservices in terms of work-
load features (such as data format, query rate, and 
runtime I/O dependency); and performance objec-
tives and measures relevant to microservices. 

Hence, an important research direction is to 
investigate a microservices composition framework, 
which will facilitate knowledge reuse and make it 
simpler for application engineers to interact with a 
complex computing platform. 

Performance Characterization and Isolation 
In a datacenter, microservices can be deployed in-
side hypervisor-based VMs or on nonvirtualized 
physical hardware. A recent study found that deploy-
ment within VMs imposes additional performance 
overhead while giving no extra benefit compared to 
deploying microservice containers on a virtualized 
physical server.7 As noted earlier, single containers, 
such as Docker, can support multiple and heteroge-
neous microservices that provide various application-
specific features in a containerized environment. 
In this environment, unexpected interference and 
contention can occur. For some microservices (such 
as a compression server) storage requirements domi-
nate, whereas for others (for example, transactional 
query processing by database server) computational 
requirements dominate, and for still others (for ex-
ample, a VPN server) communication requirements 
dominate. Hence, container engines (Kubernetes, 
Docker Swarm, and so on) must consider which 
microservices to combine to minimize workload in-
terference and contention. Balancing resource con-
sumption and performance is critical in deciding 
where to deploy microservices. 

Some recent work has investigated performance 
isolation and interference detection. New hardware 
design techniques change processor cache architec-
ture partitioning8 or integrate novel insertion policies 
to pseudo-partition caches to reduce contention.9 

Hardware-based approaches add complexity 
to the processor architecture and are difficult to 
manage over time. Sriram Govindan and his col-
leagues developed a scheme to quantify the effects 
of cache contention between consolidated work-
loads.10 However, they limit their discussion to 
cache contention issues, ignoring other hardware 
resource types. Ripal Nathuji and Aman Kansal 
present a control theory-based consolidation ap-
proach that mitigates the effects of cache, memory, 
and hardware prefetching contention of coexisting 
workloads.11 However, their focus is CPU-bound or 
compute-intensive applications. 
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Several new research topics are worthy of inves-
tigation: performance isolation and characterization 
techniques when multiple microservices run in the 
same container or on the same physical host; live 
migration of containers to reduce interference and 
contention; and tradeoffs between live migration 
and restarting.

Microservice Monitoring
Guaranteed application performance requires clear 
and real-time understanding of performance met-
rics across microservices and datacenter resourc-
es. However, variations in performance metrics 
across different microservices and datacenter 
resources complicate this problem. For exam-
ple, key performance metrics for SDN resources 
are throughput and latency; for CPU resources, 
they’re utilization and throughput; and for SQL 
and NoSQL database microservices, it’s query 
response time. Therefore, how to define and for-
mulate performance metrics coherently across 
microservices to give a holistic view of data and 
control flows remains an open issue. 

Monitoring tools that were popular in the grid 
and cluster computing era (for example, R-GMA and 
Hawkeye) were concerned only with monitoring per-
formance metrics at the datacenter resource level 
(such as CPU percentage and TCP/IP performance), 
but not at the microservice level (such as end-to-end 
request processing latency and communication over-
head). Cluster-wide monitoring frameworks (Nagios, 
Ganglia, Apache Hadoop, and Apache Spark) pro-
vide information about hardware metrics (cluster, 
CPU, and memory utilization, and so on) of clus-
ter resources that might belong to public or private 
cloud datacenter.12,13 Monitoring frameworks used 
by the Amazon EC2 Container Service (Amazon 
CloudWatch) and Kubernetes (Heapster) typically 
monitor CPU, memory, filesystem, and network us-
age statistics, so they can’t monitor microservice-
level performance metrics. 

This leads to several new research topics, in-
cluding development of holistic techniques13 for 
collecting and integrating monitoring data from all 
microservices and datacenter resources so admin-
istrators or a scheduler (a computer program) can 
track and understand the impact of runtime uncer-
tainities (for example, failure, load-balancing ef-

ficiency, and overloading) on performance without 
understanding the whole platform’s complexity. 

Elastic Scheduling and Runtime Adaptation
The elastic scheduling of microservices is a com-
plex research problem due to several runtime 
uncertainties.

