
26

A Taxonomy and Survey of Cloud Resource Orchestration Techniques

DENIS WEERASIRI, MOSHE CHAI BARUKH, and BOUALEM BENATALLAH,
University of New South Wales, Australia
QUAN Z. SHENG, Macquarie University, Australia
RAJIV RANJAN, University of Newcastle, United Kingdom

Cloud services and applications prove indispensable amid today’s modern utility-based computing. The
cloud has displayed a disruptive and growing impact on everyday computing tasks. However, facilitating
the orchestration of cloud resources to build such cloud services and applications is yet to unleash its entire
magnitude of power. Accordingly, it is paramount to devise a unified and comprehensive analysis framework
to accelerate fundamental understanding of cloud resource orchestration in terms of concepts, paradigms,
languages, models, and tools. This framework is essential to empower effective research, comprehension,
comparison, and selection of cloud resource orchestration models, languages, platforms, and tools. This article
provides such a comprehensive framework while analyzing the relevant state of the art in cloud resource
orchestration from a novel and holistic viewpoint.

Categories and Subject Descriptors: H.3.5 [Online Information Services]: Web-based services

General Terms: Methods, Techniques, Tools

Additional Key Words and Phrases: Cloud computing, resource orchestration, Service oriented architectures

ACM Reference Format:
Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng, and Rajiv Ranjan. 2017. A
taxonomy and survey of cloud resource orchestration techniques. ACM Comput. Surv. 50, 2, Article 26 (May
2017), 41 pages.
DOI: http://dx.doi.org/10.1145/3054177

1. INTRODUCTION

As economies undergo significant structural change, organisations are competitively
compelled to leverage cloud computing to expand or contract their computing footprint
based on variable demands for computing resources [Wang et al. 2012; Cui et al.
2013; Bahga and Madisetti 2013]. Typically, cloud providers enable virtualising three
categories of resources—the “cloud computing stack” [Armbrust and et al. 2010]—
which includes the following: Software (e.g., user facing applications), Platform (e.g.,
development and runtime environments), and Infrastructure (e.g., storage, networking
and hosting) [Ranjan et al. 2015; Satzger et al. 2013; Weerasiri and Benatallah 2015].
Accordingly, cloud computing is evolving in the form of both public (deployed by IT
organisations) and private clouds (deployed behind an enterprise firewall). A third

We gratefully acknowledge funding for this research by the Australian Government through the Aus-
tralian Research Council/Discovery Project (DP150102966, Federated Cloud Services Configuration and
Orchestration).
Authors’ addresses: D. Weerasiri, M. C. Barukh, and B. Benatallah, School of Computer Science and Engineer-
ing, University of New South Wales, Sydney NSW 2052, Australia; Q. Z. Sheng, Department of Computing,
Macquarie University, Sydney, NSW 2109, Australia; R. Ranjan, School of Computing Science, Claremont
Tower, Newcastle University, NE1 7RU, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/05-ART26 $15.00
DOI: http://dx.doi.org/10.1145/3054177

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://dx.doi.org/10.1145/3054177
http://dx.doi.org/10.1145/3054177

26:2 D. Weerasiri et al.

option, a hybrid or federated cloud [Bahga and Madisetti 2013], draws computing
resources from one or more public clouds and one or more private clouds, combined at
the behest of its users. A Gartner report [Gartner 2013] estimates “nearly half of all
large enterprises having cloud service deployments by the end of 2017.”

However, there are crucial gaps in the cloud-enabled endeavor [Ranjan et al.
2015; Satzger et al. 2013; Lu et al. 2013; Ranjan et al. 2013]. Modern orchestration
frameworks like Puppet, Ubuntu Juju, Ansible, Amazon OpsWorks, and Chef provide
scripting-based languages for describing cloud configurations [Delaet et al. 2010]. Con-
sequently, even sophisticated programmers are forced to understand various low-level
cloud service Application Programming Interfaces (APIs), command lines, and proce-
dural programming constructs to create and maintain complex resource configurations.
This leads to a costly environment that lacks flexibility and is significantly more com-
plex. It implies extensive programming effort, requires multiple and ongoing patches,
and perpetuates closed-cloud solutions. This intensifies as the variety of cloud services
and resource requirements increase. More specifically, with existing cloud delivery
models, developing a new cloud-based solution often leads to uncontrollable fragmenta-
tion. This makes it very difficult to develop interoperable and portable cloud solutions.
It also degrades performance as applications or workloads cannot be partitioned or
migrated arbitrarily to another cloud when demand cycles increase. Moreover, cloud
applications may have varying resource requirements during different phases of their
lifecycle. Consequently, designing effective cloud orchestration techniques to cope with
large-scale heterogeneous cloud environments remains a deeply challenging problem.

In this article, we propose a comprehensive analysis framework to effectively explore,
assess, contrast, and compare the variety of resource orchestration techniques. Previ-
ous surveys mostly focused on specific aspects and appear fragmented. Topics include
configuration management [Delaet et al. 2010], monitoring [Bauman et al. 2015], secu-
rity and assurance [Ardagna et al. 2015; Huang and et al. 2015; Roy et al. 2015], energy
efficiency [Mastelic et al. 2014], adaptability [Singh and Chana 2015; Zhan et al. 2015a],
Quality of Service (QoS) and Service Level Agreements (SLAs) [Hani et al. 2015], as
well as software architectures for cloud-based systems [Chauhan et al. 2016] and in-
teroperability concerns [Toosi et al. 2014; Lewis et al. 2013]. A preliminary overview of
cloud orchestration tools are also presented in Khoshkbarforoushha et al. [2016] and,
similarly, an overview on cloud meta-models in Bergmayr et al. [2015]. Nonetheless,
there remain significant shortfalls in both the complementarity and breadth of under-
standing within-cloud orchestration techniques. While previous efforts have produced
encouraging and useful results, they are limited in scope with only a more “broad”
significance. In contrast, we present a holistic and comprehensive framework. We pro-
pose a taxonomy that is much more exhaustive with additional (sub-)dimensions that
contribute to an “in-depth” analysis over a mixture of techniques from both industry
and academia. This is vital to understand the strengths and challenges and building
blocks, in terms of concepts, models, languages, techniques and tools, and paves the
way towards the next generation of cloud systems. To date, this level of investigation
has received little attention, and this article aims to alleviate this gap.

We present an extensive survey in cloud resources orchestration. After introducing
the necessary background (Section 2), we propose our taxonomy for understanding,
analyzing, and comparing cloud resource orchestration techniques (Section 3). We also
discuss related work and the positioning of our taxonomy versus existing attempts.
Our taxonomy sets out a framework of dimensions (resources, orchestration capa-
bilities, user types, runtime environment, and knowledge reuse), which we discuss
progressively in Sections 4–8. We then apply the taxonomy to analyze a set of method-
ically chosen cloud resource orchestration tools and research prototypes and identify
several open research issues based on the technical gaps identified during the analysis
(Section 9). Finally, we offer concluding remarks and directions for future study.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:3

2. CLOUD RESOURCE ORCHESTRATION

Consumers of cloud resources, human or software, typically have diverse requirements
(e.g., storage capacity, access rules, etc.). Moreover, a single cloud resource often cannot
provide all the necessary capabilities. Consider an Hypertext Transfer Protocol (HTTP)
server, application runtime, and database, composed together to formulate a typical
Web application deployment platform. The composition of dependent resources may
require additional and complex configuration changes. For instance, a secured commu-
nication channel may be initialized between the application runtime and database by
opening Internet Protocol (IP) ports and enforcing access rules (e.g., firewall rules). Fur-
thermore, deployed resources produce events (e.g., application server started, database
server crashed), which need to be monitored so necessary actions can be taken. To rea-
son about this process, we introduce the notion of Cloud Resource Lifecycle, which aims
to categorize orchestration tasks over the different phases in the typical lifespan of a
cloud resource.

2.1. Cloud Resource Lifecycle

In much the same way practitioners have abstracted the lifecycle model, for example,
in the case of software engineering artifacts [Larman and Basili 2003] or Business
Process Management (BPM) [Dumas et al. 2013], we propose a similar lifecycle model
suited for cloud resource artifacts. In essence, this model consists of the following
phases: (1) Selection, consumers select required resources; (2) Configuration, resource
description attributes are specified as well as relationships; (3) Deployment, cloud
resources are instantiated; (4) Monitoring, resources are monitored to ensure they
conform with QoS and SLAs; and (5) Control, resources are dynamically (re-)configured
to alleviate violations or whenever there are changes in requirements.

At Section 5.1, we present a much more thorough description of these lifecycle phases
together with relevant examples.

2.2. Cloud Resource Orchestration Services and Operations

To manage cloud resources over the lifecycle phases, various services and processes
are used to select, describe, configure, deploy, monitor, and control cloud resources. We
refer to the term Cloud Resource Orchestration to denote such processes and services.
From the consumers’ perspective, the function of orchestration systems are to bind re-
sources and operations (e.g., deploy, monitor, scale-out), thereby providing an abstrac-
tion layer that shifts the focus from the underlying resource infrastructure to available
orchestration services and resource management [Wang et al. 2012]. Cloud resource
orchestration systems implement a service-oriented model, enabling consumers to sat-
isfy their application requirements by utilizing resources from cloud environments. In
this manner, the overall goal of cloud resource orchestration is to ensure successful
hosting and delivery of applications by meeting the QoS objectives of consumers.

In Figure 1, we devise a reference architecture for cloud resource orchestration sys-
tems. In the following, we categorize processes and services involved in cloud resource
orchestration based on their functionalities vis-à-vis this reference model.

—Resource Provisioning Layer. Some services and tools merely offer the most basic
operations to create, reconfigure, and delete cloud resources. Such services and tools
are built on a resource description model—a meta-model that allows us to describe
resource configurations. For example, AWS Command Line Interface (CLI) [AWS
2013b] provides a range of provisioning services for every resource that they support.
One such service offers operations (e.g., create, start, stop, delete, clone, attach stor-
age volumes) to provision EC2 virtual machines [AWS 2013a].

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:4 D. Weerasiri et al.

Fig. 1. Reference architecture for cloudresource orchestration.

—Resource Management Layer. Effective automation of cloud resource management
is imperative, as otherwise consumers are forced to manually build management
logic over basic low-level operations offered by the Resource Provisioning Layer. For
instance, automating a complex management task such as throughput-based Web
application scaling in Amazon Web Services (AWS) requires (i) a monitoring engine
(e.g., AWS CloudWatch [CloudWatch 2013]), (ii) a policy enforcement engine (e.g.,
AWS Auto Scaling [Auto Scaling 2015]), and (iii) a rule engine (e.g., Opscode Chef
[Sabharwal 2014]). The monitoring engine collects throughput metrics from Web
application servers and thereby publishes events to a Policy Enforcement Engine
(PEE). Based on the captured metrics, the PEE determines what decisions to make
(e.g., replicate the Web application into multiple instances). The PEE invokes the rule
engine to execute orchestration processes (e.g., clone, deploy, and notify the HTTP
load balancer about new instances). In some cases, execution may be delegated to a
process engine, which coordinates the required scaling by leveraging operations at
the Resource Provisioning Layer. Furthermore, services such as AWS Marketplace
[Marketplace 2012] offer consumers to discover, create, curate, and share knowledge
about resource provisioning and management as reusable artifacts.

—Description Layer. This refers to languages and models to represent configuration,
deployment, monitoring, and control tasks of cloud resources, typically as (i) resource
descriptions, (ii) orchestration processes/rules, and/or (iii) policies.
—Resource Descriptions define the configuration information of resources, as well as

their relationships. For example, in AWS OpsWorks, a collection of Web application
components (e.g., database, application engine, HTTP load balancer) and relation-
ships can be defined via JavaScript Object Notation (JSON) notation [Amazon
2015b; Rosner 2013].

—Orchestration Descriptions describes the “behavioral” aspects (i.e., control and
re-configuration) of the cloud resources. There are declarative approaches (e.g.,
CloudFormation provided by AWS or Heat provided by OpenStack) or imperative
approaches that are based on processes (i.e., workflows). In some cases, con-
sumers explicitly define deployment and/or configuration rules. For example, AWS

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:5

OpsWorks provides a language with a set of pre-defined lifecycle events (e.g., setup,
configure, deploy, undeploy, shutdown) that may be associated to orchestration ac-
tions. Other approaches, often based on workflows, require no explicit rules, albeit
the Rule-Engine may delegate to a process-engine.

—Policy Descriptions endow resources with dynamic control behaviors, for example,
defining load-based policies to scale Web applications. Such a policy allows us to
instantiate new application engines when the average Central Processing Unit
(CPU) utilization exceeds 95% and stop application engines when their average
CPU load falls below 40%.

