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Abstract: There is a growing emphasis to find alternative non-traditional ways to manage patients to ease the burden on
health care services largely fuelled by a growing demand from sections of population that is ageing. In-home remote
patient monitoring applications harnessing technological advancements in the area of Internet of things (IoT), semantic
web, data analytics, and cloud computing have emerged as viable alternatives. However, such applications generate
large amounts of real-time data in terms of volume, velocity, and variety thus making it a big data problem. Hence, the
challenge is how to combine and analyse such data with historical patient data to obtain meaningful diagnoses
suggestions within acceptable time frames (considering quality of service (QoS)). Despite the evolution of big data
processing technologies (e.g. Hadoop) and scalable infrastructure (e.g. clouds), there remains a significant gap in the
areas of heterogeneous data collection, real-time patient monitoring, and automated decision support (semantic
reasoning) based on well-defined QoS constraints. In this study, the authors review the state-of-the-art in enabling QoS
for remote health care applications. In particular, they investigate the QoS challenges required to meet the analysis and
inferencing needs of such applications and to overcome the limitations of existing big data processing tools.
1 Introduction

Our population is expanding exponentially due to increased life
expectancy coupled with lowered mortality rates. Consequently,
there is a large section of population that is ageing, and as per
predictions this ageing population is only going to increase further
[1]. For instance, in several countries the percentage of people
over 65 years old exceeds the world average of 8% such as 15%
in Australia, 15% in the USA, and 17% average in Europe. This
percentage will have increased by 2050 when 25.7% of the OECD
(countries in Organization for Economic Cooperation and
Development) population is expected to be over 65 years of age of
which 10% of the population is predicted to be over 80 [2]. With
age come a variety of health care problems that often require
continuous and long-term medical care that can put severe strain
on health care resources and increase costs. Therefore, there is a
growing emphasis on finding alternative non-traditional ways such
as home care to manage patients so as to ease the burden on
health care services and control costs. Research also shows that a
large number of elderly people do prefer home care with remote
monitoring [3].

Remote patient monitoring system is one such technology that is
being widely adopted wherein those patients whose conditions allow
them to remain at home are encouraged to do so while being
monitored remotely. This can apply to a large section of elderly
population such as: (i) the terminally ill – in-home care gives them
the chance to spend the last days of their life in the comfort of
their home with familiar surroundings instead of at a hospital, (ii)
the chronically ill – those with chronic conditions such as diabetes
mellitus, cancer, hypertension, chronic obstructive pulmonary
disease, and others require long-term care and regular monitoring
of their vital parameters. Internet of things (IoT) body sensors
collect these parameters at pre-defined regular intervals and
transmit the data to the health care manager for assessment and to
alert them in case of any emergencies, thus reducing the number
of visits a patient may otherwise have had to make to the health
care centre. This has dual benefits of decreasing patient
inconvenience and freeing up the time and space of the health care
centre for other patients, and (iii) the memory impaired – patients
with memory loss may otherwise be healthy enough to continue
living independently but may need assistance to remind them of
certain important tasks such as taking their medications on time.
In-home care gadgets can be configured to aid the patients with
such tasks while also notifying their health care providers in case
of any deviations.

Remote health care monitoring applications require the use of
several body sensors to regularly measure the health parameters as
well as environmental sensors to monitor the ambient parameters
and transmit contextual information to the patient’s health care
network (which may consist of health care workers, emergency
services, and health care centres). The sensors collect patients’
clinical data and the state of their surroundings, which are then
transmitted to the appropriate health care centres and providers.

Despite the evolution of big data processing technologies (such as
Hadoop and Apache Storm) and scalable infrastructure (such as
virtualised clouds), there remains a significant gap as regards to
heterogeneous data collection, real-time analysis, and automated
decision support (semantic reasoning) based on defined quality of
service (QoS) constraints. Given the increase in volume, velocity,
and variety of sensor data health care sensors, special techniques
and technologies for analysis and inferencing are required. These
challenges are significantly pronounced within health care where
data is being generated exponentially from biomedical research,
remote body sensors, and electronic patient records among others.
These limitations (i.e. being unable to satisfy QoS) can negatively
affect patient care especially with respect to in time alerts and
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diagnostic suggestions. Making clinical decisions based on
incomplete information can be error prone. There are several aspects
that influence the immediate and long-term decisions including
patients’ current medical status, comorbidities, current medications,
past clinical history, and contextual factors such as patient location,
behaviour etc. However, manually analysing all the information
together and predicting the outcome of their interactions can be
extremely difficult and subjective leading to missed and/or
overlooked information. Besides, the process is dependent on the
patient information being made available to the appropriate
professionals as and when required. The process becomes more
cumbersome and error prone when the number of patients keeps
increasing. Hence, automating the tasks of collecting, sharing, and
analysing patient information is gaining increasing importance.
Moreover, the use of semantic technologies such as ontologies is
widely accepted to add intelligence to the process of analysis,
thereby improving the process of decision making.

Current approaches to define QoS and the corresponding service
level agreements (SLAs) to support health care services are in
infancy and are not addressed in the state-of-the-art research.
Given the inherent complexities introduced by various dimensions
of such systems: namely, the edge/physical layer (devices),
infrastructure layer (networking, processing, and storage), and
analytics layers (analytic reasoning and inferring algorithms to
draw insights using from data), defining QoS for is a hard problem.

