
Cloud Resource Scheduling, Monitoring, and Configuration Management in the
Software Defined Networking Era

Khaled Alwasel1, Ayman Noor1, Yinhao Li1, Ellis Solaiman1, Saurabh Kumar Garg2, Prem Prakash Jayaraman3,
Rajiv Ranjan1

1School of Computing Science, Newcastle University, United Kingdom
2Information and Communication Technology, University of Tasmania

3Faculty of Science, Technology and Engineering, Swinburne University of Technology

In recent years, Cloud Computing has emerged as a major technology for delivering on-demand IT (Information
Technology) services to consumers across the globe [1]. It provides IT resources based on a pay-as-you model and
offers a rich set of services and tools. The Cloud Computing stack consists of three layers – Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a service (SaaS). IaaS offers hardware resources (computation,
network, and storage) as virtualized cloud services. PaaS provides software services (appliances) and programming
tools, whereas SaaS provides ready to use application stacks.

In order to ensure bespoke application performance (e.g., minimize response time, maximize throughput); each
layer of the Cloud stack requires optimum resource Scheduling, Monitoring, and Configuration-management (SMC).
Numerous studies have addressed SMC by proposing various frameworks, models, and algorithms. Most of these
studies however have assumed traditional, non-programmable Cloud DataCentre (CDC) networks. In this article, we
discuss how resource scheduling, monitoring, and configuration-management becomes a challenging task when con-
sidering Software Defined Networking (SDN), and Network Function Virtualisation (NFV) performance parameters
as part of overall cloud application scheduling process.

The recent technology revolution of so-called Software Defined Networking (SDN) [2] has given full con-
trol and programmability of CDC network. Network Function Virtualization (NFV), on other hand, is a recent
networking concept often presented with SDN, delivering network services using software processes hosted on
CDC-based virtual machines (VMs), instead of proprietary dedicated hardware.

!

Figure 1: Conventional Network vs SDN network along with Cloud Scheduler, Monitor, Configuring Manager Ar-
chitecture.

m ieee-cps.org Page 4

http://www.ieee-cps.org/


As shown in Figure 1, SDN consists of three layers: The Management plane, the Control plane, and the Data-
plane. The Control plane (decision maker) is abstracted away from networking devices (e.g., switches and routers)
to a central logic controller, providing a global-network view, programmability, and finer-grained control. It commu-
nicates with the data and management planes via two interfaces: southbound and northbound, respectively. The Data
plane receives traffic policies from the control plane (e.g., via OpenFlow protocol), and forwards traffic accordingly.
The Management plane consists of software services (e.g., via APIs) used by administrators to control and configure
network devices.

1 Scheduling Challenges

Scheduling (a well-known NP-complete problem) is an essential mechanism for cloud computing aiming at man-
aging application performance driven diverse goals including minimizing response times, maximizing resource uti-
lization, and maximizing throughput [3, 4, 5]. It plays an important role at each layer of the Cloud stack where
operations are mapped appropriately to intended components based on given Quality of Service (QoS) parameters
and scenarios. Numerous studies have contributed to cloud scheduling in terms of workflows and VM, but none of
them consider SDN based scheduling along with the application and VM (mult-level scheduling). SDN can provide
the cloud scheduler with critical factors (e.g., link availability, link utilization, and link failure at run time), result-
ing in smarter scheduling decisions. However, integrating inputs from the three layers is a non-trivial task making
scheduling decisions a difficult task.

The key challenging issues in SDN based scheduling is that there are too many parameters from each of three
layers that need to be considered and integrated. The application parameters (first layer) include response time, pro-
cessing time, rate of failure, throughput, and priorities. The VMs’ parameters (second layer) include total number of
VMs, total number of idle VMs, total number of VM reservation requests, and cost. For each VM, the scheduler also
need to retrieve CPU capacity and utilization, memory capacity and utilization, and storage capacity and utilization.
The SDN’s parameters (third layer) include topology (re)configuration based on changes in real time, routing mecha-
nisms based on packets/flows in real time, and link capacity, link failure, link reservation, and bandwidth utilization.
The scheduler needs to retrieve simultaneously all the parameters from the three layers of the cloud stack at a partic-
ular time instance. The second issue is how the design of decision making model that can integrate these parameters
each of which might be giving a conflicting picture. Clearly, designing a scheduler while addressing these issues is
undoubtedly a daunting task, requiring further investigation of new schemes, models, and algorithms.

