
2 3 2 5 - 6 0 9 5/ 16/$ 3 3 . 0 0 © 2 0 16 I EEE 	 S ep t e m b er /O c to b er 2 0 16 	 I EEE Clo u d Co m p u t i n g� 81

Maria Fazio and
Antonio Celesti

University of Messina

Rajiv Ranjan
Newcastle University

Lydia Chen
IBM Research

Chang Liu
Newcastle University

Massimo Villari
University of Messina

he adoption of container-based microservice architec-
tures is revolutionizing application design. By adopting
a microservice architecture, developers can engineer
applications that are composed of multiple lightweight,

self-contained, and portable runtime components deployed across
a large number of geodistributed servers.

A microservices-based cloud application in-
volves the interoperation of multiple microservices,
each developed separately, that can be deployed, up-
dated, and redeployed independently without com-
promising the application’s ecosystem’s integrity.
The ability to independently update and redeploy the
code base of one or more microservices increases ap-
plications’ scalability, portability, updatability, and
availability, but at the cost of expensive remote calls
(instead of in-process calls) and increased overhead
for cross-component synchronization.

The microservices approach is in contrast to the
traditional “monolithic” development of applications,
where each application is a single, autonomous unit.
For example, in a client-server application, the server
is a monolithic entity that handles HTTP requests,
executes logic, and retrieves or updates its data. The
problem with such monolithic architectures is that
even a small modification of the application’s logic
requires the deployment of a new running version of
the entire code base. A microservice architecture is
lightweight and easily shipped and updated. Hence,
it’s ideal for engineering applications where we can-

not fully anticipate functional-
ities in advance (for example,
the types of devices that might
one day access the applica-
tion). Microservice architec-
tures are a part of a larger shift
in IT departments towards a
DevOps culture, in which development and opera-
tions teams work closely together to support an ap-
plication over its lifecycle, and go through a rapid or
even continuous release cycle.

Microservices act as standalone application
subunits or components, implementing specific
communication protocols for sending and receiv-
ing messages. In microservices, data flows through
smart endpoints, which also process incoming in-
formation. Using well-defined interfaces and pro-
tocols, application developers can deploy different
microservices on heterogeneous infrastructures
without a specific integration framework. Gener-
ally, microservice communication uses a REST ap-
proach based on HTTP and TCP protocols, XMPP,
or JavaScript Object Notation (JSON). However,

Open Issues
in Scheduling
Microservices in
the Cloud

Blue Skies

82	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue Skies

currently, there are no widely adopted standardized
protocols or data formats for microservice com-
munication.1 Microservice deployment and execu-
tion also leads to various networking issues. To this
end, application developers currently adopt various
software-defined networking (SDN) and network
function virtualization (NFV) solutions for network-
ing microservices.

Overview of Virtualization Technologies
Hypervisor-based resource virtualization (such as
that used by Xen and VMware) is a key concept in
cloud computing. Hypervisor-based virtualization
enables cloud providers to create unique virtual ma-
chines (VMs) that share a set of physical hardware re-
sources (CPU, memory, network, and disk). Each VM
executes distinct operating system instances (rang-
ing from proprietary to open source), which supports
fault-tolerant and isolated security context behavior.

Container-based virtualization can be used to
create microservices.2 A container is a collection
of operating system kernel utilities configured to
manage the physical hardware resources used by a
particular application component.3 Containeriza-
tion allows cloud providers to instantiate, relocate,
and optimize hardware resources in a more flexible
way while providing near-native performance (if de-
ployed in “hypervisor-free” mode). Because the con-
tainers share a single operating system kernel, they
incur lower overhead.3 However, container-based vir-

tualization leads to weaker isolation and introduces
greater security vulnerabilities than hypervisor-based
virtualization.4

From the user viewpoint, each container looks
and executes exactly like a standalone operating sys-
tem. Additionally, in a cloud computing scenario,
developers can deploy a higher density of contain-
ers (compared to VM density in hypervisor-managed
datacenters) on the same physical hardware. Linux
container virtualization (LCV) is the most well-
known container-based virtualization technology.
Popular LCV solutions include Docker, LXC, lmct-
fy, and OpenVZ.