—User Layer. Cloud resource consumers (e.g., system admin or app developers) may
interact with services of the other layers. CLIs, Software Development Kits (SDKs),
APIs and Integrated Development Environments (e.g., AWS CLI, AWS Java SDK,
AWS REST API, and VisualOps) expose services to manipulate cloud resource de-
scriptions, orchestration rules, and policies [AWS 2013b, 2015a, 2015b; VisualOps
2015]. Dashboards allows for interactions using user-friendly abstractions. For in-
stance, Amazon CloudWatch [CloudWatch 2013]) represents monitoring Data using
format pre-built User Interface (UI) components and charts.

3. CLOUD RESOURCE ORCHESTRATION TAXONOMY

To offer systematic analysis, we introduce our taxonomy as depicted in Figure 2. We
identify the main dimensions and common building blocks that characterize cloud
resource orchestration techniques and available solutions. The taxonomy is a result
of our own research efforts, experiences from industry, extensive literature reviews in
related areas, as well as experiments with various services and tools.

Earlier, we discussed what is meant by “cloud resources orchestration.” Based on the
identified taxonomy, we now focus how such orchestration can be described, deployed,
and provisioned—independently of specific technologies or target solutions. Accord-
ingly, we identify five main dimensions to characterize cloud resource orchestration
techniques, which in turn are split into various sub-dimensions. A portion of this anal-
ysis also requires figuring out how a specific dimension may affect others (e.g., which
resource access methods are suitable for which user categories).

(1) Resources. This dimension identifies the formalisms that are offered for repre-
senting cloud resources. We further consider what resources are supported and
how resources are modeled, represented, and accessed (refer to Section 4).

(2) Orchestration Capabilities. This consist of actions and processes to manage or-
chestration tasks. We further divide this dimension into sub-dimensions and look
at orchestration actions, paradigms, automation strategies, and theoretical foun-
dations (refer to Section 5). (We summarize cross-cutting concerns at Appendix B.)

(3) User Type. In our analysis, we identified three categories of users who have differ-
ent roles in managing cloud resources (refer to Section 6).

(4) Runtime Environment. We identify three relevant sub-dimensions: (i) Virtual-
ization technique, (ii) Execution model, and (iii) Target environment.
Virtualization technique refers to how physical resources are abstracted to simplify
their consumption. The Execution model refers to how cloud resources are deployed,
monitored, and controlled in a distributed environment. Target environment iden-
tifies different deployment models such as public, private, and federated/hybrid
cloud environments (refer to Section 7).

(5) Knowledge Reuse. Productivity may be further enhanced through supportive
reuse capabilities of existing orchestration knowledge. Users may implement
and share orchestration knowledge as reusable software artifacts (e.g., resource
descriptions, orchestration rules). We identify two sub-dimensions of knowledge
reuse: (i) Reused Artifact and (ii) Reuse Technique (refer to Section 8).

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:6 D. Weerasiri et al.

Fig. 2. A taxonomy in cloud resource orchestration.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:7

3.1. Related Work: Positioning versus Existing Taxonomies

A holistic taxonomy and comprehensive framework for in-depth analysis has not yet
been addressed comparable to this article (also refer to Table V of Appendix A).

High-level cloud computing taxonomies have been defined by OpenCrowd [Open-
Crowd 2010] and leading industry vendors (Intel [Intel-Corporation 2015], Oracle
[Oracle-Corporation 2011], and Cisco [Cisco-Systems-Inc. 2011]), although their ap-
plicability thus far is limited to understanding their (i) product strategies and business
capabilities, (ii) key cloud product suppliers, and (iii) cloud computing strategies. In
contrast, our taxonomy addresses technical resource orchestration concerns for all re-
source types (Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS)) across all orchestration layers (Resource Provisioning,
Resource Management, Description, and User Layers); refer to Figure 1.

Rimal et al. [2009] proposed high-level concepts for some (sub-)dimensions (relative
to Figure 2): Resource type (layered cloud service organization), Runtime Environment
(visualization technique and multi-cloud interoperability), and Orchestration Strate-
gies (load-balancing and fault-tolerance). However, while we have applied our taxonomy
to a wide variety of academic and industrial approaches, Rimal et al. only analyzed
offerings by vendors such as AWS, GoGrid, Flexiscale, and Azure.

Forrester [Ried et al. 2010] introduced a market-oriented taxonomy, and early cloud
taxonomies by Hoefer et al. [2010] and Laird [2008] took a very simplistic view. These
works failed to incorporate technical concerns and dependencies across multiple or-
chestration layers, which is clearly a novel contribution of our article.

Chana et al. [Singh and Chana 2016] devised an autonomic (self-* properties) re-
source management taxonomy that covers aspects related to runtime QoS management
of cloud-hosted applications, including (i) monitoring, (ii) fault tolerance, (iii) workload
consolidation, and (iv) scheduling objective function and QoS metrics. On the other
hand, Toosi et al. [2014] presented cloud resource management with a focus on ap-
plication portability across federated public/private cloud data centers. Similarly to
Singh and Chana [2016], the taxonomy presented in Toosi et al. [2014] is limited to
QoS and SLA management aspects (autonomic scheduling, portability, monitoring, se-
curity, cross-cloud communication). Similarly, Zhang et al. [Zhan et al. 2015b] presented
a taxonomy to help in understanding and analyzing the application of Evolutionary
Computing (EC) techniques for formulating application scheduling heuristics (i.e., Or-
chestration Strategies). Although the taxonomies presented in Singh and Chana [2016],
Toosi et al. [2014], and Zhan et al. [2015b] are very detailed from the perspective of
application QoS management (which evidently draws a parallel with Runtime Environ-
ment dimension and Orchestration Strategies sub-dimension in Figure 2), they failed
to cover other important dimensions and sub-dimensions related to holistic cloud re-
source orchestration process, such as User Layer, Knowledge Reuse, Resource Access
Method, Resource Representation Notation, Language Paradigm, and so on. Refer to
Figure 2.

Different standardization bodies have also proposed reference cloud computing ar-
chitectures, including National Institute for Standards and Technology (NIST) [Liu
et al. 2011c], Distributed Management Task Force (DMTF) [DMTF 2010], Cloud Secu-
rity Alliance [CSA 2011], and the Internet Engineering Task Force [Khasnabish et al.
2011]. Although these reference architectures aid in general understanding of the cloud
computing model, they are not based on a systematic taxonomy. They hence lack in-
depth technical concepts (i.e., dimensions and sub-dimensions) required to understand
the holistic nature of cloud resource orchestration processes, which is clearly a novel
contribution of our proposed taxonomy.

Several recent articles [Beloglazov et al. 2011; Shuja et al. 2014; Hameed et al.
2016] have introduced taxonomies related to energy-efficient scheduling (an instance

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:8 D. Weerasiri et al.

of Orchestration Strategy) of applications on cloud data centers. In particular, Shuja
et al. focuses on issues related to designing cloud datacenter servers and network ar-
chitectures such that they are optimized for energy efficiency and sustainability. Our
taxonomy does not explicitly focus on energy efficiency but rather proposes a holis-
tic taxonomy that covers end-to-end lifecycle aspects of cloud resource orchestration
processes.

Attempts to define an ontological model to understand basic cloud resource types and
their entity models, dependencies, and orchestration operations has been undertaken
by several authors [Moscato et al. 2011; Fang et al. 2015; Zhang et al. 2012b; Dukaric
and Juric 2013]. For example, EU mOSAIC’s project [Moscato et al. 2011] proposed
an ontology that lets application developers understand basic resource types and their
entity models, dependencies, and configurations in a multi-cloud environments. On the
other hand, Fang et al. [2015] proposed the Service Access and Manipulation Operation
Specification (SAMOS) ontology that models entities (concepts), supported orchestra-
tion operations across SaaS, PaaS, and IaaS layers, and entity-to-entity relationships.
Similarly, Dukaric and Juric [2013] propose an ontological taxonomy to characterize
IaaS resource types and related orchestration operations. The taxonomy is structured
around seven orchestration layers: core service layer, support layer, value-added ser-
vices, control layer, management layer, security layer, and resource abstraction. Fi-
nally, EU Cloud4SOA project [Kamateri et al. 2013] proposed an ontological model to
express relationship and dependencies between PaaS offerings across different cloud
providers that share the same virtualization technology. Although these ontological
models identify the necessary information related to cloud resource entity models and
their relationships with other entities, in contrast to our work, these ontological tax-
onomy models lack the focus on other important taxonomy dimensions (Orchestration
Capabilities, User Layer, Knowledge Reuse, Runtime Environment), which are highly
mandatory for understanding the holistic nature of the cloud orchestration process.

In another strand of cloud computing research, authors have developed a taxonomy
[Fatema et al. 2014; Alhamazani et al. 2015] for cloud monitoring (a type of runtime or-
chestration operation). However, these works have considered the monitoring problem
in silos—and have failed to cover other important resource orchestration dimensions,
such as Orchestration Capabilities, Resource, RunTime Environment, User Layer, and
Knowledge Reuse. We present an encompassing general-purpose framework focused on
all essential, interdependent dimensions of the cloud resource orchestration process.

4. RESOURCES

4.1. Resource Types

Cloud providers enable virtualition through three categories of resources, namely In-
frastructure, Platform, and Software-as-a-Service.

—Infrastructure. Infrastructure resources represent processing, storage, network,
and hosting environments [Bittman 2011; Armbrust and et al. 2010; Wang et al.
2012; Thrash 2010; Ranjan et al. 2015]. Providers include VMWare vSphere, Open-
Stack, AWS EC2 CLI, Google Cloud Platform, OpenNebula, Eucalyptus, CohesiveFT,
CloudStack, and Rackspace [Lowe 2011; OpenStack.org 2015a; AWS 2013a; Platform
2015; Networks 2016; Project 2016; Development 2016; CloudStack 2016; Cali 2013].
However, some providers do not support all types of infrastructure resources. For ex-
ample, Rackspace allows us to describe virtual machines (VM), associate storage
volumes, and create communication channels among VMs. On the other hand, Juju
[Ubuntu 2013] only supports provisioning Ubuntu-based VMs and does not support
storage or network resources.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:9

—Platform. Platform resources provide software development tools, middleware,
SDKs, and/or APIs. It also supports runtime environments, such as content de-
livery networks, mobile application, and big-data platforms; all facilitate coding and
deploying software resources. Providers include AWS OpsWorks, AWS CloudFor-
mation, Google App Engine, Cloud Foundry, Ubuntu Juju, Puppet, Chef, Ansible,
Heroku, EngineYard, CloudBees, and nitrous.io [Rosner 2013; Amazon 2011; Google
2015b; Cloud-Foundry 2016; Ubuntu 2013; Middleton et al. 2013; Engine Yard 2016;
CloudBees 2016; Nitrous 2013; Puppet 2015]. For example, Heroku provides lan-
guage runtimes such as Java, Ruby, and Node.js.

—Software. Software resources are applications (i.e., Web or mobile) for a service-
based software delivery model [Cusumano 2010; Ranjan et al. 2015]. For example,
Salesforce.com1 provides pay-per-use Customer Relationship Management. Software
resources are the most abundant type of resources compared to Platform or Infras-
tructure resources [Gartner 2014].

4.2. Resource Entity Model

We propose the notion of a Resource Entity Model to represent the structure of cloud
resources and their relationships. This implies a high-level resource model, which we
represent as a graph, whose nodes and edges correspond to cloud Resource Entities and
their Relationships, respectively [Chen 1976], as well as any related Constraints.

4.2.1. Resource Entity Types. An entity type describes properties of cloud resources via
a set of attributes (e.g., key-value pairs), thus characterizing their possible runtime in-
stances. For example, a VM provided by AWS EC2 [Services 2015a] includes attributes
such as the number of CPUs, storage and memory capacity, the operating system, and
access rules. System administrators specify values prior to deploying, and afterwards
it may include additional attributes (e.g., instance ID, public IP address, and launch
time).

Resource entities can be further categorized as Elementary or Composite. An elemen-
tary resource does not rely on any other resources while acting as the primary building
blocks of composite resources. A composite resource is an umbrella structure that brings
together other elementary and composite resources to describe a larger cloud resource,
for example, an E-Learning platform that consists of an artifact management service
and student identity management service to support 100 students.

Resource entities may be described at various levels of granularity. For example, Pup-
pet [Kanies 2006] orchestrates resources within a single physical/virtual machine. Pri-
mary resource entities are thus fine grained, for example, file, sshkey, and package [Labs
2015c]. Coarse-grained resources such as app-engines (e.g., Node.js runtime) are com-
posed of fine-grained resources. In contrast, Juju [Ubuntu 2013] orchestrates resources
deployed across multiple machines. Juju provides Charms, which represent high-level
services (e.g., Node.js runtimes, Hadoop clusters) as primary resource entities.

Most orchestration techniques only support describing resources of a specific provider
[Konstantinou et al. 2009; Wittern et al. 2014; AWS 2013b]. On the other hand, oth-
ers such as Topology and Orchestration Specification for Cloud Applications (TOSCA),
ModaClouds, and CloudBase provide cross-provider Resource Entities that are portable
across different providers [Binz et al. 2013; Ardagna and et al. 2012; Weerasiri et al.
2015]. Orchestration techniques that support cross-provider resources (e.g., Compute-
Service in JCloud) are often intended for configuration and management of federated
or hybrid cloud resources [Foundation 2014b; Elmroth and Larsson 2009; Villegas and
et al. 2012].