In this paper, we take the pioneering steps in: (i) presenting the
workflow of remote health-monitoring applications; (ii) identifying
the challenges in analysing the data originating from health care IoT
sensors; and (iii) identifying the challenges in identifying and
guaranteeing QoS metrics required to meet the analysis and
inferencing needs of the health care applications. Our vision of a
QoS driven remote health-monitoring system will have multiple
SLAs to suit the needs of the application. For example, we will
look beyond the current cloud SLAs by exploring metrics such as
event detection accuracy, time to detect, and respond with alerts that
can directly be mapped to service cost. Our vision aims to closely
follow the most popular pay for usage cloud model. For example, in
the future, users of such remote health care applications say paying
‘$100 per month for the service will expect: (i) events such as heart
attack, falls are detected (from IoT devices) within x milliseconds
and (ii) alerts are automatically sent to the doctors, caregivers, and
emergency ambulance teams within y minutes of event detection’.
Furthermore, we envision that the system will be intelligent enough
to be able to correlate and analyse data obtained from patient’s
medical records and background medical knowledge base. Such
hybrid and timely information correlation will equip the health care
professionals with the right information at the right time and
personalised to the patient in order to provide timely and
appropriate medical care.

The rest of this paper is organised as follows: in Section 2, we
describe the cloud of things (CoT) followed by Section 3 where
Fig. 1 Conceptual architecture of CoT
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we explain how semantic reasoning makes a remote health care
application more intelligent. Furthermore, we discuss the need for
QoS in these health care applications. In Section 4, we present in
detail the research directions for enforcing the QoS metrics in
future remote health care monitoring applications. Finally, we
conclude this paper in Section 5.
2 CoT: background

The remote patient monitoring system is supported primarily by the
recent advancements in two technologies: namely, IoT and cloud
computing. These technologies are already becoming part of our
daily lives and are attracting significant interest from both industry
and academia. The term IoT collectively describes technologies
and research disciplines that enable the Internet to reach out into
the world of physical objects. Technologies such as radio
frequency identification (RFID), short range wireless
communications, real-time localisation, and sensor networks have
become increasingly pervasive, thus making the IoT a reality.
According to the recent Gartner report [4], it is estimated that IoT
will grow to 26 billion units by 2020, excluding PCs, tablets, and
smartphones (40 billion things including tablets and smartphones).
The revenue as a result of this growth is estimated to be ∼$1.9
trillion. The IoT will fuel a paradigm shift of a ‘truly connected
world’, in which everyday objects become inter-connected and
smart with the ability to communicate many different types of
information with one another. Cloud computing on the other hand
allows IT-related resources [e.g. central processing unit (CPU),
applications, network, and storage] to be provided as virtualised
services to the customers under a usage-based payment model.
Using cloud computing, customers (e.g. SMEs, governments, and
universities) can leverage these virtualised services on the fly;
ensuring that they do not have worry about the infrastructure
details such as where these resources are hosted or how they are
managed.

The CoT is our vision ‘Of the collection of smart IoT sensors, IoT
gateways (e.g. raspberry pi 3, UDOO board, esp8266 etc.), software
defined networking devices solutions (e.g. Cisco IOx, HP
OpenFlow, and Middlebox Technologies) at the network edge fully
connected to and integrated with the traditional cloud data centre(s)
for data storage, processing, analytics, and visualisation’. We expect
that the CoT paradigm will support the development of novel
remote patient monitoring applications that are composed of IoT
devices and the high volume, high velocity, and high variety data
produced by these IoT devices processed using big data
technologies deployed over on public/private cloud environments.
The CoT paradigm allows the use of sensors and devices to sense,
collect, store, process, and analyse data related to different physical
and environmental aspects of a patient in order to provide different
health care services. However, such systems generate significantly
large amounts of data and in order to deliver value to the patients,
care givers, and administrators. In other words, remote health care
applications need to embrace the big data explosion.

As a matter of fact, the health care sector is considered the fastest
growing segment in the big data universe. Fig. 1 depicts a conceptual
overview of the CoT ecosystem that includes context of health care
and other application domains such as smart cities. The physical
layer comprises things such as smart sensing devices, human
sensors, connected cars, and smartphones that sense and actuate
the physical world. On the other hand, the cloud layer is
responsible for modelling and representation of the physical
entities as programmable virtual entities. The cloud layer also
includes the application layer that is composed of IoT services,
application, and business processes that make use of the virtual
entities and their virtual representation to control/monitor/detect
state changes in the physical world. For example, consider the
query ‘Provide the indoor temperature in Room 1.23’ or ‘Set light
level in Room 2.57 –15’. To support such queries, the interactions
and associations between the physical layer, the virtual entity, and
the IoT application need to be modelled. For example, the
associations will contain the information that Sensor 456 provides
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the indoor temperature of Room 1.23 and the measurement unit is
Celsius. In our vision of CoT, the virtual entities have functions to
interact with the IoT device subsystem as well as functionality for
discovering and looking up IoT devices that can provide
information about virtual entities. Furthermore, it contains all the
functionality needed for managing associations, as well as
dynamically finding new associations and monitoring their
validity, e.g. due to the mobility of IoT devices that can impact
the state of the virtual entities.
3 Real-time reasoning in remote health care: the
need for QoS

In remote-monitoring applications, the use of semantic web
technologies is generally limited to leveraging the sensor data with
contextual information about the sensors (types, location etc.) and
patient’s environment (location, time of day etc.). While the
incorporation of contextual information makes the system more
intelligent and enables improved decision making based on a
variety of relevant factors, it does not take into account the
patient’s health status in its entirety, which can have damaging
consequences especially pronounced in the elderly who are most
likely to have multiple morbidities at any given time.