First, it’s difficult to estimate microservice work-
load behavior in terms of request arrival rate, type, 
and processing time distributions; I/O system be-
havior; and number of users connecting to different 
types and mix of microservices. The real challenge 
in devising microservice-specific workload models is 
to accurately learn and fit statistical functions to the 
monitored distributions such as request arrival pat-
tern, CPU usage patterns, memory usage patterns, 
I/O system behaviors, request processing time distri-
butions, and network usage patterns.

Without knowing the workload behaviors of 
microservices, it’s difficult to make decisions about 
the types and scale of datacenter resources to be 
provisioned to microservices at any given time. 
Furthermore, the availability, load, and throughput 
of datacenter resources can vary in unpredictable 
ways, due to failure or congestion of network links. 

Kubernetes offers a microservice container re-
configuration feature, which scales by observing CPU 
usage (“elasticity is agnostic to the workload behavior 
and performance targets of microservice.” Amazon’s 
autoscaling service employs simple threshold-based 
rules or scheduled actions based on a timetable to 
regulate infrastructural resources (for example, if the 
average CPU usage is above 40 percent, add another 
microservice container). Other cloud providers have 
implemented similar simple rule-based reactive run-
time scheduling techniques: Google’s Cloud Platform 
autoscaler, Rackspace’s Auto Scale, Microsoft Azure’s 
Fabric Controller, and IBM’s Softlayer autoscale. 

To the best of our knowledge, no prior work has 
developed workload and resource performance pre-
diction models to enable reconfiguration (scaling, 
descaling, and migration) of microservices on cloud 
datacenters while ensuring microservice-specific per-
formance targets. Hence, important new research is 
investigating predictive workload and performance 
models to forecast workload input and performance 
metrics across multiple, collocated microservices 
deployed on cloud datacenter resources.
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Evolution of Microservice-Powered  
Cloud Paradigms
Wide-scale adoption of containerization technolo-
gies and microservices architectures will strongly 
influence other emerging computing paradigms.

Cloud Computing and Internet of Things
The combination of cloud computing and the IoT 
is presenting new opportunities for delivering new 
types of application services (see Figure 2). For ex-
ample, private, public, and hybrid cloud providers 
are looking to integrate their datacenters’ software 
and hardware stacks with embedded devices (in-
cluding sensors and actuators) to provide IoT as a 
service (IoTaaS). 

Typically, IoT devices run customized soft-
ware developed with a particular programming 
language and/or development framework. Minimal 
processing and storage tasks can be performed in 
IoT devices (for example, a sensor gateway or SDN 
virtualization) by deploying lightweight, contain-
erized microservices.14,15 Meanwhile, the massive 
data storage and processing tasks (data mining and 
big data analytics) are performed in cloud datacen-
ters that exploit virtualization (both hypervisor and 
container-based) to elastically scale up/down storage 
and processing capabilities.

Federated Clouds
The cloud services market has been growing in re-
cent years, a trend that’s confirmed by the number 
of cloud providers that have appeared on the market. 
Currently, small and medium cloud providers can’t 
directly compete with the big players (such as Google, 
Amazon, and Microsoft), so they must implement 
new business strategies to penetrate the market.16,17

In particular, small and medium providers can 
establish stronger partnerships to share resources 
according to the rules of the cloud federation eco-
system they belong to. Small providers can federate 
with large providers to gain economies of scale, op-
timize their assets, scale their capabilities, and share 
resources to establish new forms of collaboration. If 
a small provider’s cloud runs out of capacity, it can 
migrate its microservices to federated datacenters to 
ensure business continuity (see Figure 3).

However, federated clouds need to respond to 
high heterogeneity across independent cloud systems, 
efficient and secure data exchange among clouds, and 
the ability to efficiently deploy resources and services 
across such federated systems. Indeed, the dynamism 
of a federation with incoming and outgoing providers 
and variable resource availability makes microser-
vices and containers the best solution to quickly 
adapt to changes in the federated system. 

icroservices will simplify orchestration of 
networked applications across heterogeneous 

cloud datacenters and emerging microdatacenters 
(on the network edge). However, the creation of 
such applications (for example, smart city and smart 
healthcare IoT clouds) requires new research into 
scheduling and resource management algorithms 
and platforms for managing highly distributed and 
networked microservices. 
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