1http://www.salesforce.com

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://www.salesforce.com

26:10 D. Weerasiri et al.

Fig. 3. Resource entities and relationships of a Web application.

Fig. 4. Communication relationship between a Web application and database.

4.2.2. Resource Relationships. A Relationship denotes a link between two Resource En-
tities. The relationship constructs can be further annotated with key-value pairs to
describe the properties of the respective relationship.

In circumstances where an orchestration technique does not support the explicit de-
scriptions of relationships, composite resources may in fact become inconsistent when
orchestrating two related component resources. Consider a Web application, such as a
Linux software stack, including an Apache HTTP server, MySQL database server, and
PHP application engine (LAMP) suite [Lawton 2005]. When the associated database
server is migrated to a new IP address, this means that the relevant configuration
attributes held at the application engine should also be updated. This is required
to maintain successful communication between the application engine and database
server. However, if the orchestration technique does not support explicit relationships,
this implies system administrators may need to manually update the relevant at-
tributes (or employ other third-party tools such as shell scripts). These alternatives
are error prone and may also cause unnecessary overheads.

Relationships are established between a provider and consumer resource entities,
where the provider offers a certain capability for the consumer. Figure 3 exemplifies
relationships of a typical Web application named ESales-Web-App with other resources.
This Web application is “hosted” in Apache-Tomcat-Server and “communicates” data
provided by CustomerDB, which is “hosted” in MySQL-DB-Server-1. Apache-Tomcat-
Server and MySQL-DB-Server-1 are “hosted” in AWS-EC2-VM1 and AWS-EC2-VM2,
respectively.

We identify the following types of relationships between cloud resources:

(1) Communication Relationship. Denotes the exchange data. For example, TOSCA 1.0
[OASIS 2013] provides a relationship type called ConnectsTo, for example, between
an application and its associated database (refer to Figure 4). TOSCA 1.0, thereby,
interprets description attributes (e.g., communication protocol) of the relationship
and constructs a channel between the relevant resources.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:11

Fig. 5. Apache-Tomcat-Server depends on SSL-Library.

Fig. 6. Inheritance relationships between Docker Images.

Fig. 7. Containment relationships within an OpsWorks Stack.

(2) Dependency Relationship. Associate a given resource with other supporting re-
sources that are required for successful operation. For example, a Web application
server depends on a Secure Socket Layer (SSL) library (e.g., OpenSSL) to encrypt
and communicate data with other resources, such as a database server (refer to
Figure 5). TOSCA 1.0 provides a relationship type called DependsOn. In Ubuntu
Juju [Ubuntu 2013], relationships are described as resource attributes that specify
whether a given resource provides or requires a particular capability to/from an-
other resource. For instance, MySQL DB provides a data source, whereas a Web
application requires a data source). System administrators are able to create these
relationships during deployment.

(3) Inheritance Relationship. Denotes when the provider’s attribute values are inher-
ited by the consumer. However, the consumer resource is permitted to override the
inherited attribute values to enable customizations. In other words, inheritance
relationships are a convenient way of configuring attributes of a resource entity
by reusing attribute values of another resource entity. For example, to describe a
new Web application, which is to be installed on Apache Web server and Ubuntu
Operating System: An application developer may simply inherit an existing Web
Application resource with a similar configuration—all relevant attributes are in-
herited (refer to Figure 6). Similarly, in Figure 3, an Inheritance relationship is
set up from AWS-EC2-VM1 to AWS-EC2-VM2. This relationship enforces VM2 to
include the same version of operating system described VM1.

(4) Containment Relationship. Denotes a parent-child relationship in which orchestra-
tion actions on a parent automatically trigger actions on all children. In practice,
containment relationships are used to conveniently orchestrate a set of related
resource entities together. For example, AWS OpsWorks [Rosner 2013] provides a
resource entity type called Stack. It represents a Web application and may contain
a set of child entities that are required to build a Web application, such as an
Apache Tomcat Server and Mini SQL (MSQL) database (refer to Figure 7). When
the Stack entity is deleted, all children are deleted automatically.

(5) Hosting Relationship. Enforces deployment of the consumer within the provider
resource. This is useful when multiple component resources need to be deployed
within a single component resource. For example, a log-file processor and an
application server need to be deployed within a single VM, as the log-file processor
needs the local file system access to read application server logs (see Figures 8
and 3). For example, Ubuntu Juju [Ubuntu 2013] enables users to specify the

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:12 D. Weerasiri et al.

Fig. 8. Web Application Server and Log Processor (hosted in one VM).

infrastructure resource provider (e.g., AWS, HP-Cloud, Windows Azure) that will
be used to deploy platform resources. Similarly, TOSCA 1.0 [OASIS 2013] supports
a hosting relationship called HostedIn, where the deployment engine interprets
the relationships and resolves which resource is to be hosted into which resource.

4.2.3. Constraints. In some circumstances, it may be necessary to restrict the type of
resource entities or relationships. For instance, AWS does not allow creating EC2 VMs
with arbitrary amounts of CPU, memory, and storage. Instead, a set of VM types (e.g.,
micro, medium, large) are provided that are optimized for different use cases (e.g.,
low-traffic Web applications, large databases) [Amazon 2015c]. From a non-technical
standpoint, having a constrained set of VM types allows providers to maintain simpler
billing policies. Similarly, constraints may restrict resource relationships. For example,
an AWS EC2 VM must be configured with a 64-bit CPU to install a 64-bit Operating
System (OS) on the particular AWS-EC2 VM.

For resource entities, constraints are specified by restricting the possible values of at-
tributes. For relationships, constraints are specified using cardinality and participants.
Consider a Ubuntu OS installed within an AWS EC2 VM. Here a one-to-one relation-
ship exists, given that neither the Ubuntu OS can exist within more than one VM, nor
can multiple OSs be installed with a VM simultaneously, whereas one-to-many rela-
tionships may exists between a cluster of HTTP Web servers and their load balancer.
Sometimes the cardinality may be arbitrary, for example, Ubuntu Juju allows users
to specify maximum and minimum numbers of consumers (e.g., Web application) that
may create relationships with a provider (e.g., Web application engine) [Juju 2015b].

We also identify two further orthogonal sub-categories of the Participants relation-
ship, namely (i) Inter-Vendor and (ii) Vendor-Specific relationships.

(a) Inter-Vendor relationships. In some cases, relationships are permitted between two
participating resources from different orchestration vendors. For example, Google
App Engine [Google 2015b] allows users to deploy applications on a Google Compute
VM or as a Docker container. DevOps are therefore allowed to associate infrastruc-
ture and platform resources across these different vendors.

(b) Vendor-Specific relationships. Some providers do not permit relationships between
other vendors and in some cases even restrict between different resource types (i.e.,
infrastructure, platform, and software). For example, DotCloud [dotCloud 2015]
only permits a composition of platform resources (e.g., databases, application en-
gines) on top of a specific infrastructure resource (e.g., AWS EC2). DevOps are
therefore not allowed to configure or reconfigure the infrastructure resources. On
the other hand, CA-AppLogic allows users to specify which platforms resources are
to be deployed on which infrastructure resources.

Furthermore, standards such as Open Cloud Computing Interface (OCCI) [Metsch
et al. 2010] may be imposed as a means for providing semantics over resources, defining
the type of a given entity, describing interdependencies between various entities and
defining operating characteristics on them. The goal being to facilitate extensibility
and interoperability.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:13

4.3. Resource Access

Over the years, software interfaces have evolved, offering various designs to cater to the
different capabilities of diverse users. Similarly, in the context of cloud orchestration,
we have identified four types of interfaces [Khoshkbarforoushha et al. 2016].

4.3.1. CLIs. CLIs offer a fixed set of commands, each of which includes a specified
set of input, output, and error parameters. For example, the AWS CLI [AWS 2013b]
suite allows users to configure, deploy, and control cloud resources, such as VMs, data
storage, and load balancers. As shown in Code 1, the “run-instances” command allows
DevOps to deploy a specified number of VMs in the AWS public cloud infrastructure.
The input parameters describes the VM configuration and the number of VMs to be
launched in terms of key-value pairs. The output of the command execution is a JSON-
based description of the resultant deployment.

Code 1: AWS CLI command to deploy VMs

4.3.2. SDKs. AWS provides SDKs for a wide range of languages (e.g., Java, PHP, .NET,
and Ruby). For example, DevOps may download the Java-based SDK and thereby write
Java applications to configure and deploy cloud resources in AWS cloud infrastructure
(refer to Code 2). While CLIs are intended for system administrators with less appli-
cation development skills, SDKs are intended for those with expertise in particular
programming languages.

Code 2: Java Syntax in AWS SDK to deploy a VM

4.3.3. APIs. Compared to SDKs, APIs provide language-independent interfaces for or-
chestration capabilities that can be accessed by software applications, typically over
HTTP. For example, Rackspace provides a RESTful API [Rackspace 2015] to configure,
deploy, and control cloud resources such as VMs, load balancers, and databases. More-
over, techniques also exist to simplify access and integration with APIs [Barukh and
Benatallah 2013a, 2013b].

4.3.4. Graphical User Interfaces (GUIs). GUIs comprise visual constructs to interact with
orchestration services. For example, StackEngine, Panamax, and Shipyard provide Web
based GUIs to configure, deploy, monitor, and replicate Docker containers [StackEngine
2015; CenturyLink 2015; Shipyard 2015]. CA-AppLogic provides a desktop-based GUI
to manage software appliances in a private cloud infrastructure [AppLogic 2015]. Some
other advanced GUIs, such as Puppet Enterprise Console and VisualOps, provide dash-
boards that generate reports such as bar charts and maps (e.g., visualize the number
of failed and running VMs during past 30 days) [Labs 2015b; VisualOps 2015].

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:14 D. Weerasiri et al.

4.4. Resource Representation Notation

Notations for representing resources and their relationships may consist of textual
and/or visual constructs. We identified three classes, namely textual, visual, and hybrid
(a mix of textual and visual) notations.

4.4.1. Textual Notations. We distinguish between three variations of textual notations:

(1) Key-value. This consists of a set of unique keys (or attributes) that characterize
cloud resources. A schema is also provided that defines the range of possible values
for particular keys. This type of notation is commonly used among providers that
offer CLIs. For example, the command for creating VMs in AWS CLI [AWS 2013b]
expects DevOps to provide values for keys such as “image-id” and “instance-type”
to describe the VMs to be created (refer to Code 1).

(2) Semi-structured. Semi-structured data formats, such as YAML Ain’t Markup Lan-
guage (YAML), eXtensible Markup Language (XML), and JSON, offer a structuring
mechanisms for organization of key-value pairs. They define markers to separate
and enforce hierarchies among different key-value pairs. Compared to other nota-
tions, semi-structured notations are better suited for representing complex cloud
resource configurations. For example, DotCloud follows YAML-based resource de-
scriptions, which include both basic and composite configuration attributes [dot-
Cloud 2015]. Each branch in the root level represents a basic cloud resource con-
figuration (e.g., Java VM, node.js engine, PHP engine).

(3) Domain-specific. Docker [Turnbull 2014] allows a domain-specific notation known
as Dockerfiles to be written. Each specifies the configuration parameters of a par-
ticular cloud resource (refer to Code 3). DevOps may also describe a composition of
a set of cloud resources using a file named docker-compose.yml (refer to Code 4).

Code 3: Dockerfile of a Python Web application

Code 4: docker-compose.yml of Web application and Redis database

4.4.2. Visual Notations. Visual programming languages abstract technical details with
“visual symbols” and “graphical notations” [Chignell et al. 2010]. For example, CA
AppLogic Cloud Platform [AppLogic 2015] provides a notation, with a catalog of con-
structs that represents elementary platform resources (e.g., databases, routers) and
other visual constructs to describe composite platform resources (e.g., Web appli-
cations). Figure 9 depicts a Web application, composed of an HTTP Gateway (i.e.,
IN), Web application Server (i.e., WEB5), and a network-attached storage (i.e., NAS)
[Technologies 2013].

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:15

Fig. 9. Visual notation in CA-Applogic for a Web application.

Fig. 10. State transitions of the cloud resource life cycle.

Fig. 11. A Composite Resource Infrastructure for a Web application.

5. RESOURCE ORCHESTRATION CAPABILITIES

Implementing orchestration processes can vary from a simple sequence of primitive
actions to complex processes.