Figure 1 shows the key architectural differenc-
es between hypervisor-based and container-based
virtualization. Figure 1a shows application compo-
nents deployed within a hypervisor-based VM that
provides abstraction for full guest operating sys-
tems (one per VM). Figure 1b shows microservice
deployment within a hypervisor-free containerized
environment. Finally, Figure 1c shows microservice
deployment within a containerized environment on
a physical hardware managed by a hypervisor-based
VM. After physical hardware (for example, a server
or appliance), a downward-facing hypervisor is more
suitable for managing infrastructure-as-a-service
(IaaS) clouds, whereas containers are more suited for
managing platform-as-a-service (PaaS) clouds. Hav-
ing said that, hypervisor-free containerization isn’t a
replacement for traditional hypervisor technologies;

(a) (b) (c)

Guest
processes

Guest
processes

Guest
microservice

Guest
microservice

Guest
microservice

Guest
microservice

Runtime Libs

Guest OS

Container engine

Runtime Libs Runtime Libs

Container

VM

Hypervisor Hypervisor

Physical cloud hardware Physical cloud hardware Physical cloud hardware

Host operating system

Host operating system

Guest OS

VM

Container Container engine

Container ContainerRuntime Libs

Runtime Libs Runtime Libs

Figure 1. Comparison of cloud architectures: (a) hypervisor-based application deployment, (b) hypervisor-free containerized

microservice, and (c) containerized microservice within a hypervisor-managed physical host.

S ep t e m b er /O c to b er 2 0 16 	 I EEE Clo u d Co m p u t i n g� 83

the two technologies complement each other and
must be carefully analyzed during the application
architecture design phase in terms of performance
isolation, overhead, and security requirements.

Container Engines for Microservices
Scheduling and Management
Several tools can instantiate and manage containers
in clouds. Docker Swarm, for example, provides na-
tive clustering for Docker containers. It turns a pool
of Docker hosts into a single virtual Docker host.
Because Docker Swarm serves the standard Dock-
er API, any tool that already communicates with
a Docker daemon can use Swarm to transparently
scale to multiple hosts. A Docker container manager
represents the basic container-oriented technology.

Kubernetes is an open-source technology for
automating deployment, operations, and scaling of
containerized applications. It groups the containers
making up an application into logical units for easy
management and discovery—for example, based on
their resource requirements and other constraints.
Kubernetes also provides horizontal scaling of ap-
plications, which can be performed manually or
automatically based on CPU load. Finally, it pro-
vides automated rollouts and rollbacks and self-
healing features.

Magnum is the OpenStack API service that
makes container orchestration engines such as
Docker Swarm and Kubernetes available as first-class
resources in the OpenStack managed datacenter.
Magnum uses the Heat service to schedule an operat-
ing system image, which contains Docker and Kuber-
netes, and runs this image on either VMs or a bare
metal cluster.

The Google Container Engine provides a com-
mercial service that relies on Docker and Kuber-
netes for cluster management and orchestration.
Similarly, the Amazon Elastic Compute Cloud
(EC2) container service supports Docker containers
to be deployed on a managed cluster of Amazon EC2
instances. Rackspace is slightly behind with respect
to container-based offerings. Its beta service, Cari-
na, is based on Docker Swarm and doesn’t provide
any elasticity features.

Openstack Neutron supports the management of
virtual LANs in cloud datacenters by creating ad hoc
NFV. NFV uses virtualization technologies to man-

age core networking functions via software instead
of relying on hardware to handle these functions.

Creating NFVs using Open Virtual Network
(OVN) technology guarantees an efficient and se-
cure use of the network. OVN complements existing
SDN capabilities, adding native support for virtual
network abstractions, such as virtual L1 and L2
overlays and security groups. OVN also supports the
security inspection of data transfer inside virtual
networks (for example, packet inspection); hence it
provides extra features useful for increasing custom-
er security and privacy

Open Issues in Scheduling and Resource
Management
Despite the clear technological advances in con-
tainer and hypervisor-based virtualization technol-
ogies, we are yet to realize a standard large-scale,
performance-optimized scheduling platform for
managing an ecosystem of microservices networked
together to create a specialized application stack,
such as a multitier Web application and Internet of
Things (IoT) application. Future efforts will focus
on solving the following research challenges.

Configuration Selection and Management
A cloud application (for example, a multitier Web
application) must typically combine multiple inter-
dependent microservices that provide diverse func-
tionalities—for example, load balancer, webserver,
and database server. Moreover, these microservices
have both control and dataflow dependencies. The
challenges exist in dealing with heterogeneous con-
figurations of microservices and cloud datacenter
resources driven by heterogeneous performance
requirements. With the increase in microservice
application functionality types (encryption, com-
pression, SQL/NSQL server, virtual private net-
work, and so on) and the heterogeneity of container
engines (LXC, Docker, Google, and Amazon) and
underlying cloud datacenter resources, the mapping
of microservices to datacenters demands selecting
bespoke configurations from an abundance of pos-
sibilities,5 which is impossible to resolve manually.