Scheduling related research can be categorized into three areas based on above mentioned the problem: applica-
tion, VM, and SDN scheduling. To the best of our knowledge, no attempt has been made for designing a scheduler
that is able to operate according the parameters generated from the proposed architecture. Nevertheless, there are
research work addressing the problem considering the application layer or/and VM layer parameters. For example,
Sukhpal et al. [3, 4] proposed techniques to provision resources based on QoS requirements (e.g., CPU utilization)
resulting in less execution time and cost. Warneke et al. [5] presented a Nephele framework with the principle of job
scheduling and task execution where a job manager divides a given job’s process into a number of tasks and then as-
signs VM(s) accordingly. Still, research on designing a multi-level scheduler that is Application-VM-SDN-Agnostic
has not been solved yet.

2 Monitoring challenges

Monitoring can be defined as the process of observing or checking the quality of something over a period of time.
Similarly, monitoring in Cloud computing is the process of auditing and managing the operational workflow, and
the different processes within a cloud-based IT asset or infrastructure. Cloud monitoring is an important part of
cloud security and management [14, 15], and it can be implemented within Cloud infrastructure through automated
software providing central access and control over the cloud infrastructure. There are many applications of cloud
monitoring, such as:

m ieee-cps.org Page 5

http://www.ieee-cps.org/


1. Troubleshooting: Monitoring allows analysis of network protocols and behaviour. It also helps in finding
network traffic problems.

2. Security: Monitoring mechanisms help with sampling data to look for network-based attacks.

3. Performance: Monitoring helps in optimizing the performance of the CDC resources and network.

In SDN, there can be many problems that can remain undetected in the network, thus requiring process monitor-
ing process. Monitoring in SDN also helps in checking the utilization of CPU, latency and the total request count.
Additional activities can also be checked such as memory usage and data volume. Due to these features, monitoring
plays an important in SDN data centres [12]. Network monitoring and visibility has become increasingly challenging
since IT infrastructure must support network, server, and storage virtualization, as well as user access to cloud-based
applications. Integration of service context and dynamic or real time change are among the hard challenges of the
monitoring process.

While end-to-end monitoring is important for all type of Cloud applications (multi-tier web, content delivery
network, etc.), it is much more critical in context of big data analytics application where network performance deter-
mines (e.g. network throughput and latency) performance of virtual machine hosted analytics software component
(e.g., mappers and reducers in context of Apache Hadoop) In big data analytics applications, SDN can be leveraged
to program switches in order to provide optimal data flow paths between data analytics software components on the
fly, during each stage of data analysis. SDN enables better QoS between the virtual machines by dedicating more
cross-links between them depending on the type of the analysis process [7]. However, this approach brings several
challenges, such as: 1) enabling all vendor technologies to implement both SDN controller integration with virtual
machine schedulers. and 2) how to instrument SDN devices with monitoring agent. The implementation of Network
Function Virtualization (NFV) can decrease the amount of hardware required to launch and operate network ser-
vices. However, NFV also brings some challenges of its own, such as: 1) performance degradation, 2) the elasticity
of service provisioning may require the consolidation and migration of VNFs based on traffic load and user demand.
3) Implementation of NFV brings a new set of security concerns, as virtual applications running within data centres
might not owned by network operators.

Monitoring a network is a top concern within IT departments. This is especially the case as monitoring efforts
are ubiquitously leveraged to meet network security and performance goals. Monitoring can be effected by the
unavailability of useful tools and alerting capabilities. In different networks, it is necessary to capture, store and
analyse the vast amount of monitoring data. In short, we can say that monitoring is quite difficult and challenging
due to different problems like Integration of service context and Dynamic or real time change.