5.1. Primitive Actions

Primitive actions are depicted as state transitions in the state chart in Figure 10.
These actions are based on the typical cloud resource lifecycle model that we introduced
in Section 2.1. We may explain these actions in the context of a real-world scenario:
Figure 11 depicts a composite cloud resource for a Web-app runtime (using the Resource
Entity Model presented at Section 4.2). This includes an Apache-Tomcat application
engine cluster with Web-apps deployed at each node. Nginx is a reverse proxy to
distribute incoming traffic to Web-apps at each node. Nagios is a monitoring service
to observe the throughput of node clusters. The MySQL database server maintains
data. MemCache is configured as a caching service, which improves the performance
of database calls.

(1) Select. DevOps first need to select resources that satisfy their requirements. For
instance, if a database is required, a viable set of database providers are evalu-
ated and selected based on both functional (e.g., storage capacity and type of the
database) and non-functional requirements (e.g., availability and cost per unit).

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:16 D. Weerasiri et al.

For example, Bitnami [2015] provides a selection service where consumers search
and select cloud resources based on intended task category (e.g., project manage-
ment, Web application) and target deployment environment (e.g., personal desk-
tops, VMWare vShpere private cloud, AWS public cloud).

(2) Configure. Next, resources are configured by defining the expected properties and
relationships. For example, in AWS OpsWorks [Rosner 2013], consumers choose re-
quired resources (e.g., MySQL DB server) and provide configuration attributes (e.g.,
Database (DB) server with 5GB of capacity and running on port 3306) to define an
expected runtime behavior. These descriptions are then submitted to the Resource
Provisioning Layer (refer to Section 2.2) to create the desired cloud resources.

(3) Deploy. Deployment involves interpreting descriptions and preparing resources
into an operation and consumption-ready state. For example, administrators may
use AWS-RDS API [Amazon 2015a] to provision a MySQL DB-server where the
database in Figure 11 is created. System administrators may then configure its
tables manually or via an ad hoc script (refer to Code 5).

Code 5: Linux shell commands to deploy a database server in AWS-RDS

Once the component resources are constructed, relationships must be created. For
example, the necessary ports and access rules should be set up within the Apache
Tomcat application engine cluster and MySQL DB-server such that requests and
responses can be sent and received between the application and DB (see Figure 11).

(4) Monitor. Once the cloud resources are operational, DevOps must monitor to ensure
resources are continuously operating according to requirements. For example, a
Tomcat application engine configured to be operational on 24x7, should be mon-
itored to check that it responds to incoming requests continuously. If found oth-
erwise, it implies the SLA has been violated between the provider and consumer.
Nagios is a monitoring engine [Barth 2008] to specify events to be monitored (via a
command definition) and receive notifications (e.g., via email). For example, Code 6
checks whether the Tomcat application engine is running, and a notifications may
be sent (as defined in Contact definition), which sends an email to admin@abc.com
when the engine is not running.

(5) Control. When cloud resources are monitored and found to be not operating ac-
cording to the configured attributes, DevOps or automated processes may take
necessary control actions to recover from the situation. For example, Figure 12
depicts the orchestration logic that scales an Apache Tomcat application engine
cluster when the network throughput becomes less than 95%.

5.2. Orchestration Strategies

We classify cloud resource orchestration techniques in accordance with their level of
sophistication. Less-sophisticated techniques require more human interventions (and
vice versa), particularly to orchestrate resources in response to dynamic changes.

5.2.1. User-Defined Orchestration Strategies. User-defined orchestration strategies are the
most basic form of implementing cloud processes. DevOps implement orchestration
processes as ad hoc scripts that exploit only a set of primitive actions supported by

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:17

Fig. 12. Orchestration Workflow (in black and bold) for scaling up an Apache Tomcat Application Engine
Cluster.

Code 6: Nagios syntax to monitor a Tomcat application engine

a particular orchestration language. Existing cloud resource orchestration techniques
typically rely on User-defined orchestration strategies, written in general-purpose or
domain-specific scripting languages [Ranjan et al. 2015; Liu et al. 2011a; Lu et al. 2013;
Zeng et al. 2004]. For example, Chef recipes [Chef 2015] follows a domain-specific script-
ing language that extends Ruby to specify orchestration actions such as configuration,
deployment, and deletion of resources (refer to Code 7).

Code 7: A Chef Recipe representing the Configuration and Deployment of a File

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:18 D. Weerasiri et al.

However, scaling up or down cloud resources in dynamic environments via User-
defined orchestration processes leads to a costly and inflexible solution. This adds
significant complexity, insists on extensive programming effort, calls for multiple and
continuous patches, and perpetuates closed-cloud solutions. To alleviate this somewhat,
tools such as Juju GUI, OpenTOSCA, and VisualOps provide visual abstractions to
describe deployment workflows and resource topologies [Ubuntu 2013; Binz et al. 2013;
VisualOps 2015]. For example, AWS Management Console, VisualOps, CA AppLogic,
and other cloud resource management tools provide control features such as restarting,
scaling, and migration [VisualOps 2015]. Moreover, monitoring tools such as Nagios
and CloudFielder can allow DevOps to define SLA, detect anomalies, and notify about
SLA violations.

5.2.2. Rule-Based Orchestration Strategies. Some providers define a reactive rule-based
language in addition to primitive actions. This means that Event-Condition-Action
(ECA) rules may be specified based on pre-defined events or patterns [Michelson 2006].
When events are detected, the specified actions are auto-triggered by the orchestration
engine. For example, AWS OpsWorks [Rosner 2013] supports five event types (i.e.,
setup, install, deploy, undeploy, and shutdown). Actions consist of Chef recipes [Chef
2015]. Several research initiatives have adopted this strategy: Chapman et al. [2012],
Zhang et al. [2011], and Zabolotnyi et al. [2015]. Code 8 shows an elasticity rule to
dynamically deploy new VMs as the “number of jobs awaiting execution increases”
[Chapman et al. 2012].

Code 8: Elasticity Rule to Scale VMs (adapted from Chapman et al. 2012)

5.2.3. Autonomic Orchestration Strategies. With the expanding complexity of cloud-based
systems, orchestration tasks become too cumbersome to be carried out largely
with human-assisted techniques including user-defined and rule-based strategies.
Autonomic orchestration strategies, the highest level of sophistication, refer to
self-managing features of cloud resources [Toosi et al. 2014; Singh and Chana 2015].
For instance, endowing resources with self-management capabilities has the poten-
tial to enhance high availability of cloud resources, for example, through dynamic
(re-)configuration, to maintain the expected quality of service in the presence of
faults, variable environmental conditions, and changes in user requirements [Singh
and Chana 2015; Zhan et al. 2015a; Cheng and Garlan 2012; Yuan et al. 2014]. For
example, an autonomic orchestration process automatically scales up or down running
applications by analyzing the recent resource consumption statistics. This implies that
orchestration techniques intelligently make certain decisions when managing cloud
resources without taking any instructions from users [Parashar and Hariri 2005].

It should be noted that, in terms of self-managing cloud resources services,
technology is still in the early stages. CometCloud is an example of effort in this
direction [Kim and Parashar 2011]. Supported features include budget-, deadline-,

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:19

and workload-based deployment of cloud-based applications. Other efforts include
automatic re-configuration of resources to meet evolving application resource require-
ments and QoS [Zhan et al. 2015a; Singh and Chana 2015; Toosi et al. 2014; Ye et al.
2016]. For example, Fuzzy BPM-aware Auto-Scaler scales up or down VMs based on
Key Performance Indicators of deployed business processes within the VMs [Schulte
et al. 2015; Mamdani 1974]. Other research initiatives trigger orchestration actions
and processes based on analysing user requirements (e.g., SLAs), end-user context
(e.g., geolocations and device configurations), and environmental properties (e.g., unit
cost per resource, processing speed of VMs) [Wei and Blake 2013; Gravier et al. 2015;
Menzel et al. 2015; Zhang et al. 2012a; Zabolotnyi et al. 2014; Fang et al. 2012].

Learning-based methods, based on historical or simulated data, have been applied to
support autonomic cloud resources orchestration. Xu et al., Islam et al., A Self-Adaptive
Prediction system (ASAP), and Online Resource Management Decision Support System
(ORMDSS) propose neural-network models that are trained using different workload
scenarios to determine an optimal or near-optimal configuration of VMs and software
appliances [Xu et al. 2012; Islam et al. 2012; Jiang et al. 2011; Ramezani et al. 2013].
Antonescu et al. propose a learning-based technique to migrate and provision cloud-
based mobile services based on the mobility of users [Antonescu et al. 2013].

Various heuristic-based resource allocation and migration algorithms have also been
proposed to support autonomic orchestration of cloud resources [Mishra et al. 2012;
Pandey et al. 2010; Beloglazov et al. 2012; Iqbal et al. 2011]. Some of these are based
on pre-defined policies that determine which type of VMs should be provisioned to
which data centers, while optimizing the energy consumption [Beloglazov et al. 2012].

We identify several other methods that include formally defined abstractions for
specifying automated resource orchestration, namely Closures, Promises, and Aspects.

Closures encapsulate orchestration commands as black boxes; this aids in re-
ducing management complexity and costs [Couch et al. 2003; Burgess and Couch
2006]. Its behavior can be thought of as the sum of its transactions with the out-
side world, such that each output from a closure is a function of all input received.
Inputs take the form of events and streams. Closures are adopted in CFEngine
[Burgess and College 1995].

Promises model the way cloud resources commit to certain behaviors [Burgess
and Couch 2006; Bergstra and Burgess 2014]. It allows cloud resources to be-
come more autonomous and self-sufficient in dynamic environments. In CFEngine,
Promises are implemented as policies that modify resources, such as those in non-
conforming states that are transformed into conforming states [Burgess and College
1995]. Effectively, this approach immunizes cloud resources against potential dete-
rioration by continuously repairing those non-conforming. Promises are also idem-
potent; they will do nothing unless non-conformity is discovered. This technique
have been applied to verification and knowledge management of cloud orchestration
[Burgess 2011, 2009].

Aspects are an abstraction for organizing Promises into distributed bundles and
constellation [Burgess 2007]. Aspects are introduced over Promises to describe complex
orchestrations that need to be dealt with by multiple Promises simultaneously.

5.3. Language Paradigm

Language paradigm is an “approach of programming based on a coherent set of prin-
ciples and practices” that determines its “suitability for solving certain types of prob-
lems” [Van Roy et al. 2009]. We have identified the following language paradigms
used in cloud orchestration systems (e.g., Puppet, Chef, Juju, Docker, SmartFrog, AWS
OpsWorks) and research efforts [Cui et al. 2013; Chieu and at al. 2010; Goldsack et al.
2009; Delaet et al. 2010; Konstantinou et al. 2009; Wilson 2009].

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:20 D. Weerasiri et al.

5.3.1. Imperative Programming. We have identified three sub-categories as follows:

—Script-Based. DevOps widely adopt scripting languages (e.g., JavaScript, Python,
Bash) to implement cloud resource orchestration processes. Providers that use this
method include Docker and Vagrant [Turnbull 2014; Hashimoto 2013].

—Flow-Based Programming. The primitive constructs of flow-based orchestration lan-
guages are data-flow and control-flow connectors. This approach is based on service
composition and business process modeling languages (e.g., Business Process Execu-
tion Language (BPEL), Business Process Model and Notation (BPMN) [OMG 2011;
Juric and Weerasiri 2014]. BPMN4TOSCA [Kopp et al. 2012] (which include four
BPMN extensions) and CloudBase [Weerasiri et al. 2015] extend BPMN to imple-
ment orchestration processes of cloud applications.

—Rule-Based Programming. ECA rules are specified by associating a sequence of
configuration, deployment, or re-configuration actions for each of possible events
[Ubuntu 2013]. Code 8 exemplifies an ECA rule that dynamically deploys new VMs
as the “number of jobs awaiting execution increases” [Chapman et al. 2012].

5.3.2. Declarative Programming. We have identified three sub-categories as follows:

—Markup Languages. Plush is a tool to deploy, monitor, and control distributed soft-
ware applications. It advocates an XML-based language to model and deploy software
components [Albrecht and et al. 2011].

—Query-based. Query-based orchestration languages model cloud resources as struc-
tured data (e.g., tables, graphs, trees) and provide actions (e.g., create, read, update,
and delete) for processing structured data. Liu et al. [2011a, 2011b] represents cloud
resources as a treelike data structure and provide declarative primitives to create,
delete, and update cloud resources.

—Constraint Programming. Constraint programming enables automatic generation of
cloud resource configurations from declarative constraint specifications [Danninger
2015; Sawyer et al. 2012]. For example, CFEngine automatically determines the
steps required to create and update resource configurations by analyzing constraint
specifications and recent changes within the operating environment [Burgess and
College 1995].

6. USER TYPES

We identify three types of users involved in orchestrating cloud resources, namely
DevOps, Application Developers, and Domain-Experts. DevOps is an emerging role to
consolidate application developers and system administrators. To effectively manage
resources, complex orchestration processes needs to be carried out (e.g., setting up
an application testing environment, testing application updates, migrating the tested
environment to the production, and scaling the production environment based on usage
patterns). DevOps are responsible for optimizing and automating those orchestration
processes, which improves the quality of software development and continuous delivery
processes. The traditional application developer’s role is also important, including the
use of cloud for resources management. However, not all application developers are
DevOps (which implies the distinction of roles in our analysis). For example, developers
may just be responsible to write Java code that are later deployed on Heroku.