Fortin et al. [5] in their study of primary care practise in Québec,
Canada concluded that the prevalence of multiple morbidities
increases with age with more than 95% of patients aged 65 years
and above having several comorbidities. Brett et al. [6] arrived at a
similar conclusion in Australia of rise in both multimorbidities and
their severity with increasing age. The increasing complexity of
illnesses in turn requires the data to be analysed for several
decision-making purposes including but not limited to: (i) rule out
conflicting recommendations (such as contraindicated medications);
(ii) identify risks (such as potentially serious complications that may
arise due to the interactions of two or more illnesses); (iii) suggest
preventive actions (initiate a prevention plan for probable future
risks); and (iv) detect missed and/or incorrect diagnoses among
others. To obtain comprehensive knowledge for informed decision
making, the sensor data must also be leveraged with information
about patients’ past and present medical conditions. This is required
to see the complete picture of the patients’ clinical condition and
present health status. Relying only on the sensor data can be
dangerous as vital information maybe missed or overlooked. With
the help of the following scenario, we explain the importance of
leveraging sensor data with patient’s historical data and reasoning
over it to generate timely alerts.

Consider a patient named Jill, aged 71, who has the following
chronic medical conditions: diabetes mellitus type 1,
hypertension, and asthma. She is being monitored at home via
various body sensors that regularly measure her blood glucose
levels, blood pressure, medications, respiratory rate etc. One
particular day, Jill gets an acute asthma attack also known as
status asthmaticus. Being a life threatening condition, an alert is
immediately sent by her body sensors to emergency medical
services, her health care provider, and the local health care
service centre. The emergency workers arrive and prepare to
give her the appropriate medications. Corticosteroids are one of
the mainstays for reversing status asthmaticus [7]; however,
corticosteroids can put the patients with diabetes mellitus type 1
at a risk of developing diabetic ketoacidosis [8] and high blood
pressure in hypertensives [9] both of which are again life
threatening conditions if not controlled. In the absence of any
more information about Jill’s medical conditions apart from the
alert sent by the sensors about the asthma attack, the emergency
workers would inject her with high doses of corticosteroids,
thereby putting her at further risks and complicating the situation
even more. On the other hand, if the sensor data is leveraged by
additional information from Jill’s medical record such as that of
her comorbidities, and the data are analysed together with
background knowledge of the domain, then the potential risks:
namely, diabetic ketoacidosis and elevated blood pressure can be
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way, important relevant information that can affect the patient’s
condition is neither overlooked nor missed. Consequently, the
risks of injecting corticosteroids can be known beforehand and
the appropriate precautionary measures can be set up to either
eliminate the risk or manage it efficiently. This scenario
highlights the importance of two vital processes in remote health
monitoring of patients: (i) timely availability of complete patient
health record at point of care and (ii) automated real-time
reasoning over patient’s conditions based on the background
domain knowledge to obtain new knowledge.

3.1 Semantic technology for remote health care

Semantic web technologies such as ontologies and semantic
reasoners are commonly used for reasoning over complex
information as presented in the above scenario to obtain new
actionable knowledge that could have been otherwise missed or
overlooked [10, 11]. In medical situations, overlooking or missing
any such vital information can have disastrous consequences.
Therefore, we propose that in addition to obtaining contextual
information, semantic web technologies should also be used in
remote-monitoring applications for complex reasoning over
patients’ past and present medical conditions to derive a more
comprehensive understanding about the patients’ overall health
status. Since the information obtained from the sensors is not
viewed in isolation, better insights can be obtained for decision
making and the number of false positive alarms can be minimised.

3.1.1 Ontology: Ontology is a formal, declarative model of a
domain that captures the domain knowledge in the form of
concepts and relationships between them. Web Ontology
Language or OWL [12, 13] is an expressive ontology
representation language based on description logic and is a Web
Standard. The use of ontologies ensures retention of meaning in
the shared information but OWL has several restrictions imposed
on it to ensure decidability and computation completeness.
Therefore, to increase the expressiveness and to model action
sequences, semantic rules are often added to the ontology [14].
The ontology that models the background knowledge of a domain
along with rules forms the knowledge base that is used with
instance data to obtain new knowledge as output. A formal
knowledge base thus makes a system intelligent by:

(i) Providing a reusable and shareable domain description.
(ii) Designing context-aware systems.
(iii) Enabling meaningful data sharing and integration.
(iv) Deriving new actionable knowledge to aid in more informed
decision making.

In case of remote monitoring in health care, the hard challenge is
to model an ontology that can comprehensively capture the domain
knowledge and can cross-link across multiple real-time and historical
data feeds for complex event processing. The processing involves
reasoning so as to obtain both contextual and actionable
knowledge. Since technology keeps changing rapidly, the ontology
should also be adaptable so that existing concepts can be modified
to reflect the current knowledge and extendable so that newer
concepts can be added without undermining the existing model.