An ideal scenario would be one where the capabilities of SDN and NFV are combined to provide a holistic
monitoring solution. SDN has capacity of building and managing large IP/Ethernet networks by separating the
network’s control, whereas NFV (with the purpose of reducing deployment costs) has capability of virtualizing
network functions and migrate them to generic servers [13].

There are several commercial monitoring tools available for big data monitoring, they are: Monitis, RevealCloud,
LogicMonitor, Nimsoft, Nagios, SPAE by SHALB, CloudWatch, OpenNebula, CloudHarmony, Windows Azure FC
etc. These tools can provide a report in the form of a graph or chart about the load on servers and other information.
Each of these tools have their own advantages and drawbacks. For example “RevealCloud” can only provide infor-
mation for the last 30 days. These tools use different communication protocols for performing tasks, which may or
may not work perfectly with SDN and/or NFV communication protocols.

3 Configuration Management Challenges

Configuration management is the detailed recording and updating of information that describes an enterprise’s hard-
ware and software. In a Cloud computing context, configuration management supports the management of services
by providing information about how the services are being assembled or bundled together. This information is crucial
to the other service management processes, especially for change management, incident management, or problem
management. It is also crucial to ensure meeting all agreed-to service levels. Many tools are made for automating the

m ieee-cps.org Page 6

http://www.ieee-cps.org/


cloud applications configuration management. Among these tools, CFEngine, Puppet, Chef, Ansible are well known.
Different cloud-based services (e.g., IaaS, PaaS, or SaaS), will require different levels of configuration management.
In the IaaS layer, the consumer of IaaS services usually has control over the configuration aspects of the resources,
such as which operating system to run on a virtual machine, or how to utilize the storage resources, or how to assign
IP address to a provisioned virtual machine. In the PaaS layer, configuration management could be performed on the
individual components of the platform, such as the automated integration between database and application server
layer in context of multi-tier web applications. In the SaaS layer, configuration management operations include
configuration end user’s account and access credentials with the CDC-hosted SaaS application.

To allow information flow between the management plane and other planes (Figure 1), configuration manage-
ment interfaces need to be in place. These interfaces allow settings to be enforced across network devices, and
information to be sent back into the management plane, for example, for reporting to a network administrator [9].
In traditional networks, the logic of the data and control planes is confined inside each network device according to
a well-defined set of standardized protocols. With the separation of planes, as SDN promotes, the need to bootstrap
the communication between the data and control planes becomes a basic requirement. Configuring this communi-
cation can be particularly complex, considering that both planes can operate under protocols defined by software.
Moreover, changes in any plane may affect such communication directly. Ideally, a new management interface is
required than can manage configuration properly in SDN.

Given the need to deploy and setup novel data forwarding devices into a traditional network, administrators
must configure these devices in order to have them operational. In the most basic and common scenario, the ad-
ministrator would interact with a command line interface on the device and have it configured by performing many
intricate proprietary commands. In the case of SDN data forwarding devices, there are still a few parameters to be
configured, such as the communication policy with the control plane (e.g., drop every packet when the control plane
is unavailable or follow the last valid set of rules). In response to these necessities, the Open Networking Foun-
dation (ONF) proposed the OpenFlow Management and Configuration Protocol (OF-Config). This protocol allows
operational staff to assign controllers to switches, set ports up/down, configure queues, assign certificates for the
communication with the control plane, set up tunnels, handle versioning, and retrieve device capabilities. OF-Config
is already a significant step toward tackling dataplane-related management requirements. On the other hand, this
protocol is targeted specifically to OpenFlow networks; therefore, it is tied to the limited view of SDN employed by
this technology (e.g., fixed dataplane and logically centralized control plane).

The challenge of configuration management in SDN is to automate the management of configurations in each
plane (application plane, control plane, data plane) by an administrator via management interfaces. SDN and its
most known realization, OpenFlow, has enabled widespread and vendor-neutral programmability of the control
plane of the network environment. However, despite such proposals from research and standardization bodies, the
management plane still lacks a comparable interface and protocol for capability discovery, device management and
monitoring [10]. Therefore, network management is still heavily human-centred with minor autonomous behaviour.
The Organization for the Advancement of Structured Information Standards (OASIS) is working on a Topology and
Orchestration Specification for Cloud Applications (TOSCA), to enable the creation of portable cloud applications
and the automation of their deployment and management. This standard provides a concept named management plan,
which makes the management of complex enterprise applications automated, repeatable, traceable, and less error
prone. However, the abstraction focuses on higher-level network services such as database management systems
(DBMS) and their relationship to other entities, not on details of the individual forwarding elements.