Branded price calculators, available from public
cloud providers (Amazon and Azure, for example) and
academic projects (Cloudrado), allow comparison of

84	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue Skies

hardware resource leasing costs. However, these cal-
culators can’t recommend or compare configurations
across microservices and datacenter resources.

We therefore need new research that focuses
on developing techniques for accurately model-
ing, representing, and querying configurations of
microservices and datacenter resources. In addi-
tion, we need general-purpose decision-making
techniques, driven by heterogeneous performance
requirements, to automate the selection of mi-
croservice configurations and their mapping to het-
erogeneous datacenter resources.5

Application Topology Specification and
Composition
To compose a microservices-based application topol-
ogy, you need to describe the microservices using a
well-known standard. For example, you can base mi-
croservice descriptions on the Topology and Orches-
tration Specification for Cloud Applications (Tosca)/
YAML along with the usual image representation.
Moreover, workloads pertaining to different mi-
croservices depend on each other, and changes in one
microservice’s execution and dataflow will influence
those of others. Overall, the topology specification
and composition needs to cover the whole life cycle—
that is, deploy, patch, monitor, reconfigure, and shut-
down driven by the performance objectives of each
microservice as well as the application as a whole.

The Business Process Execution Lan-
guage (BPEL) and Web Service Choreography
Interface (WSCI) are examples of Web service com-
position (agnostic to microservices) languages used
in SOAs. The Resource and Application Description
Language (RADL) is designed for composing and
deploying VM images to different cloud providers.6
Some application topology composition and speci-
fication tools found in literature (Crane, Fig, and
Maestro, for example) can’t deploy microservices
across distributed datacenter hosts.2 Although Tosca
supports topology pattern specification, it lacks sup-
port for describing data and control flow dependen-
cies between microservices, with a specific focus on
identifying event coordination and dataflow mecha-
nisms; properties of microservices in terms of work-
load features (such as data format, query rate, and
runtime I/O dependency); and performance objec-
tives and measures relevant to microservices.

Hence, an important research direction is to
investigate a microservices composition framework,
which will facilitate knowledge reuse and make it
simpler for application engineers to interact with a
complex computing platform.

Performance Characterization and Isolation
In a datacenter, microservices can be deployed in-
side hypervisor-based VMs or on nonvirtualized
physical hardware. A recent study found that deploy-
ment within VMs imposes additional performance
overhead while giving no extra benefit compared to
deploying microservice containers on a virtualized
physical server.7 As noted earlier, single containers,
such as Docker, can support multiple and heteroge-
neous microservices that provide various application-
specific features in a containerized environment.
In this environment, unexpected interference and
contention can occur. For some microservices (such
as a compression server) storage requirements domi-
nate, whereas for others (for example, transactional
query processing by database server) computational
requirements dominate, and for still others (for ex-
ample, a VPN server) communication requirements
dominate. Hence, container engines (Kubernetes,
Docker Swarm, and so on) must consider which
microservices to combine to minimize workload in-
terference and contention. Balancing resource con-
sumption and performance is critical in deciding
where to deploy microservices.

Some recent work has investigated performance
isolation and interference detection. New hardware
design techniques change processor cache architec-
ture partitioning8 or integrate novel insertion policies
to pseudo-partition caches to reduce contention.9

Hardware-based approaches add complexity
to the processor architecture and are difficult to
manage over time. Sriram Govindan and his col-
leagues developed a scheme to quantify the effects
of cache contention between consolidated work-
loads.10 However, they limit their discussion to
cache contention issues, ignoring other hardware
resource types. Ripal Nathuji and Aman Kansal
present a control theory-based consolidation ap-
proach that mitigates the effects of cache, memory,
and hardware prefetching contention of coexisting
workloads.11 However, their focus is CPU-bound or
compute-intensive applications.

S ep t e m b er /O c to b er 2 0 16 	 I EEE Clo u d Co m p u t i n g� 85

Several new research topics are worthy of inves-
tigation: performance isolation and characterization
techniques when multiple microservices run in the
same container or on the same physical host; live
migration of containers to reduce interference and
contention; and tradeoffs between live migration
and restarting.