3.1.2 QoS agnostic reasoners: The ability to perform
automated reasoning by performing reasoning algorithms on OWL
ontologies increased the interest to use this form of knowledge
representation and subsequently increased the number and size of
ontologies. The emergence of big data and IoT on the one hand
and growing demands for intelligent and smart applications on the
other hand have brought significant challenges in high
performance, efficient, real-time, and scalable reasoning. It is
understood that by leveraging cloud-based technologies one can
implement scalable reasoning techniques that meet real-time QoS
constraints. As we discuss next, there exist several approaches that
3Commons



attempt to scale reasoning techniques using MapReduce
programming model; however, they are still very limited especially
in context of meeting real-time QoS constraints.

It is no surprise that traditional reasoning techniques have largely
ignored the performance and scalability aspects, hence recent studies
have shown that traditional reasoning techniques are incapable of
reasoning over massive data and large ontologies [15, 16]. The
primary causes of this limitation are: (i) complexity of the
ontologies; (ii) centralised structure of the reasoners; and (iii)
limited incremental reasoning capability. In general, the primary
aim of measurement and evaluation of the complexity in computer
science is to quantitatively understand the challenges of
implementation, development, or maintenance of an approach or
model. Complexity is an important challenge in most of the
computer science research areas dealing with knowledge
representation and data integration. Ontology complexity has been
the subject of considerable research in recent years to improve
understanding, development, maintenance, and integration of
ontologies. For example, Zhang et al. [17] attempted to adapt
software complexity metrics proposed by Weyuker [18] to
measure and quantitate complexity of ontologies in both ontology
and class levels. However, quantitation of the ontology quality
including usefulness, perfection, accuracy, and possibility of
integration to the other commonly used ontologies are not
measurable with proposed metrics in the recent research works.
Distributed cloud-based reasoning approaches have the potential to
improve the performance (i.e. meet QoS constraints) of reasoning
on large ontologies and dataset.

Recently, several researchers attempted to propose and customise
current reasoning techniques for virtualised cloud infrastructure.
Urbani et al. [19] proposed a distributed and scalable reasoning
technique based on MapReduce [20] and deployed it on top of
Hadoop [21] and a compute cluster of up to 64 commodity
machines. Schlicht and Stuckenschmidt [22] proposed MapResolve
as a scalable and distributed reasoning solution for description logic
ontologies on MapReduce framework [20]. The authors investigated
ontology reasoning on MapReduce and proposed a solution to avoid
repeated inferences as the main problem in using MapReduce-based
reasoning approaches. Although there are several attempts to make
distributed reasoning on MapReduce, there is no generic and scalable
solution for distributed reasoning on OWL ontologies. Urbani et al.
[23] proposed WebPIE (web scale inference engine) as a scalable
parallel inference engine based on MapReduce for the large-scale
dataset. The proposed approach is more efficient and supports the
incremental reasoning that performs the reasoning only on the portion
of the data that is changed since the previous reasoning. Grau et al.
[24] in a similar approach proposed an incremental reasoning by
taking the advantage of the similarities between different versions of
an ontology. The approach is independent from reasoning calculus
and can be used with any reasoner. Moreover, the author claimed that
the incremental classification proposed in this paper is nearly real
time for almost experimented ontologies. Liu et al. [25] proposed
both incremental and distributed reasoning methods for large-scale
ontologies and based on MapReduce framework. The approach
implemented and evaluated using a cluster of eight nodes and on top
of Hadoop that shows high-performance reasoning and runtime
searching, especially for incremental knowledge base. Although there
are performance improvements in recent incremental reasoning
approaches, there is not a complete evaluation of the accuracy and
adaptability of these approaches in large-scale datasets and OWL
ontologies.
3.2 Workflow of semantic reasoning in CoT paradigm

As the amount of sensor data grows in massive amounts, the
information that can be obtained from it increases proportionally.
The data however requires timely analysis in order for the
information to be available for use. A combination of cloud and
semantic technologies for analysing the IoT sensor data can help
in various important ways such as: (i) analysis of large amounts of
data in a real (near-real) time to reveal implicit information hidden
4 This is an open a
inside the vast volumes of data, (ii) personalised care plan for
patients, (iii) increasingly intelligent and better informed decision
support, (iv) timely availability of patient information to the health
care practitioners or providers, and (v) automating the process of
analysis and decision making. Fig. 2 gives an overview of how
cloud and semantic technologies operate in case of remote
in-home monitoring of patients.

Fig. 2 shows that patient monitoring sensors send the data to a
stream processing engine, which is a system that can preprocess
data closer to the source of data. It processes the data to detect any
abnormality. The stream with no abnormal event is sent to a remote
server for storage and can be used for historical analyses or clinical
analyses at a future time. These datasets, which did not raise alarms
can be managed by non-relational, distributed databases such as
Apache HBase [26]. There are several advantages of using HBase
including its native support for Apache Hadoop data processing
engine and Apache Hive data querying engine, Apache HBase,
Apache Hadoop, and Apache Hive have emerged as a recent
alternative to traditional data warehousing tools such as DB2 and
Teradata. HBase database has emerged as the more flexible and
scalable alternative to traditional data warehouse tools such as
Teradata and DB2 due to its native support for big data processing
(Hadoop) and querying (Hive) engines, which will allow scalable
processing of historical datasets if and when required by the
semantic reasoning engine. In case of abnormality detection (e.g.
high blood pressure, high glucose level, and sudden fall), the
stream processing engine signals the health data management
orchestrator (HDMO) to check whether the detected abnormality
needs more actions. The above abnormality detection datasets are
also stored within Apache HBase along with non-abnormality data
for future cross-referencing and anomaly verification. The HDMO
is a specialised software program which runs in the cloud and has
all the required information such as where are the ontologies
deployed, where are historical record stored and how to query and
reason over these historical records. We believe that the scalability
of abnormality detection algorithm will be handled by HDMO in
response to changing data volume and data velocity. This would
require workload characteristic and QoS modelling across the
software components (see Fig. 2) involved in the processing of data
associated with the detection algorithm.