A domain expert is specialized in a specific domain (e.g., biologists, teachers) and
may use cloud resources for their work processes. For example, a Harvard Univer-
sity lecturer for an introduction to computer science course [Malan 2015] may create
a virtual machine named CS50 Appliance 19 [CS50 2015], which includes all soft-
ware required by students to develop, test, deploy, and execute code. Domain experts
have very little or no programming expertise. For this reason, it is imperative that

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:21

Fig. 13. OS-level hypervisor (left) vs. container (middle) vs. unikernels (right).

domain experts are provided with end-user-oriented or domain-specific orchestration
languages. RightScale Self-Service allows domain experts to automatically provision
and orchestrate Software resources based on high-level policies [RightScale 2016]. It
also provides a Web-based portal, whereby domain experts can deploy resources by
specifying non-technical resource attributes and assess their financial costs.

7. RUNTIME ENVIRONMENT

The runtime environment for cloud orchestration relies on three orthogonal concerns:
(a) virtualization technique, (b) execution model, and (c) target environment.

7.1. Virtualization Technique

Virtualization is the key technique that transforms cloud resource descriptions into
concrete resources; it provisions hardware and software constituents without upfront
capital expenditure [Chapman et al. 2012]. It addresses three main concerns: (a) per-
formance isolation, (b) data isolation, and (c) execution isolation [Gupta et al. 2006].
Data interference is the unintended data sharing (e.g., file systems) across different
resources. Execution interference is the effect on the runtime state (e.g., failures) of one
resource to another resource. Performance interference is the influence of the perfor-
mance of one resource to another, where both share the same underlying resources.

We discuss two types of virtualization techniques that are commonly adopted by
cloud resource orchestration techniques:

—OS-level Hypervisor. The virtualization component runs on top of a host operating
system, with VMs installed with a guest operating system (Figure 13 (left)). The
virtualization component accesses a shared pool of resources (e.g., memory, CPU,
and system calls) through the host operating system and partitions resources across
operating systems. For example, the AWS EC2 service uses an extended version of
Xen as their OS-level hypervisor to provision EC2 virtual machines.

—Environment-Level Container Manager. The virtualization component runs on top of
the kernel of a host operating system, similarly to OS-level hypervisors. In contrast,
however, the hardware layer is not virtualized but uses features of the operating
system kernel to create lightweight virtualized operating system environments, that
is, containers (Figure 13 (right)). For example, Linux containers are built by lever-
aging cgroups and namespace features of the Linux kernel [LinuxContainers.org
2015; Rosen 2013]. Environment-level containers do not require installing separate

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:22 D. Weerasiri et al.

guest operating systems on each container—they share the hardware layer and host
operating system kernel layer across all containers. This is a resource isolation mech-
anism with little overhead compared to OS-level hypervisors. Docker is a container
manager on top of the Linux OS [Turnbull 2014].

—Minimum-OS Unikernels. The virtualized component implements the bare minimum
operating system’s kernel libraries just enough to support successful execution of
the component. Unlike containers, Unikernels-based (e.g., MirageOS, Rump Kernel,
Clive) virtualized components [Oliver 2015] do not share OS kernel libraries with
other containerized instances. By presenting the ability to compose application com-
ponents that are not only lightweight while having the security features of OS-level
hypervisors, Unikernels have begun to emerge as a viable alternative to overcome the
current security concerns relevant to container-based (hypervisor-free) approaches.
Moreover, application developers have explicit control over core security areas, as
they can choose which kernel library to package or turn off by default. Similarly
to containers, unikernels are much lightweight [Oliver 2015; Darvell 2016] as com-
pared to traditional, full-blown VMs that are hosted on top of OS-level hypervisors
(e.g., Hyper-V, Xen).

7.2. Execution Model

The execution model refers to how a particular orchestration process distributes and
performs tasks. We identify two main types of execution models:

—Centralized Orchestration. In this model, the execution manager performs all the
tasks of an orchestration process. If tasks are dispersed across a set of machines
within a distributed environment, then the centralized manager directly issues com-
mands to perform the orchestration. For example, VMWare vSphere [Lowe 2011]
is a virtual machine management tool that creates and manages VMs on top of a
single host machine. Ansible performs as a central manager, which directly issues
orchestration commands via the Secure Shell (SSH) protocol; such that the issued
commands are received by remote machines [Mohaan and Raithatha 2014].

—De-Centralized Orchestration. In this model, all participating machines are required
to install an agent supplied by the orchestration provider. During execution, tasks
are delegated to the agent—which is thereby responsible to perform the actual or-
chestration tasks. Agents are only aware of their delegated tasks and not about tasks
assigned to other agents. For example, Puppet supports agent-based orchestration
in which there is a central server that stores orchestration processes. Agent ma-
chines periodically poll the central server for orchestration tasks and perform those
tasks. Puppet follows a model based on Promises (refer to Section 5.2.3) to avoid
potential inconsistencies in autonomous and de-centralized orchestrations [Bergstra
and Burgess 2008]. Kirschnick et al. [2012] propose a peer-to-peer architecture, a
highly scalable and fault-tolerant architecture with no central orchestration server,
to automatically deploy software components across a pool of virtual machines.

7.3. Target Environment

7.3.1. Public Cloud. Public cloud providers, such as AWS, provide a range of orches-
tration techniques (e.g., AWS Command Line Interface, AWS CloudFormation, AWS
OpsWorks), each of which suits different types of users (e.g., system administrators,
DevOps, developers) to configure, deploy, and control cloud resources. Alternatively,
there are third-party cloud resource orchestration techniques that provide plug-ins to
integrate with public cloud providers. For example VisualOps provides a graphical in-
terface to configure and visualize VMs deployed across different regions (e.g., Europe,
Australiasia) in the AWS environment [VisualOps 2015].

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:23

7.3.2. Private Cloud. Private cloud resource providers, such as VMWare and Open-
Stack, offer VMWare vSphere and Heat, respectively, to configure and manage virtual
machines within a private network [Lowe 2011; OpenStack.org 2015b]. Additionally,
third-party tooling such as Juju, Ansible, Chef , and Puppet [Ubuntu 2013; Mohaan and
Raithatha 2014; Sabharwal 2014; Puppet 2015; Kanies 2006] support resource config-
uration, deployment, and control in OpenStack-based private cloud deployments.

7.3.3. Federated Cloud. Tools for orchestrating federated cloud resources have been
introduced in both research and industry [Toosi et al. 2014; Hajjat et al. 2011]. They
either (a) define a unified cloud resource orchestration language that must be conformed
to by all participating providers [Weerasiri et al. 2015; Wettinger and et al. 2014] or
(b) provide a pluggable architecture that interprets different orchestration languages
of participating providers [Wettinger et al. 2014; Weerasiri et al. 2015].

For example, TOSCA is an open standard for representing and orchestrating cloud
resources [OASIS 2013; Binz et al. 2013]. It describes a federated cloud resource using
a Service Template. This template captures the topology of component resources and
sets a plan for orchestrating those resources.

Techniques for capturing a unified representation, as well as enabling orchestration
of cloud resources among diverse providers, have been studied by research [Moscato
et al. 2011; Smit et al. 2013] and implemented as language libraries [Foundation 2014c;
Tidwell 2009; Foundation 2014a, 2015c]. On the other hand, Ansible provides a suite
of distinct language modules, each of which publishes an orchestration interface for a
specific resource type offered by a particular resource provider (e.g., AWS, Rackspace,
Azure, VMWare) [Ansible 2015]. Ansible is thus able to implement scripts by reusing
a set of modules to model and orchestrate federated cloud resources.

Federated Cloud is a key factor to facilitate switching providers, that is, avoiding
vendor lock-in and optimizing cost-to-performance tradeoffs. Recognizing this compet-
itive edge, cloud resource orchestration tools and techniques are attempting to expand
their capability to compose, deploy, and manage applications across multiple cloud
providers. Nonetheless, the federated cloud model is nontrivial to design, and it is diffi-
cult to implement generic resource orchestrators that can work with various providers.
We (and others [Toosi et al. 2014]) believe that Federated Cloud can be realized either
using Multi-Cloud or Hybrid Cloud abstractions. While we do note other opinions that
view slight distinctions between Multi-Cloud and Federation [Grozev and Buyya 2014;
Petcu 2014], we uphold the previously stated view.

When considering Federated Cloud environments, security and regulatory compli-
ance requirements must be considered, as they vary considerably across providers.

Resource orchestration in Multi-Cloud environments refer to transparently inte-
grating IaaS and PaaS resources offered by multiple public cloud providers as part
of a single application composition. Administrators can manage and automate appli-
cation movement and the communication among resources hosted in different clouds.
Resource orchestrators provided by RightScale, EngineYard, and CohesiveFT support
application deployment across multiple clouds (e.g., Amazon Web Services, Microsoft
Azure, HP Cloud) by implementing an adapter layer (e.g., based on APIs such as Apache
jclouds) that hides the low-level technical complexity (e.g., hypervisor type, authenti-
cation, authorization, networking) of heterogeneous, multiple clouds from high-level
application composition (configuration, monitoring, runtime adaptation).

On the other hand, resource orchestration in Hybrid Cloud environments refer to
transparently shedding excess application workload to one or more external public
clouds, when private cloud resources are not able to cope with the demand for computing
capacity spikes. The major advantage of Hybrid Cloud is that an organization only
pays when needed for extra resource capacity. Resource orchestrators from commercial

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:24 D. Weerasiri et al.

PaaS providers, such as CloudSwitch (which supports bursting of in-house workload to
AWS and recently acquired by Verizon), and EU FP7 Projects, such as OPTIMIS and
SeaClouds, support deployment of applications in Hybrid Cloud environments.

8. KNOWLEDGE REUSE

Knowledge reuse frameworks are based on four main pillars: (a) knowledge represen-
tation, (b) knowledge acquisition, (c) knowledge curation, and (d) knowledge discovery.
Knowledge representation techniques are presented in Section 8.1. We then discuss var-
ious methods used for knowledge acquisition, curation, and discovery in Section 8.2.

8.1. Reused Artifact

An artifact may be atomic (e.g., a resource description or orchestration rule) or compos-
ite, including multiple interrelated elements (e.g, deployment workflow). Reuse arti-
facts can be distinguished as template or concrete. Concrete artifacts are fully developed
orchestration solutions. Template artifacts are generalized solutions that need manual
adaptations (e.g., initializing configuration parameters) before reuse. Considering the
above, we have identified the following variety of reuse artifacts.

8.1.1. Resource Description Templates. Most enterprise-ready cloud orchestration
providers support both concrete and template resource description repositories for
knowledge reuse. For example, Google Container Engine, Docker, and Juju offer cloud
knowledge repositories (i.e., Google Container Registry, Docker Hub, and Juju Charm
Store) [Google 2015a; Docker 2015a; Canonical 2015; Services 2015b]. Docker Hub
enables sharing and reusing resource descriptions by means of Docker Images, which
represent resource deployment descriptions (e.g., mongoDB database, nginx reverse
proxy server) with the required dependencies. Docker Hub may be used to discover,
configure, and deploy existing Images. Template Images are associated with a set of
configuration parameters (e.g., access credentials of a database server Image) that are
initialized by users before the deployment, while concrete Images have pre-initialized
configuration parameters.

8.1.2. Resource Snapshots. A snapshot of a cloud resource includes not just its descrip-
tion but also a specific runtime state (e.g., deployed and started application server).
In contrast to reusing resource description templates, snapshots additionally embed
information about the execution of the orchestration process. For example, Snaps in ter-
minal.com and VMware Snapshots provide resource snapshots [Cloudlabs-Inc. 2015;
VMware 2015]. Users of terminal.com (e.g., application developers) may specify, deploy,
and share Snaps with other users (e.g., QA engineers, system administrators) who may
test, monitor, and control those Snaps.

8.1.3. Miscellaneous. DevOps create and publish DockerFiles, which are textual re-
source descriptions of Docker Images; they may then be shared on code repositories
such as GitHub. Instructions for how to configure and deploy the specific DockerFile
into a Docker Container may also be shared. However, these instructions can only be
interpreted by humans (not machine read).

8.2. Reuse Techniques

Given an artifact for reuse, it is imperative to identify different techniques that can be
applied in practice to enable its reuse. We identify the following three categories.

8.2.1. Search Indexes. Ansible, Puppet, and Chef provide search indexes based on re-
source description attributes (e.g, artifact name, owner, version, and created date)
[Mohaan and Raithatha 2014; Puppet 2015; Sabharwal 2014]. This assumes that users

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:25

know the exact (or nearly exact) attributes values to query for potential artifacts to
reuse. There are more advanced search indexes (e.g., Bitnami) that accept query in-
puts such as intended task category (e.g., project management) and target deployment
environment (e.g., AWS EC2 public cloud, VMWare vSphere private cloud).