Microservice Monitoring
Guaranteed application performance requires clear
and real-time understanding of performance met-
rics across microservices and datacenter resourc-
es. However, variations in performance metrics
across different microservices and datacenter
resources complicate this problem. For exam-
ple, key performance metrics for SDN resources
are throughput and latency; for CPU resources,
they’re utilization and throughput; and for SQL
and NoSQL database microservices, it’s query
response time. Therefore, how to define and for-
mulate performance metrics coherently across
microservices to give a holistic view of data and
control flows remains an open issue.

Monitoring tools that were popular in the grid
and cluster computing era (for example, R-GMA and
Hawkeye) were concerned only with monitoring per-
formance metrics at the datacenter resource level
(such as CPU percentage and TCP/IP performance),
but not at the microservice level (such as end-to-end
request processing latency and communication over-
head). Cluster-wide monitoring frameworks (Nagios,
Ganglia, Apache Hadoop, and Apache Spark) pro-
vide information about hardware metrics (cluster,
CPU, and memory utilization, and so on) of clus-
ter resources that might belong to public or private
cloud datacenter.12,13 Monitoring frameworks used
by the Amazon EC2 Container Service (Amazon
CloudWatch) and Kubernetes (Heapster) typically
monitor CPU, memory, filesystem, and network us-
age statistics, so they can’t monitor microservice-
level performance metrics.

This leads to several new research topics, in-
cluding development of holistic techniques13 for
collecting and integrating monitoring data from all
microservices and datacenter resources so admin-
istrators or a scheduler (a computer program) can
track and understand the impact of runtime uncer-
tainities (for example, failure, load-balancing ef-

ficiency, and overloading) on performance without
understanding the whole platform’s complexity.

Elastic Scheduling and Runtime Adaptation
The elastic scheduling of microservices is a com-
plex research problem due to several runtime
uncertainties.

First, it’s difficult to estimate microservice work-
load behavior in terms of request arrival rate, type,
and processing time distributions; I/O system be-
havior; and number of users connecting to different
types and mix of microservices. The real challenge
in devising microservice-specific workload models is
to accurately learn and fit statistical functions to the
monitored distributions such as request arrival pat-
tern, CPU usage patterns, memory usage patterns,
I/O system behaviors, request processing time distri-
butions, and network usage patterns.

Without knowing the workload behaviors of
microservices, it’s difficult to make decisions about
the types and scale of datacenter resources to be
provisioned to microservices at any given time.
Furthermore, the availability, load, and throughput
of datacenter resources can vary in unpredictable
ways, due to failure or congestion of network links.

Kubernetes offers a microservice container re-
configuration feature, which scales by observing CPU
usage (“elasticity is agnostic to the workload behavior
and performance targets of microservice.” Amazon’s
autoscaling service employs simple threshold-based
rules or scheduled actions based on a timetable to
regulate infrastructural resources (for example, if the
average CPU usage is above 40 percent, add another
microservice container). Other cloud providers have
implemented similar simple rule-based reactive run-
time scheduling techniques: Google’s Cloud Platform
autoscaler, Rackspace’s Auto Scale, Microsoft Azure’s
Fabric Controller, and IBM’s Softlayer autoscale.

To the best of our knowledge, no prior work has
developed workload and resource performance pre-
diction models to enable reconfiguration (scaling,
descaling, and migration) of microservices on cloud
datacenters while ensuring microservice-specific per-
formance targets. Hence, important new research is
investigating predictive workload and performance
models to forecast workload input and performance
metrics across multiple, collocated microservices
deployed on cloud datacenter resources.

86	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue Skies

Evolution of Microservice-Powered
Cloud Paradigms
Wide-scale adoption of containerization technolo-
gies and microservices architectures will strongly
influence other emerging computing paradigms.

Cloud Computing and Internet of Things
The combination of cloud computing and the IoT
is presenting new opportunities for delivering new
types of application services (see Figure 2). For ex-
ample, private, public, and hybrid cloud providers
are looking to integrate their datacenters’ software
and hardware stacks with embedded devices (in-
cluding sensors and actuators) to provide IoT as a
service (IoTaaS).

Typically, IoT devices run customized soft-
ware developed with a particular programming
language and/or development framework. Minimal
processing and storage tasks can be performed in
IoT devices (for example, a sensor gateway or SDN
virtualization) by deploying lightweight, contain-
erized microservices.14,15 Meanwhile, the massive
data storage and processing tasks (data mining and
big data analytics) are performed in cloud datacen-
ters that exploit virtualization (both hypervisor and
container-based) to elastically scale up/down storage
and processing capabilities.