After receiving input from stream processing engine, HDMO uses
the patient identification information (available from incoming
sensor feed) to query the historical records stored in databases. It
also connects to a TripleStore and fetches the relevant ontological
rule engine that is necessary to reason across the historical and
real-time data from sensors. TripleStores are specialised databases
for storage and management of ontologies with reasoning and
query processing capabilities [27]. For the purpose of scalability
for the incoming sensor feeds, the HDMO will fetch the ontology
from the TripleStore and replicate it across multiple virtual
machines that already have the necessary ontology libraries
pre-installed. This way ontological reasoning engine can be run on
demand in a distributed fashion and the patient record as well
updated with the new information in real time.

The sensor data with the abnormal parameters is passed into the
virtualised TripleStore, which also fetches the patient’s electronic
health record (EHR) from an external database. The EHR
contains patient’s history as well as information about current
conditions. The semantic reasoner in the TripleStore analyses the
sensor data together with the data from the EHR against the
background domain knowledge to obtain new knowledge that
could be a possible new diagnosis, an intervention suggestion, a
warning against certain actions, a recommendation for a
preventive measure etc. The aim is to integrate all relevant
information for decision making: patient’s environment and
present condition (derived using semantic tagging of sensor data),
background domain knowledge, and patient’s past conditions and
current comorbidities (obtained from patient’s EHR). The output
is sent to the EHR, which is updated with the new knowledge.
The reasoner once again reads the EHR to derive further
knowledge and the process continues this until no further
derivations are possible. Once satisfied, the EHR pushes the new
IET Cyber-Phys. Syst., Theory Appl., pp. 1–9
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Fig. 2 Overview of remote health care application using the CoT paradigm
updates as alerts and suggestions to the authorised and relevant
recipients. To ensure scalability, the EHR should be implemented
as a managed relational database service (e.g. MySQL cluster
CGE), which can be scaled in response to query rates and other
QoS requirements. Our assumption that EHR system is
implemented as a managed relational database service is
reasonable considering interoperability across legacy health care
systems were designed and implemented using relational database
programming model (e.g. SQL). Although the entire process is
automated, the final decisions always rest with the health care
professionals.

The main steps of a CoT-based remote health-monitoring
application can be summed up as follows: (i) a home-based
gateway sends the sensor data to a stream processing cluster
running inside cloud; (ii) the sensor data is processed by the
stream query engine and divided into two – one with an event and
one without. The eventful data is semantically enriched using tags
and reprocessed to determine the patient’s status; (iii) this data is
then sent to a virtual machine containing a copy of the domain
knowledge base that analyses it further to derive contextual
information (information about patient’s location, time of day etc.).
It also pulls patient’s EHR for analysing the sensor data in
combination with patient’s historical data as well as the current
comorbidities if any. The output is generated in the form of new
knowledge, which is then written into the EHR, (iv) the output in
the form of alerts is finally sent over web services to the
appropriate health care targets such as the patient’s doctor,
emergency services, local health care centre etc. The internal
working of the cloud system (with the semantic reasoning,
knowledge base, and historical data) is presented in Fig. 3.
4 QoS issues for cloud-hosted remote health care
applications: research directions

In this section, we will present the research directions in enforcing
QoS metrics for future remote health care monitoring applications.
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We start with first identifying QoS management challenges in
current CoT system, and finally present the related research issues
with respect to design and development of real-time patient
monitoring applications.

The current mechanisms for QoS provisioning and supporting
SLAs [28–31] in IoT and clouds have major limitations. In the
light of CoT, these mechanisms will have to be radically
reconsidered or even reinvented to meet the challenges posed by
upcoming remote health care CoT applications. Figs. 1 and 2
capture the complexities of CoT applications from the physical
device (data collection) to virtual layer (storage and processing) to
the application layer (delivery). However, QoS guarantee for the
remote health care CoT is expectedly challenging, and an
emerging discipline. This is due to the shortage of standardised,
end-to-end approaches for QoS assurance (between the end user,
IoT devices, and the cloud), the complexity of the integration of
different layers (see Figs. 1 and 2), and the presence of a plethora
of QoS constraints and parameters at each layer. We expect that
the traditional way of QoS assurance will not be sufficient. For
instance, we will soon be looking at satisfying requirement such as
‘detect/notify events within 5 minutes of occurrence’ rather than
the traditional model to ‘guarantee 99.99% CPU availability’. In
this section, we articulate the research directions pertaining to the
QoS for CoT applications from the perspectives of physical/edge
layer (IoT) and cloud layer. Finally, we summarise how these
research challenges are intertwined with remote health care
applications.
4.1 IoT edge/physcial layer