In terms of Network Function Virtualisation (NFV), the agile and automated management of virtualized network
functions (VNFs) throughout their lifecycles becomes a foremost objective [11]. TOSCA operationalizes the deploy-
ment of VNFs and triggers their initial configuration. A TOSCA template is a file-based description of VNF-related
things and a set of execution guidelines for deploying and operating them as a single entity on cloud infrastructure.
Each TOSCA-defined node has interfaces through which it can be manipulated by an initial configuration application
or script, which is referenced in the TOSCA template. However, each VNF instance needs to be further configured
at runtime to fulfil the specific needs of a consumer and service. Runtime configuration is beyond the scope of a
TOSCA template.

m ieee-cps.org Page 7

http://www.ieee-cps.org/


References

[1] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art and research challenges.” Journal of
internet services and applications 1.1 (2010): 7–18.

[2] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S. Azodolmolky, S. Uhlig, “Software-Defined Networking:
A Comprehensive Survey,” IEEE, pp. 14–76, January 2015.

[3] S. Sukhpal, C. Indervee. “Q-aware: Quality of service based cloud resource provisioning,” Computers & Elec-
trical Engineering, pp. 138–160, October 2015.

[4] S. Sukhpal, C. Indervee, “QRSF: QoS-aware resource scheduling framework in cloud computing,” The Journal
of Supercomputing, pp. 241–92, September 2014.

[5] D. Warneke, O. Kao, “Nephele: efficient parallel data processing in the cloud,” Proceedings of the 2nd Work-
shop on Many-Task Computing on Grids and Supercomputers, 2009.

[6] L. Cui, F. R. Yu and Q. Yan, “When big data meets software-defined networking: SDN for big data and big
data for SDN,” IEEE Network, vol. 30, no. 1, pp. 58–65, January–February 2016.

[7] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia and W. Kellerer, “Interfaces, attributes, and use cases: A
compass for SDN,” IEEE Communications Magazine, vol. 52, no. 6, pp. 210–217, June 2014.

[8] D. Raumer, L. Schwaighofer and G. Carle, “MonSamp: A distributed SDN application for QoS monitoring,”
Federated Conference on Computer Science and Information Systems, Warsaw, pp. 961–968, 2014.

[9] Wickboldt, Juliano Araujo, et al. “Software-defined networking: management requirements and challenges.”
IEEE Communications Magazine, 53.1 (2015): 278-285.

[10] Sieber, Christian, et al. “Towards a programmable management plane for SDN and legacy networks.” NetSoft
Conference and Workshops (NetSoft), 2016.

[11] Mijumbi, Rashid, et al. “Network function virtualization: State-of-the-art and research challenges.” IEEE Com-
munications Surveys & Tutorials 18.1 (2016): 236–262.

[12] S. R. Chowdhury, M. F. Bari, R. Ahmed and R. Boutaba, “PayLess: A low cost network monitoring framework
for Software Defined Networks,” IEEE Network Operations and Management Symposium (NOMS), Krakow,
pp. 1–9, 2014.

[13] G. Gardikis et al., “An integrating framework for efficient NFV monitoring,” IEEE NetSoft Conference and
Workshops (NetSoft), Seoul, pp. 1–5, 2015.

[14] E. Solaiman, R. Ranjan, P. P. Jayaraman, K. Mitra. “Monitoring Internet of Things Application Ecosystems for
Failure”, IT Professional, IEEE, 2016.

[15] E. Solaiman, I. Sfyrakis, C. Molina-Jimenez. “A State Aware Model and Architecture for the Monitoring and
Enforcement of Electronic Contracts”. 18th Conference on Business Informatics (CBI), IEEE, 2016.

m ieee-cps.org Page 8

http://www.ieee-cps.org/