Federated Clouds
The cloud services market has been growing in re-
cent years, a trend that’s confirmed by the number
of cloud providers that have appeared on the market.
Currently, small and medium cloud providers can’t
directly compete with the big players (such as Google,
Amazon, and Microsoft), so they must implement
new business strategies to penetrate the market.16,17

In particular, small and medium providers can
establish stronger partnerships to share resources
according to the rules of the cloud federation eco-
system they belong to. Small providers can federate
with large providers to gain economies of scale, op-
timize their assets, scale their capabilities, and share
resources to establish new forms of collaboration. If
a small provider’s cloud runs out of capacity, it can
migrate its microservices to federated datacenters to
ensure business continuity (see Figure 3).

However, federated clouds need to respond to
high heterogeneity across independent cloud systems,
efficient and secure data exchange among clouds, and
the ability to efficiently deploy resources and services
across such federated systems. Indeed, the dynamism
of a federation with incoming and outgoing providers
and variable resource availability makes microser-
vices and containers the best solution to quickly
adapt to changes in the federated system.

icroservices will simplify orchestration of
networked applications across heterogeneous

cloud datacenters and emerging microdatacenters
(on the network edge). However, the creation of
such applications (for example, smart city and smart
healthcare IoT clouds) requires new research into
scheduling and resource management algorithms
and platforms for managing highly distributed and
networked microservices.

References
	 1.	A Sill, “The Design and Architecture of Mi-

croservices,” IEEE Cloud Computing, vol. 3, no.
5, 2016, pp. 76–80.

	 2.	C. Pahl and B. Lee, “Containers and Clusters
for Edge Cloud Architectures: A Technology
Review,” Proc. 3rd Int’l Conf. Future Internet of
Things and Cloud (FiCloud), 2015, pp. 379–386.

	 3.	M. Xavier et al., “Performance Evaluation of

VM1 VM2 VM3
S2 S3 Sn

SA1 SAmSA3SA2

...

...

S1

Storage and Processing Services

Sensing and Actuating Services

IoT Cloud Provider

C1

C3 C4 C5

C1 C2

VM4

C2

Figure 2. A microservice as the enabler for the IoT application cloud.

IoT application are decomposed into collection of microservices which

are distributed across physical hardware resources available in the cloud

and on the network edge.

S ep t e m b er /O c to b er 2 0 16 	 I EEE Clo u d Co m p u t i n g� 87

Container-Based Virtualization for High Per-
formance Computing Environments,” Proc.
21st Euromicro Int’l Conf. Parallel, Distributed,
and Network-Based Processing (PDP), 2013, pp.
233–240.

	 4.	C. Esposito, A. Castiglione, and K.-K.R. Choo,
“Challenges in Delivering Software in the Cloud
as Microservices,” IEEE Cloud Computing, Vol.
3, no. 5, 2016, pp. 10–14.

	 5.	R. Ranjan et al., “Cross-Layer Cloud Resource
Configuration Selection in the Big Data Era,”
IEEE Cloud Computing, vol. 2, no. 3, 2015, pp.
16–22.

	 6.	M. Caballer et al., “Dynamic Management of
Virtual Infrastructures,” J. Grid Computing, vol.
13, Mar. 2015, pp. 53–70.

	 7.	W. Felter et al., “An Updated Performance Com-
parison of Virtual Machines and Linux Contain-
ers,” Proc. IEEE Int’l Symp. Performance Analysis of
Systems and Software (ISPASS), 2015, pp. 171–172.

	 8.	M.K. Qureshi and Y.N. Patt, “Utility-Based
Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition
Shared Caches,” Proc. 39th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (Micro 06), 2006,
pp. 423–432.

	 9.	Y. Xie and G.H. Loh, “Pipp: Promotion/Inser-
tion Pseudo-Partitioning of Multi-Core Shared
Caches,” Proc. 36th Ann. Int’l Symp. Computer
Architecture (ISCA 09), 2009, pp. 174–183.

	10.	S. Govindan et al., “Cuanta: Quantifying Ef-
fects of Shared On-Chip Resource Interference
for Consolidated Virtual Machines,” Proc. 2nd
ACM Symp. Cloud Computing (SOCC 11), 2011,
article 22.

	11.	R. Nathuji and A. Kansal, “Q-Clouds: Manag-
ing Performance Interference Effects for QoS-
Aware Clouds,” Proc. 5th European Conf. Com-
puter Systems (EuroSys 10), 2010, pp. 237–250.