QoS semantics: The IoT physical/edge layer (see Fig. 1) comprises
heterogeneous sets of devices ranging from wireless sensor
networks, body area networks, and other virtual sensors (e.g.
weather and flood services). With technological advancements and
evolution of new remote health care applications, this space is going
to get further crowded with billions of devices each with different
capabilities and QoS, parameters, and constraints. The heterogeneity
5Commons



Fig. 3 Internal working of a TripleStore in remote health care application scenarios
among the devices in this layer requires adaptive QoS constraints that
can deal with all kinds of traffic demands. For example, emergency
message from a body sensor that has detected a heart attack is more
important than a regular ‘all is well’ monitoring message. Such
emergency messages will need to be identified and the entire
ecosystem needs to support delivery of emergency messages to the
end user within acceptable limits. The QoS of the physical layer is
related directly to the quality and the timeliness of the IoT data used
for decision support and automation. This includes (but is not
limited to): sampling rate, transmission speed, data quality,
coverage, mobility, location, and cost.

The sampling rate determines the rate at which a sensor measures
an observed phenomenon (e.g. 5 Hz). Different remote health
applications require different sampling rates based on their
criticality. The transmission speed is network dependent and refers
to the actual rate at which data is sent to the cloud layer from the
physical layer. This is influenced by network topology and the
device connectivity [e.g. Bluetooth, wireless fidelity (WiFi), and
fourth generation (4G)]. Data quality is a complex metric [32] that
needs to be carefully considered for future adoption and
sustainability of CoT applications in health care and other
domains. However, similar to variation in quality of real-world
things (e.g. quality of cotton), the need for high-quality data
satisfied by metrics such as high accuracy (recently calibrated) and
minimal error is very application dependent (health care is a
typical example where data accuracy and quality could play a vital
role in saving life). The coverage at the device layers identifies the
extent to which the sensor data covers the observer phenomenon
geographically.

Mobility is another key QoS metric as the devices or the people
wearing the devices at the physical layer are inherently mobile.
Mobility enables greater coverage but also introduces further
challenges that impact other metrics such as location, quality, and
transmission speed. Finally, cost is a summative metric that relies
on the previously identified metrics. For example, the cost of IoT
data that is 99% accurate could be much higher when compared
with data that is 70% accurate. This sort of cost could be used to
differentiate the level of care service provided to the end user.
More critical cases could desire a more accurate system while
basic monitoring cases could work with lesser accuracy. It is clear
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from the above discussion that QoS will enable CoT systems to
cater to the needs of different applications hence reaching a wider
audience. Moreover, our vision of CoT of the future is an open
world where multiple devices and analytics applications (owned
and operated by independent providers) can be fused together to
create innovative CoT applications/services.

Some of these metrics identified maybe trivial for a single device
per se. However, the notion of CoT is for millions of such devices to
collaborate and achieve a goal that is otherwise impossible to do it
alone. Consider the example of a temperature sensor measuring
temperature in Fahrenheit. When this information is shared with a
hospital system that accepts data in Celsius, it will be inconsistent
and misleading. The question here is then: Who should agree on
the formats? Is it the job of the human or can the devices
auto-negotiate the semantics? There is need to develop novel
methods to map and represent the QoS into a language that can be
used by the whole CoT ecosystem.
4.2 CoT: cloud layer

4.2.1 Distributed QoS-aware CoT data processing: In a
CoT paradigm, the devices will be connected to the clouds for
data storage, processing, analytics, and visualisation (see Figs. 1
and 2). Cloud computing offers virtually infinite set of resources
[CPU, memory, storage, and input/output (I/O)] at reasonable costs
based on a multi-tenant and pay-as-you-model. Clouds enable
applications to be hosted in a highly distributed manner across
multiple datacentres around the globe. At the same time, clouds
ensure that the applications are highly available and scalable.
These characteristics have made clouds to be widely adopted by
private and public sector industries for reliable and efficient
service delivery.

With the emergence of IoT, it is expected that 40 yottabytes of data
will be generated by the end of 2020 [33]; therefore, requiring
large-scale data (big data) processing at multiple cloud datacentres.
This is a challenging problem as most of the cloud data processing
and analytics tools such as MapReduce are optimised to run in a
single datacentre [33]. Furthermore, there exist no comprehensive
mechanisms where large datasets, in particular health related
IET Cyber-Phys. Syst., Theory Appl., pp. 1–9
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datasets (historical and real-time), spanning multiple datacentres can
be efficiently processed. This can mainly be attributed to the
bottlenecks in network communication medium, and cloud and
network infrastructure that can be congested and/or may not provide
sufficient throughput to transfer large datasets in a timely manner
for QoS-aware data processing and analytics. Therefore, there is a
need to address the challenge of distributed QoS-aware data
processing in CoT ecosystems.

4.2.2 Cross-layer cloud and network QoS monitoring: A
typical cloud system comprises of three layers: infrastructure-
as-a-service (IaaS), platform-as-a-service (PaaS), and software-
as-a-service (SaaS) [34]. Each layer has a specific set of metrics.
For example, for SaaS: application’s throughput and CPU
utilisation; for PaaS: system up time, number of requests served;
and for IaaS: memory and CPU utilisation. Cross-layer cloud QoS
monitoring is a challenging task [35]. This is based on the
assertion that there are no standard formats and APIs for cloud
QoS monitoring. Currently, each cloud provider such as Amazon
EC2, Google Compute Engine, and Microsoft Azure provide their
own set of APIs. On top of that only Amazon provides a limited
set of QoS metrics for cloud monitoring. Companies such a
CloudHarmony provide cloud-monitoring information for multiple
cloud providers but do not provide metrics for comparison and
analysis of cloud providers. Furthermore, most of research in this
domain does not aim to collect a large pool of data for numerous
metrics belonging to each cloud layer. Alhamazani et al. [35] has
recently tried to address this challenge and built a service for
cross-layer cloud QoS data collection. However, they do not
provide methods for QoS analysis of various clouds and
recommending methods for application hosting.