8.2.2. Recommendation. This approach implies proactively suggesting a set of potential
artifacts to facilitate the orchestration. Compared to search indexes, recommended
artifacts are suggested based on application profiles, usage histories, contexts, and so
on [Resnick and Varian 1997; Weerasiri and Benatallah 2015; Zhang et al. 2012c]. For
example, AWS Marketplace suggests virtual appliances based on users’ ratings and
comments. Additionally when users choose a particular virtual appliance (e.g., http
server), a list of related virtual appliances (e.g., http load balancer) is recommended
that can be deployed along with the chosen appliance.

8.2.3. Community-Driven Techniques. Leveraging user-expertise to facilitate knowledge
reuse is a popular choice among many enterprise-level cloud providers.

—Resource Repositories. As mentioned, online databases such as Docker Hub and AWS
EC2 Container Registry act as Git-like version-control repositories [Docker 2015a;
Services 2015b]. Some communities like Bitnami [Bitnami 2015] restrict all but au-
thorized developers to register resource artifacts. Others, such as, Ubuntu Juju [Juju
2015a] and Puppet [Labs 2015a], implement strict curation policies (e.g., licensing,
naming conventions, idempotency of orchestration rules) when sharing artifacts.
Other communities, such as Docker Hub [Docker 2015a], do not enforce curation
policies; they implement reputation schemes to collectively estimate quality and
correctness of resource artifacts.

—Forums, Blogs, and Wikis. Forums allow users to post questions and ideas and receive
targeted answers and comments from other users. For example, Puppet provides a
forum for DevOps to post, query, answer, and rate questions. Blogs usually contain
information authored by a single user or organization. For example, the Chef com-
munity posts blog articles about artifact development best practices, updates to the
orchestration language, and other related news. Wikis are community-driven col-
laborative environments that are particularly useful for small teams to maintain
documentation of cloud resources. For example, DevOps can keep track of the list of
deployed VMs. DevOp may then update the wiki whenever they make any changes
(e.g., installing software, operating system updates).

9. APPLYING THE TAXONOMY: EVALUATION OF CLOUD RESOURCE
ORCHESTRATION TECHNIQUES

In consolidation of the foregoing discussion, we organize the analysis of state of the art
by characterizing techniques and tools along the main dimensions of our taxonomy (as
presented in Section 3). We include well-known enterprise tools and frameworks, as
well as initiatives derived from a wide selection of research literature.

9.1. Selection Process

Careful consideration was applied in the selection of relevant tools for our analysis;
this entailed several phases of investigation: Initially, 20 orchestration tools were
chosen from a set heavily advocated by the DevOps community. We experimented with
those tools to understand the main dimensions that are common among these tools.
Based on our observations, we were able to derive the initial draft of our taxonomy.
Furthermore, we derived analysis tables that summarized each tool according to the
relevant dimensions that were identified as part of the initial taxonomy. We then
chose a selection of research initiatives from leading, critically reviewed research

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:26 D. Weerasiri et al.

proceedings (research and demonstration tracks), magazines, and journal articles that
were relevant to the domain from the year 2004 onwards. In particular, these included
the following conferences: Cloud Computing (CLOUD), Cloud Engineering (IC2E),
Service-Oriented Computing (ICSOC), Advanced Information Systems Engineering
(CAiSE), Large Installation System Administration (LISA), Database Systems for
Advanced Applications (DASFAA), Cooperative Information Systems (CoopIS), Cloud
Computing and Services Science (CLOSER), and Utility and Cloud Computing
(UCC), and in the following journals: ACM Computing Surveys, ACM Transactions on
Internet Technology, IEEE Internet Computing, IEEE Transactions on Network and
Service Management, IEEE Transactions of Cloud Computing, and Journal of Systems
and Software. We analyzed these initiatives and further revised our taxonomy and
comparison tables based on our findings.

Ultimately, 11 different cloud orchestration approaches were selected for analysis,
namely AWS OpsWorks [Rosner 2013], AWS CloudFormation [Amazon 2011], VMWare
vSphere [Lowe 2011], Heroku [Middleton et al. 2013], Puppet [Kanies 2006; Puppet
2015], Juju [Ubuntu 2013], Docker [Turnbull 2014], OpenTOSCA [Binz et al. 2013],
CFEngine [Burgess and College 1995], Plush [Albrecht and et al. 2011], and SmartFrog
[Goldsack et al. 2009].

9.2. Resources and User Types

Table I maps the selected orchestration techniques onto the Resources and User Types
dimensions described in Sections 4 and 6. The supported resource types, access meth-
ods, and representation notations immensely influence the type of users. Therefore, to
appreciate this correlation, we present our analysis of these two dimensions together.

Accordingly, by studying the characteristics relative to these two dimensions, we
summarize our findings as follows:

—Eight of 11 approaches utilize Domain-specific representation notations; however,
there are an assortment of other notations with the same or similar representa-
tion capabilities (as cited in Section 4.4). This underlines the factual assertion and
suitability of domain-specific notations in the field of cloud resource orchestration.

—Ten of 11 approaches support CLI-based resources access; from which 7 also provide
API-based access. Due to the fact that Linux- and Unix-based systems are managed
via CLIs, the current DevOps community is heavily equipped with CLI-based sys-
tem administration skills. To manage applications across public and private clouds,
providing APIs and SDKs for programmatically accessing resources become an im-
portant requirement.

—Ten of 11 approaches support representing platform resources. In general, cloud re-
source orchestration vastly remains the prerogative of professional DevOps, although
the adoption of end-user intuitive visual abstractions is emerging.

As a future direction, it will be vital to provide effective end-user-oriented represen-
tation capabilities. This will be complimented by diversifying techniques for resource
representations, more specifically as follows:

—End-User empowered declarative representation. We identify end-users as an impor-
tant and emerging category of user-type for orchestration techniques in the future.
Accordingly, end-users should be able to easily and declaratively represent cloud
resources, as well as access, configure, compose, and analyze simple yet powerful
composite cloud resources. Currently, even sophisticated DevOps are often forced
to resort to grasping different low-level resource access methods, and procedural
language paradigms, to create and manage complex cloud resources.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:27

Table I. The Resource and User Type Dimensions of the Selected Platforms

Resource
Res.

Representation Res. Entity Model Res. Access User
Res. Types Notation Entities Relationships Constraints Method Type

AWS
OpsWorks

Platform
Resources

Domain-specific
notation based
on Chef
cookbooks

Support defining
composite trees from
component entities.
Component entities
are Web application
components.

Support Containment
relationship to compose a
set of related resources
required for a Web
application

Constraints are
allowed in entities as
attributes and rules
(e.g., auto-scaling
rules in Layer)

Web based
GUI, CLI,
SDK, APIs

DevOps

AWS Cloud-
Formation

Infrastructure
and Platform
resources

JSON Support defining
composite graphs
from component
entities

(1) Support Dependency
relationships between
resources. (2) Support
Containment
relationships to group all
the related resources

(2) Local attributes
in resource entities
(2) Attributes can be
defined to apply on
all the resource
entities

CLI, APIs DevOps

VMWare
vSphere

Virtual
Machines

Visual Top level resource is
a ServiceInstance (a
data center).
ServiceInstance can
be modeled a set of
VMs that can be
composed of
component entities
like network, alarm

(1) Support Dependency
relationships between
resources. (usually these
relationships can be
modeled between the
component resources
within VMs) (2) Support
Containment
relationships to group all
the related VMs

Support attributes in
resource entities to
configure VMs

Desktop based
GUI, CLI,
APIs

System
Admin-
istrators

Heroku Platform Domain-specific Support defining
composite trees from
component entities

(1) Support Containment
relationships to group a
set of Dynos that belong
to a particular app.
(2) Support Dependency
relationships (e.g.,
pom.xml in java apps)

(1) Support attribute
based constraints in
resource entities.
(2) Policies can be
specified on
particular entities
(eg., At least one Web
Dyno entity should
exist in each App
entity)

CLI, APIs DevOps

Puppet Platform
Resources

Domain-specific (1) Supports a graph
of resource entities
(2) Entity types
include files,
packages like
resource that can be
composed to model a
machine (3) Top level
Composite entity
represent a Machine
(Physical/Virtual)

(1) Support Dependency
relationships that results
the deployment behavior
among resource entities
(2) Hosting relationships
to specify which resource
entities should be
deployed on which
machines

Resource entity
specific constraints
are provided as
attributes. Puppet
also define a
hierarchical
structure to
categorize resource
entities such that
constraints defined
in parent are
inherited to children

CLI, APIs,
Web-based
GUI

DevOps

Juju Infrastructure
and Platform
resources

YAML (1) Support a graph
of resource entities

(2) Dependency
relationships between
Charms (e.g., require,
provide interfaces)
(2) Containment
relationship (e.g.,
between Charms and the
Provider) (3) Hosting
relationship (e.g.,
between a service-unit
and a machine/container)

Support entity and
relationship specific
constraints via
attributes

CLI,
Web-based
GUI

DevOps

Docker Platform
Resources

Domain-specific Support a graph of
resource entities

(1) Communication
relationships
(2) Dependency
relationships (3) Hosting
relationship

Entity specific
constraints via
attributes

CLI, APIs DevOps

OpenTOSCA Infrastructure
and Platform
resources

Visual notation Support a graph of
resource entities

(1) Communication
relationships (e.g.,
connect to)
(2) Dependency
relationships (e.g.,
depend on) (3) Hosting
relationships (e.g., hosted
in)

Entity and relation
specific constraints
via attributes

Web-based
GUI

DevOps

(Continued)

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:28 D. Weerasiri et al.

Table I. Continued

Resource
Res.

Representation Res. Entity Model Res. Access User
Res. Types Notation Entities Relationships Constraints Method Type

CFEngine Platform
Resources

Domain-specific Support a graph of
resource entities

(1) Supports Dependency
relationships (e.g.,
depends_on) (2) Support
Containment relationship

Resource entity
specific constraints
are provided as
attributes

CLI, APIs,
Web-based
GUI

DevOps

Plush Platform
Resources

XML Support a graph of
resource entities

(1) Support Dependency
relationships (2) Support
Containment
relationships to group all
the related resources

Entity specific
constraints via
attributes

CLI DevOps

SmartFrog Platform
Resources

Domain-specific Support a graph of
resource entities

(1) Supports Inheritence
and Containment
relationship

Entity specific
constraints via
attributes

CLI DevOps

—Adoption of open-standards. Furthermore, while it is still not prevalent, the adop-
tion of open standards (e.g., TOSCA, OVF, OCF) to represent reuse artifacts [OASIS
2013; Crosby et al. 2009; Foundation 2015a] would significantly assist DevOps to
build portable and interoperable configurations across different cloud providers. Ac-
cordingly, we believe any type of representation paradigm would benefit by adopting
open standards.

9.3. Resource Orchestration Capabilities

Table II maps the selected orchestration techniques onto the Resource Orchestration
Capabilities dimension described in Section 5. We summarize our findings as follows:

—Seven of 11 approaches support user-defined orchestration strategies. Four of 11
support rule-based orchestration. However, to the best of our knowledge, none of the
industry tools fully support autonomic resources orchestration. This manifests an
important need for continued research on effective, intuitive, and autonomic cloud
resources orchestration processes.

—We also observed, there are only a few tools, such as Juju GUI, OpenTOSCA, and
VisualOps, that provide visual abstractions to describe deployment workflows and
resource topologies [Ubuntu 2013; Binz et al. 2013; VisualOps 2015]. For example,
AWS Management Console, VisualOps, and CA AppLogic provide control features
such as restarting, scaling, and migration [VisualOps 2015]. Moreover, monitoring
tools such as Nagios and CloudFielder can allow DevOps to define SLA, detect anoma-
lies, and notify about SLA violations. Nonetheless, even then there are drawbacks
among these approaches, in that DevOps often have to switch between multiple tools
for different aspects of the management lifecycle, which proves time consuming and
cumbersome.

—We have noticed that cross-cutting concerns are reasonably addressed by research
initiatives, and more so among enterprise-ready orchestration techniques. This is
likely because their utilization in production environments require solutions that
address issues such as security, portability, and/or fault tolerance.

—It is apparent that various orchestration techniques employ different language
paradigms. However, based on our observations, there is not yet any predominant
language widely adopted by the majority of cloud orchestration providers.