	12.	R. Ranjan, “Streaming Big Data Processing in

Government

User
Home cloud services (IaaS, PaaS, SaaS)

Virtual resources used by
foreign cloud A and placed
in its virtual infrastructure

Virtual resources
placed in foreigncloud A

and rented to home cloud

Virtual resources owned by
home cloud and placed in its

virtual infrastructure

Virtual resources
placed in foreign cloud B

and rented to home cloud

Home cloud
capabilities

enlargement
Virtual resources used by

foreign cloud B and placed
in its virtual infrastructure

Cloud

Cloud
federation

Enterprise
...

Foreign
cloud A

Home cloud
Foreign
cloud B

Server 1 Server 2 Server N

Foreign cloud A
virtual infrastructure

Home cloud
virtual infrastructure

Foreign cloud B
virtual infrastructure

Figure 3. Microservice as the basis of federating multiple cloud datacenters as part of cohesive federation,

where datacenter providers can meet the performance requirements of client applications through optimal

placement and migration of microservices across datacenters.

88	 I EEE Clo u d Co m p u t i n g� w w w.co m p u t er .o r g /clo u d co m p u t i n g

Blue Skies

Datacenter Clouds,” IEEE Cloud Computing,
vol. 1, no. 1, 2014, pp. 78–83.

	13.	M. Natu et al., “Holistic Performance Monitor-
ing of Hybrid Clouds: Complexities and Future
Directions,” IEEE Cloud Computing, vol. 3, no.
1, 2016, pp. 72–81.

	14.	A. Celesti et al., “Exploring Container Virtu-
alization in IoT Clouds,” Proc. 2016 IEEE Int’l
Conf. Smart Computing (SmartComp), 2016, pp.
1–6.

	15.	M. Fazio and A. Puliafito, “Cloud4sens: A Cloud-
Based Architecture for Sensor Controlling and
Monitoring,” IEEE Comm, vol. 53, Mar. 2015,
pp. 41–47.

	16.	M. Assis and L. Bittencourt, “A Survey on Cloud
Federation Architectures: Identifying Function-
al and Non-functional Properties,” J. Network
and Computer Applications, vol. 72, 2016, pp.
51–71.

	17.	A. Celesti et al., “Characterizing Cloud Fed-
eration in IoT,” Proc. 30th Int’l Conf. Advanced
Information Networking and Applications Work-
shops (WAINA), 2016, pp. 93–98.

Maria Fazia is an assistant researcher of computer
science at the University of Messina. Her research in-
terests include distributed systems and wireless com-
munications, especially with regard to the design and
development of cloud solutions for IoT services and
applications. Fazia has a PhD in advanced technolo-
gies for information engineering from the University
of Messina. Contact her at mfazio@unime.it.

Antonio Celesti is a postdoctoral researcher at
University of Messina. His research interests include
distributed systems and cloud computing, with par-
ticular regard to federation, storage, security, energy
efficiency; and assistive technology. Celesti has a PhD
in advanced technology for information engineering
from the University of Messina, Italy. Contact him at
acelesti@unime.it.

Rajiv Ranjan is a reader in the School of Com-
puting Science at Newcastle University, UK; chair
professor in the School of Computer, Chinese Uni-
versity of Geosciences, Wuhan, China; and a visiting
scientist at Data61, CSIRO, Australia. His research

interests include grid computing, peer-to-peer net-
works, cloud computing, Internet of Things, and big
data analytics. Ranjan has a PhD in computer science
and software engineering from the University of Mel-
bourne (2009). Contact him at raj.ranjan@ncl.ac.uk
or http://rajivranjan.net.

Lydia Y. Chen is a research staff member at the
IBM Zurich Research Lab, Zurich, Switzerland. Her
research interests include modeling, optimizing per-
formance and dependability for big data applica-
tions and highly virtualized datacenters. She received
a PhD in operations research from the Pennsylvania
State University. Contact her at yic@zurich.ibm.com.

Chang Liu is a research fellow (assistant professor)
at Newcastle University, UK. His research interests in-
clude cloud computing, big data, distributed systems,
Internet of Things, and information security and pri-
vacy. Liu has a PhD in information technology from
the University of Technology, Sydney, Australia. Con-
tact him at: changliu.it@gmail.com.

Massimo Villari is an associate professor of
computer science at the University of Messina. His re-
search interests include cloud computing, Internet of
Things, big data analytics, and security systems. Vil-
lari has a PhD in computer engineering from the Uni-
versity of Messina. He’s a member of IEEE and IARIA
boards. Contact him at mvillari@unime.it.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