End-to-end QoS also involves network QoS in the form of
propagation delay or network latency and throughput. One of the
bottlenecks to ensure high network QoS is the network latency. In
that, if an application requests some data from the CoT application
hosted on the cloud, this data may involve some time to arrive
back to the application. This is due to the distance (in hops)
between the application and the cloud datacentre (assuming no
cloud processing delay). For instance, the latency will be shorter
(in tens of milliseconds) if the application running on device
present in Europe (connected via Ethernet) requests data from
European datacentre instead of South Asian datacentre where the
latency can be in the order of hundreds of milliseconds. These
factors necessitate large-scale cross-layer cloud QoS monitoring
and network QoS monitoring for QoS-aware CoT ecosystem.

Guaranteeing performance SLAs (which are expressed as
constraints on QoS metrics) for remote health care CoT
applications requires clear understanding of important performance
metrics across cloud-hosted big data processing frameworks (e.g.
Apache Kafka, Apache Storm, Apache Hadoop etc.) and hardware
resources (CPU, storage, and network). The problem is further
complicated due to the fact that the QoS metrics at CoT device
layer, CoT application layer, cloud-based big data processing
frameworks layer, and cloud-based hardware resource layer are not
necessarily the same [36, 37]. For example, the key QoS metrics
are: (i) event detection delay and decision-making delay at CoT
application level; (ii) throughput and latency in distributed
messaging queuing systems (e.g. Apache Kafka); (iii) response
time in batch processing systems (e.g. Apache Hadoop); (iv)
response time for processing top-k queries in transactional systems
(e.g. Apache Hive); (v) read/write latency and throughput for the
file system of big data cluster; (vi) delay introduced by ontology
reasoning in the TripleStore to identify significant events from
real-time and historical data; and (vii) utilisation and energy
efficiency for CPU resources. Therefore, it is not yet clear how (i)
these QoS metrics could be defined and formulated coherently
across layers and (ii) the various QoS metrics could be combined
to give a holistic view of the data flows across multiple IoT
sensors, big data software frameworks, semantic processors, and
hardware resources. To ensure application-level performance
SLAs/QoS there is also a need to monitor workload metrics (data
volume, data velocity, data variety, and sources, and types and
IET Cyber-Phys. Syst., Theory Appl., pp. 1–9
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mix of search queries) across big data processing frameworks such
that appropriate workload characterisation models could be
developed. The hard challenge is how to collect and integrate
monitoring data from all the big data processing frameworks and
hardware resources for administrators to easily track and
understand application-level SLAs/QoS without the need to
understand the complexity of the whole platform.
4.2.3 QoS-aware cloud and network selection and
orchestration: Over the past decade, we have witnessed a
significant increase in the usage of smartphones, sensors, and
applications. These technologies will become an integral part of
the CoT ecosystem, thereby bootstrapping novel applications in
areas such as health care and emergency management. It is evident
that for these classes of applications, data would be sent (sensor
data from heart rate monitor) and retrieved (processed response)
while the users (e.g. emergency personal and patients) are on the
move. Mobility has its inherent challenges, for example, a mobile
device may connect to different access networks, for example, 3G
and WiFi, where each network offers different latencies for
upstream data (from the device) to downstream data from the
clouds. This creates several challenges: first, there is a need to
select a best network as mobile devices can connect to
heterogeneous access networks leading to stochastic network QoS;
and second, QoS-aware cloud selection as the CoT applications
and data will be hosted in multiple datacentres. Therefore, we
consider end-to-end QoS provisioning in CoT as a joint
optimisation problem where both network and cloud QoS should
be optimised together.

A large body of work exists in the area of cloud selection. For
example, Garg et al. in [38] present analytic hierarchy process
(AHP)-based method for cloud ranking and selection. However,
there is a dearth of literature that considers joint cloud and
network selection. Mitra et al. in [39] proposed a system for cloud
and network selection while users are on the move in
heterogeneous access networks. However, these methods are also
limited. For example, when a set of applications running on
multiple devices selects a particular cloud for application data
processing, all the requests may automatically get transferred to
that cloud datacentre, creating burden on servers running on that
datacentre, leading to overprovisioning on one datacentre and
under-provisioning on another datacentre. Furthermore, this may
also trigger VM migrations and data replication across multiple
datacentres leading to an inefficient CoT ecosystem. This
necessitates development of novel cloud orchestrators that are QoS
and mobility-aware to for efficient QoS provisioning in CoT.

4.3 QoS for real-time patient monitoring

One of the critical aspects for the successful deployment of the
real-time patient monitoring applications is the end-to-end QoS
that directly affects the timeliness of the care given to the patient
[40]. In that, it requires the data generated from the health care
sensors to be collected, transmitted (via the network), processed,
analysed, and used/acted on in a timely manner. For data
processing, analysis and usage, we consider the cloud platform
where the remote health-monitoring application is deployed
as-a-service. However, end-to-end QoS assurance for such
applications is a challenging task. It is due to the presence of
several factors that may affect the end-to-end QoS of health care
applications. For instance, the Internet path between the home
gateway and the cloud (where the application is deployed), and the
path between the cloud and the health care centre/worker and the
emergency services may exhibit stochastic behaviour due to
network congestion, random, and burst packet losses and network
jitter.