Accordingly, we identify the following main issues as future directions for Orchestration
Capabilities:

—State-machine-based models for elasticity management. We envision state machines
as a novel abstraction to dynamically represent and reason about elasticity-aware

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:29

Table II. The Resource Orchestration Capabilities Dimension of the Selected Platforms

Resource Orchestration Capabilities

Primitive Actions
Orchestration

Strategies
Language
Paradigm Cross-cutting Concerns

A WS
OpsWorks

Create, Delete, Describe,
Update actions are provided
for each resource entity.
Clone, Start, Stop, Reboot
actions are offered for some
entities (e.g., Stack,
Instance). Global actions are
also provided. (e.g.,
SetLoadBasedAutoScaling)

Rule-based
processes

ECA rule based Security rules (authorization,
access protocols), SLA can be
defined via auto-scaling and
auto-healing rules

AWS Cloud-
Formation

Create, Delete, Update,
Describe, and Clone are the
main actions provided

User-defined
processes

Markup language Security rules (authorization,
access protocols), SLA can be
defined via auto-scaling rules

VMWare
vSphere

Provide a large amount of
actions for each entitiy type.
In general all these actions
can be categorize into create,
delete, update.

Rule-based
processes

Markup language Security rules
(authentication,
authorization), Portable VMs

Heroku Create, update, scale, delete
applications, viewLogs
(useful for monitoring)

Autonomic and
user-defined
processes

Script based Security rules (OAuth
authorization)

Puppet Create, update and delete
resources

Mainly
User-defined
processes, but
rule-based
processes for few
resources

Constraint
Programming

Security rules (encryption,
authentication,
authorization)

Juju Create and delete
(Environment, VMs, and
Charms, Services,
Relationships between
Charms), describe
Environment, detect Events,
update Charm

Rule-based
processes

ECA rule based Security rules
(authentication,
authorization)

Docker Create and delete (Image,
Container), share (Image),
start, stop, restart
(Container), update
(Container)

User-defined
processes

Script based Security rules (authorization,
access protocols)

OpenTOSCA Create, update and delete
(resources and relationships,
attributes)

User-defined
processes

Flow based Portable resources

CFEngine Create, update and delete
resources

Rule-based
processes

Constraint
Programming

Security rules (encryption,
authentication,
authorization)

Plush Create (environment and
application)

User-defined
processes

Markup based
and Flow based

Not addressed

SmartFrog Deploy, start and terminate User-defined
processes

Markup language Not addressed

resource orchestration techniques. Instead of directly manipulating low-level
interfaces and scripting orchestration rules over complex cloud services, state
machines may reason about resource requirement states. States may also charac-
terize application-specific resource requirements (e.g., CPU and storage usages),
constraints in terms of costs, and other SLAs. Transitions between states are
triggered when certain conditions are satisfied (e.g., a temporal event, workload
increases beyond a certain threshold). Transitions thereby automatically trigger
control actions to perform the desired (re-)configurations over resources to satisfy
the requirements and constraints of target states.

—Visual techniques for orchestrating cloud resources. DevOps are faced with orches-
trating large amounts of complex cloud resource configurations. This involves being

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:30 D. Weerasiri et al.

Table III. The Knowledge Reuse Dimension of the Selected Platforms

Knowledge Reuse
Reused Artifact Reuse Technique

AWS OpsWorks Concrete and Template resource
descriptions

Search index

AWS
CloudFormation

Concrete and Template resource
descriptions

Search index

VMWare vSphere Portable Resource snapshots Search index, Recommendations, Community-driven
approaches (e.g., blogs)

Heroku Concrete and Template resource
descriptions

Not specified

Puppet Concrete and Template resource
descriptions

Community-driven search indexes

Juju Concrete and Template resource
descriptions and Miscellaneous

Community-driven search indexes

Docker Concrete and Template resource
descriptions and Miscellaneous

Community-driven search indexes

OpenTOSCA Portable Concrete and Template
resource descriptions

Not specified

CFEngine Concrete and Template resource
descriptions

Search index

Plush Concrete and Template resource
descriptions

Not specified

SmartFrog Concrete and Template resource
descriptions

Not specified

able to proficiently understand and analyze cloud resource attributes and relation-
ships and make orchestration decisions on demand. We therefore believe that cloud
orchestration should be endowed with visual techniques to configure, deploy, moni-
tor, and control cloud resources. For example, a visual approach may allow DevOps
to perform orchestration tasks, such as drag, drop, and connect pre-built component
cloud resources, as well as deploy, monitor, and manage composite cloud resources.
Our previous work has introduced such a model-driven notation, based on a user-
friendly and familiar mindmap interface [Weerasiri et al. 2016]. Beneath the surface,
techniques are applied to manage, monitor, and control cloud resource orchestrations
by mapping to underlying frameworks, such as Docker.

9.4. Knowledge Reuse

Table III maps the selected orchestration techniques onto the Knowledge Reuse dimen-
sions as described in Section 8. We summarize our findings as follows:

—Research initiatives for cloud orchestration techniques generally underestimate the
reuse of orchestration knowledge. Comparatively, all of the enterprise-ready ap-
proaches we analyzed provide some form of knowledge. This observation asserts the
utmost practical necessity and importance of knowledge- reuse for DevOps to build
and orchestrate real-world cloud resources.

—Seven of 11 approaches employed search indexes—the most prominent knowledge
discovery technique. Among other search methods, keyword-based search is widely
used. Generally speaking, recommendation-based knowledge discovery techniques
are promising, albeit most orchestration providers do not adopt this approach
due to the complexity of implementation and maintenance of the accuracy of
recommendations.

—Enterprise-ready approaches predominantly support community-driven knowledge
archival and curation techniques. This is due to the vast amount and diversity of
cloud resources that needs to be supported. For instance, in the absence of the crowd,
providers would have to build and maintain a knowledge artifact repository on their
own, which would clearly be unfeasible in practice.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:31

Table IV. The Runtime Environment Dimension of the Selected Platforms

Runtime Environment

Virtualization Technique
Execution

Model Target Environment
AWS OpsWorks OS-level hypervisor Centralized Public Cloud
AWS OpsWorks OS-level hypervisor Centralized Public Cloud
VMWare
vSphere

OS-level hypervisor Centralized Private Cloud

Heroku Environment-level Container manager Centralized Public Cloud
Puppet Not relevant (only responsible for configuration

management of resources rather virtualizing them)
De-centralized Public or Private Cloud

Juju OS-level hypervisor Centralized Public or Private Cloud
Docker Environment-level Container manager Centralized Public or Private Cloud
OpenTOSCA OS-level hypervisor Centralized Public or Private Cloud
CFEngine Not relevant (only responsible for configuration

management of resources rather virtualizing them)
De-centralized Public or Private Cloud

Plush Not relevant (only responsible for configuration
management of resources rather virtualizing them)

Centralized Private Cloud

SmartFrog Not relevant (only responsible for configuration
management of resources rather virtualizing them)

Centralized Private Cloud

The discipline of knowledge reuse follows a prevailing direction, namely devising
a unified representation and reuse mechanism over heterogenous artifacts. This is
similar to what query languages offered for databases and, more recently, for pro-
cesses, also known as “hybrid processes” [Barukh and Benatallah 2014]. Likewise, it
is paramount to invest in a unified representation, configuration, and reuse strategy
over heterogenous cloud resource knowledge for simplified and productive cloud orches-
tration. Central to this, we prepose the concept of Orchestration Knowledge Graphs,
where common low-level orchestration logic can be abstracted, incrementally curated,
and thereby reused by DevOps. The type of knowledge captured can be organized into
dimensions, including Intended tasks, Resource providers, and Target environments.
By identifying entities (i.e., types and attributes, relationships for each dimension,
and their specialization), novel foundations will be proposed to accumulate, query, and
recommend currently dispersed orchestration knowledge in a structured framework.

9.5. Runtime Environment

Table IV maps the selected orchestration techniques onto the Runtime Environment
dimensions as described in Section 7. We summarize our findings as follows:

—Nine of 11 approaches adopt a centralized execution model. This design choice is likely
due to the simplicity of implementation. In comparison, decentralized orchestration
requires an implementation that carefully considers discovery, synchronization, co-
ordination, and security aspects of agents.

—Surprisingly, the value of federated cloud resources is largely underestimated. Most
cloud resource orchestration techniques focus either on private or public cloud en-
vironments as their target environment, whereas only 1 of the 11 approaches we
studied provide support for federated cloud resources management.

—The preference of a virtualization technique varies largely based on the types of re-
sources (i.e., Infrastructure, Platform, or Software). All of the infrastructure-focused
approaches that we analyzed adopt OS-level hypervisors as their virtualization
technique. Other approaches that support Platform and Software resource adopt
environment-level container managers.

Furthermore, we identify the following future directions in the evolution of Runtime
Environments:

—Runtime intelligence for autonomic and declarative orchestration. Autonomic orches-
tration will play a key role in addressing crucial gaps in cloud computing [Toosi et al.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

26:32 D. Weerasiri et al.

2014], as well as significantly improve overall productivity. Most existing work only
apply orchestration strategies for specific aspects in isolation of each other, such as
configuration [Xu et al. 2012], deployment [Antonescu et al. 2013; Beloglazov et al.
2012], and control [Schulte et al. 2015].

Accordingly, we believe that orchestration frameworks should be endowed with an
embedded level of intelligence within their runtime environment, as well as the abil-
ity to manage themselves in accordance with high-level policies that are specified
by users or administrators. For example, currently significant shortcomings exist
to seamlessly integrate orchestration languages and techniques with scalable data
processing platforms. In fact, such data platforms are essential for monitoring and
enforcing SLAs, which involve capturing and analyzing large amounts of real-time
data in big data analytics platforms (e.g., Hadoop and MapReduce). We believe that
the orchestration layer should contain the intelligence responsible for specifying re-
source orchestration, while the data processing layer should contain “the intelligence
responsible for data-flow and processing” [Lemos et al. 2016].

This could be achieved by more dynamic and knowledge-driven techniques that
provide high-level reasoning about environment properties and automated support
for policies provisioning to support a range of autonomic orchestration tasks, such as
self-configuration and self-optimization, as well as self-healing and self-protecting
tasks. DevOps will thus be able to describe resource requirements and constraints
using declarative and orchestration-aware abstractions such as State machines (re-
fer to Section 9.3). Orchestration runtimes may thus automatically translate such
abstractions into efficient and technique-aware execution scripts.

—Cloud service event summaries. The ability for cloud orchestration platforms to gain
the requisite intelligence about consumption patterns of deployed resources ensures
compliance with cost and SLA constraints and improves resource orchestration pro-
cesses in general (e.g., continuously fine-tuning defined policies in dynamic and evolv-
ing environments).

We therefore believe future work should develop concepts and techniques to model
and capture event patterns and abstract them into meaningful concepts (e.g., char-
acterizing states of an application or a service, state of a specific application com-
ponent, behavior of users from a specific geolocation) that are suitable for cloud
elastic resource orchestration purposes. Accordingly, we believe high-level language
constructs to abstract and aggregate temporal and resource-relevant events over
federated cloud services at various granularities will provide the key. These can be
used to describe event summaries of knowledge about variations in resource require-
ments in terms of both aggregated resource consumption metrics (e.g., the number of
API calls per second) and semantically meaningful event categories (e.g., moderate
application load). Event summaries can be defined at various abstraction levels as a
hierarchy to cater for context-based, fine- or coarse-grained analysis of resource re-
quirements and consumption trends. Lower-level event summaries may be concrete
(e.g., providing knowledge relevant to a fine-grained analysis of patterns for some
specific cloud service such as Amazon DynamoDB). Higher-level event summaries
may capture knowledge required for coarse-grained analysis of patterns relevant to
a collection of resources (e.g., cluster, whole application).

10. CONCLUSION

Cloud resources and orchestration techniques are an effective technology, endowed
with immense power to transform traditional infrastructure, platform, and software
resources into elastic, measurable, on-demand self-service-based virtual components.
In this extensive survey, we have studied a diverse mix of cloud resource orchestra-
tion techniques that include languages, services, standards, and tools. We presented a

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:33

novel taxonomy over a broad range of relevant dimensions, which we have applied to
characterize and analyse various orchestration techniques. We contribute a systematic
analysis of the most representative cloud resource orchestration techniques by evalu-
ating and classifying them against the presented taxonomy. Towards the end of this
contribution, we derive key open research issues based on the apparent technical gaps
that were identified during the analysis. Accordingly, we propose a range of future
directions as fruitful guidelines for the next generation of cloud orchestration.

ACKNOWLEDGMENTS

We thank Professor Frank Leymann (University of Stuttgart) and Dr. Brahim Medjahed (University of
Michigan-Dearborn) for their initial comments.

REFERENCES

Brian Adler. 2011. Building Scalable Applications In the Cloud: Reference Architecture & Best Prac-
tices, RightScale Inc. Retrieved from https://s3.amazonaws.com/aws001/guided_trek/RightScale_White_
Paper_Building_Scalable_Applications.pdf.

Jeannie Albrecht and et al. 2011. Distributed application configuration, management, and visualization with
plush. ACM Trans. Internet Technol. 11, 2 (2011), 6.

Khalid Alhamazani, Rajiv Ranjan, Karan Mitra, Fethi Rabhi, Prem Prakash Jayaraman, Samee Ullah Khan,
Adnene Guabtni, and Vasudha Bhatnagar. 2015. An overview of the commercial cloud monitoring tools:
Research dimensions, design issues, and state-of-the-art. Computing 97, 4 (2015), 357–377.