Clouds may also exhibit stochastic behaviour due to their
multi-tenant model and may significantly affect applications
performance in terms of CPU, memory, and disk I/O operations
[41]. To make things worse, different combinations of virtual
machines, datacentre locations, and price may affect different
7Commons



components of the application stack (considering multi-tiered
model). For instance, web server application-level QoS might by
suitable; however, for the same application, MapReduce operations
for data analytics may suffer due to variation in CPU and disk I/O
operations. Therefore, in this case, the overall QoS may suffer.
This necessitates monitoring of the whole application lifecycle,
that is, from data generation, to data processing, and finally data
consumption. By this we consider network and cloud monitoring.
A cloud system is divided into three layers: IaaS, PaaS, and SaaS
[34]. Each of these layers represents complex set of resources and
involves several metrics. For example, application throughput at
SaaS layer and CPU utilisation at PaaS layer. A real-time health
care application is a multi-tiered application that spans across all
cloud layers, and therefore requires cross-layer cloud monitoring.
Its performance depends on the understanding and monitoring of
QoS parameters across all cloud layers such that big data
platforms such as Apache Kafka, Apache Storm, and Apache
Hadoop, and hardware resources (CPU, storage, and network) can
efficiently be processed. From the state of the art, we assert that
cross-layer cloud monitoring is a challenging task and there is a
dearth of research done in this domain.

Real-time health care application should consider the following
questions: (i) how could the aforementioned QoS metrics be
defined across network and cloud sides and (ii) how various QoS
metrics should be combined to give a holistic view of the data
flows across sensors, big data software frameworks, and cloud
resources. To ensure QoS for such health care applications, there
is also need to monitor the workload metrics (data volume, data
velocity, data variety, and sources, and types and mix of search
queries) across big data processing frameworks and various
ontology reasoning systems such that appropriate workload
characterisation models could be developed. The hard challenge is
how to collect and integrate monitoring data from all the big data
processing frameworks and hardware resources for administrators
to easily track and understand application-level SLAs/QoS without
the need to understand the complexity of the whole platform.

As can be observed, there is a need to consider relevant parameters
from both cloud (QoSc) and network (QoSn) perspective to
determine the overall QoS of the health-monitoring application.
The complexity lies in the fact that there can be X number of
parameters from networking side and Y number of parameters
from cloud side. Therefore, making sense of O ×M is quite a
challenging task. To determine the QoS for a real-time health care
application, we define a QoS metric as

QoS = f {QoSc, QoSn, location, battery, . . . , N} (1)

where N represents the total number of QoS parameters (from both
cloud and network perspective). As can be seen from the equation,
determining the end-to-end QoS is a multidimensional and a
complex problem that needs to be carefully addressed. To solve
this metric and assuming the QoS parameters are carefully
selected, multi-attribute decision-making algorithms [42] such as
simple additive weighting technique for order of preference by
similarity to ideal solution or AHP can be used. Garg et al. [38]
present an AHP-based cloud ranking and selection model. This
model can be beneficial for evaluating right cloud resources for
multi-tiered health care applications. However, their model does
not consider big data application hosting. Mitra et al. [39]
proposed M2C2, a system that can support mobile patients for
requiring real-time health care. Their system considers cloud and
network selection as a joint optimisation problem and supports the
selection of suitable cloud and suitable network. Most importantly,
M2C2 considers end-to-end QoS monitoring, i.e. it monitors both
cloud and network resources. However, both these approaches are
not validated in real-time health care domain.

For the real-time health care application, mobility also poses
serious concerns. For instance, a patient wearing a plethora of
sensors, for example, the heart rate monitor and respiratory rate
monitor can be mobile. These sensors may connect to his/her
smart phone that acts as a gateway. Therefore, these sensors and
8 This is an open a
gateways can be mobile and are expected to connect to
heterogeneous access networks such as WiFi and 3G. Each of
these networks offer different coverage and network characteristics
such as throughput and delay. This necessitates the monitoring of
different network types, and at the same time selection of right
virtual machine type for each application tier [39].
5 Conclusions

CoT can prove to be a disruptive technology enabling novel
applications in domains of health care, smart cities, smart
manufacturing etc. Since CoT includes multiple computing
paradigms such as IoT, cloud, and big data analytics systems, it is
extremely challenging to design and develop applications using
CoT while ensuring they meet the QoS criteria.

Considering remote health care application as a use case, we
highlighted the end-to-end QoS and resource management issues
that will arise in the future CoT ecosystem. We briefly discussed
the state of the art to understand the research gaps. In the future,
we envision a QoS-aware remote health care application that
incorporates both the past and present medical conditions of the
patients and uses a combination of IoT sensing, cloud, big data
processing, and semantic web technologies to help health
practitioners in making timely decisions. However, as we
highlighted in this paper, this would require considerable research
and development effort across multiple disciplines of computer
science in collaboration with health care experts. Other important
research exists in modelling QoS of software components while
considering end-to-end data-privacy and data-anonymisation as
discussed in our papers [43, 44].
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