AWS Amazon. 2011. AWS Cloud Formation. Retrieved from http://aws.amazon.com/cloudformation/.
AWS Amazon. 2015a. Amazon Relational Database Service—API Docuumentation. Retrieved from http://

docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html.
AWS Amazon. 2015b. AWS OpsWorks Template Snippets. Retrieved June 24, 2015 from http://docs.aws.

amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html.
AWS Amazon. 2015c. EC2 Instances. Retrieved from http://aws.amazon.com/ec2/instance-types/.
Inc. Ansible. 2015. Ansible: Cloud Modules. Retrieved June 10, 2015 from http://docs.ansible.com/

list_of_cloud_modules.html.
Alexandru-Florian Antonescu, Alvaro Gomes, Peter Robinson, and Torsten Braun. 2013. SLA-driven predic-

tive orchestration for distributed cloud-based mobile services. In Proceedings of the 2013 IEEE Interna-
tional Conference on Communications Workshops (ICC’13). IEEE, 738–743.

CA AppLogic. 2015. CA AppLogic Cloud Platform. Retrieved May 28, 2015 from http://www.ca.com/
us/products/detail/ca-applogic.aspx.

Claudio A. Ardagna, Rasool Asal, Ernesto Damiani, and Quang Hieu Vu. 2015. From security to assurance
in the cloud: A survey. ACM Comput. Surv. 48, 1, (July 2015) Article 2, 50 pages.

D. Ardagna et al. 2012. MODAClouds: A model-driven approach for the design and execution of applications
on multiple Clouds. In Proceedings of the 2012 ICSE Workshop on MISE. 50–56.

Michael Armbrust et al. 2010. A view of cloud computing. Commun. ACM 53, 4 (April 2010), 50–58.
Amazon Auto Scaling. 2015. Auto Scaling for AWS cloud resources. Retrieved May 7, 2015 from http://aws.

amazon.com/autoscaling/.
AWS. 2013a. Available commands for EC2 in AWS CLI. Retrieved May 7, 2015 from http://docs.aws.

amazon.com/cli/latest/reference/ec2/index.html.
AWS. 2013b. AWS CLI. Retrieved from http://docs.aws.amazon.com/cli/latest/index.html.
AWS. 2015a. AWS SDK for Java. Retrieved November 10, 2015 from https://aws.amazon.com/sdk-for-java/.
AWS. 2015b. REST API for AWS S3. Retrieved November 10, 2015 from http://docs.aws.amazon.com/

AmazonS3/latest/API/APIRest.html.
Apache CloudStack. 2016. Apache cloudstack: Open source cloud computing. Retrieved from Retrieved Jan-

uary 10, 2016 from https://cloudstack.apache.org/.
AWS CloudTrail. 2014. Security at scale: Logging in AWS. (2014).
Amazon CloudWatch. 2013. Monitoring for AWS cloud resources. Retrieved May 7, 2015 from http://aws.

amazon.com/cloudwatch/.
Amazon Marketplace. 2012. Marketplace for AWS cloud resources. Retrieved May 7, 2015 from https://

aws.amazon.com/marketplace.
Amazon Web Services. 2015a. Amazon EC2. Retrieved from http://aws.amazon.com/ec2/.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

https://s3.amazonaws.com/aws001/guidedtrek/RightScaleWhitePaperBuildingScalableApplications.pdf
https://s3.amazonaws.com/aws001/guidedtrek/RightScaleWhitePaperBuildingScalableApplications.pdf
http://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-opsworks.html
http://aws.amazon.com/ec2/instance-types/
http://docs.ansible.com/listofcloudmodules.html
http://docs.ansible.com/listofcloudmodules.html
http://www.ca.com/us/products/detail/ca-applogic.aspx
http://www.ca.com/us/products/detail/ca-applogic.aspx
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
http://docs.aws.amazon.com/cli/latest/index.html
https://aws.amazon.com/sdk-for-java/
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
https://cloudstack.apache.org/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
http://aws.amazon.com/ec2/

26:34 D. Weerasiri et al.

Amazon Web Services. 2015b. Amazon EC2 Container Registry. Retrieved from https://aws.amazon.com/ecr/.
Amazon Web Services. 2015c. AWS Management Console. Retrieved from https://aws.amazon.com/console/.
Arshdeep Bahga and Vijay K. Madisetti. 2013. Rapid prototyping of multitier cloud-based services and

systems. Computer 46, 11 (2013), 76–83.
Wolfgang Barth. 2008. Nagios: System and Network Monitoring. No Starch Press.
Moshe Chai Barukh and Boualem Benatallah. 2013a. ServiceBase: A programming knowledge-base for

service oriented development. In Proceedings of the International Conference on Database Systems for
Advanced Applications (DASFAA’13). Springer, 123–138.

Moshe Chai Barukh and Boualem Benatallah. 2013b. A toolkit for simplified web-services programming. In
Web Information Systems Engineering–WISE 2013. Springer, 515–518.

Moshe Chai Barukh and Boualem Benatallah. 2014. ProcessBase: A hybrid process management plat-
form. In Proceedings of the International Conference on Service-Oriented Computing. Springer,
16–31.

Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. 2015. A survey on hypervisor-based monitoring: Ap-
proaches, applications, and evolutions. ACM Comput. Surv. 48, 1 (Aug. 2015), Article 10, 33 pages.
DOI:http://dx.doi.org/10.1145/2775111

Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28, 5 (2012),
755–768.

Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, Albert Zomaya, and others. 2011. A taxonomy
and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 2 (2011),
47–111.

Alexander Bergmayr, Alessandro Rossini, Nicolas Ferry, Geir Horn, Leire Orue-Echevarria, Arnor Solberg,
and Manuel Wimmer. 2015. The evolution of cloudml and its applications. In Proceedings of the 3rd
International Workshop on Model-Driven Engineering on and for the Cloud 18th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS 2015). 13–18. Retrieved from
http://ceur-ws.org/Vol-1563/paper3.pdf.

Jan A. Bergstra and Mark Burgess. 2008. A static theory of promises. CoRR abs/0810.3294 (2008). Retrieved
from http://arxiv.org/abs/0810.3294.

Jan A. Bergstra and Mark Burgess. 2014. Promises, impositions, and other directionals. arXiv Preprint
arXiv:1401.3381 (2014).

Tobias Binz et al. 2013. OpenTOSCA–a runtime for TOSCA-based cloud applications. In Service-Oriented
Computing. Springer, 692–695.

Bitnami. 2015. Bitnami makes it easy to run your favorite server apps anywhere. Retrieved May 28, 2015
from https://bitnami.com/learn_more.

Thomas J. Bittman. 2011. The Road Map From Virtualization to Cloud Computing. Retrieved March 2011
from https://www.gartner.com/doc/1572031.

Mark Burgess. 2007. Promise you a rose garden. Retrieved from http://markburgess.org/rosegarden.pdf.
Mark Burgess. 2009. Knowledge management and promises. In Scalability of Networks and Services.

Springer, 95–107.
Mark Burgess. 2011. Testable system administration. Commun. ACM 54, 3 (2011), 44–49.
Mark Burgess and Oslo College. 1995. Cfengine: A site configuration engine. In Proceedings of the USENIX

Computing Systems, Vol.
Mark Burgess and Alva L. Couch. 2006. Modeling next generation configuration management tools.

In Proceedings of the 20th Conference on Large Installation System Administration (LISA’06).
131–147.

Damon Cali. 2013. Introducing rumm: a Command Line Tool for the Rackspace Cloud. Retrieved June 9, 2015
from https://developer.rackspace.com/blog/introducing-rumm-a-command-line-tool-for-the-rackspace-
cloud/.

Canonical. 2015. Juju Charm Store. Retrieved from https://jujucharms.com/store.
CenturyLink. 2015. Panamax: Docker Management for Humans. Retrieved from http://panamax.io/.
Clovis Chapman, Wolfgang Emmerich, Fermı́n Galán Márquez, Stuart Clayman, and Alex Galis. 2012.

Software architecture definition for on-demand cloud provisioning. Cluster Comput. 15, 2 (2012), 79–
100.

Muhammad Aufeef Chauhan, Muhammad Ali Babar, and Boualem Benatallah. 2016. Architecting cloud-
enabled systems: A systematic survey of challenges and solutions. Software: Practice and Experience
(2016).

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

https://aws.amazon.com/ecr/
https://aws.amazon.com/console/
http://dx.doi.org/10.1145/2775111
http://ceur-ws.org/Vol-1563/paper3.pdf
http://arxiv.org/abs/0810.3294
https://bitnami.com/learn_more
https://www.gartner.com/doc/1572031
http://markburgess.org/rosegarden.pdf
https://developer.rackspace.com/blog/introducing-rumm-a-command-line-tool-for-the-rackspace-cloud/
https://developer.rackspace.com/blog/introducing-rumm-a-command-line-tool-for-the-rackspace-cloud/
https://jujucharms.com/store
http://panamax.io/

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:35

Chef. 2015. About Recipes. Retrieved from https://docs.chef.io/recipes.html.
Peter Pin-Shan Chen. 1976. The entity-relationship model—toward a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9–36. DOI:http://dx.doi.org/10.1145/320434.320440
Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-based self-adaptation. J.

Syst. Softw. 85, 12 (Dec. 2012), 2860–2875. DOI:http://dx.doi.org/10.1016/j.jss.2012.02.060
Trieu C. Chieu et al. 2010. Solution-based deployment of complex application services on a cloud. In IEEE

International Conference on SOLI, 2010. IEEE, 282–287.
Mark Chignell, James Cordy, Joanna Ng, and Yelena Yesha. 2010. The Smart Internet: Current Research and

Future Applications. Vol. 6400. Springer Science & Business Media.
Cisco-Systems-Inc. 2011. Cloud: what an enterprise must know. Retrieved from http://www.cisco.

com/en/US/solutions/collateral/ns340/ns517/ns224/ns836/ns976/white_paper_c11-617239.pdf.
Cloud-Foundry. 2016. The industry standard platform for cloud applications. Retrieved June 5, 2016 from

https://www.cloudfoundry.org/.
Inc. CloudBees. 2016. CloudBees: The Enterprise Jenkins Company. Retrieved January 10, 2016 from

https://www.cloudbees.com/.
Cloudlabs-Inc. 2015. Public Snaps. Retrieved from https://www.terminal.com/explore.
Alva L. Couch, John Hart, Elizabeth G. Idhaw, and Dominic Kallas. 2003. Seeking closure in an open world:

A behavioral agent approach to configuration management. In LISA, Vol. 3. 125–148.
S. Crosby et al. 2009. Open virtualization format specification. Standards and Technology, no. DSP0243 in

DMTF Specifications, Distributed Management Task Force (2009).
CS50. 2015. CS50 Appliance 19. Retrieved from https://manual.cs50.net/appliance/19/.
CSA. 2011. Security guidance for critical areas of focus in cloud computing. Retrieved November 2011 from

https://cloudsecurityalliance.org/research/securityguidance/.
Yong Cui, Vojislav B. Misic, Rajkumar Buyya, and Dejan Milojicic. 2013. Guest editors’ introduction: Special

issue on cloud computing. IEEE Trans. Parallel Distrib. Syst. 24, 6 (2013).
Michael Cusumano. 2010. Cloud computing and saas as new computing platforms. Commun. ACM 53, 4

(2010), 27–29.
Cohesive Networks. 2016. Cohesive Networks: Home. Retrieved from https://cohesive.net/.
CA Technologies. 2013. INSSLR2 - Redundant HTTP Input Gateway with SSL Support. Retrieved

July 10, 2015 from https://support.ca.com/cadocs/0/CA%20AppLogic%203%208-ENU/Bookshelf_Files/
HTML/AppLogicDoc/index.htm?toc.htm?CatGatewayINSSLR2.html.

Clemens Danninger. 2015. Using constraint solvers to find valid software configurations. Retrieved from
http://www.complang.tuwien.ac.at/raab/constraint_solvers.pdf.

James Darvell. 2016. Unikernels, Docker, and Why You Should Care. Retrieved November 25, 2016 from
http://www.linuxjournal.com/content/unikernels-docker-and-why-you-should-care/.

Thomas Delaet, Wouter Joosen, and Bart Vanbrabant. 2010. A survey of system configuration tools. In
Proceedings of the 24th International Conference on LISA. USENIX Association, 1–8. Retrieved from
http://dl.acm.org/citation.cfm?id=1924976.1924977.

Zuohua Ding, Yuan Zhou, and MengChu Zhou. 2014. Modeling self-adaptive software systems with learning
petri nets. In Companion Proceedings of the 36th International Conference on Software Engineering.
ACM, 464–467.

Nectar Directorate. 2016. Nectar: Australia’s fastest growing researcher network. Retrieved January 10,
2016 from https://nectar.org.au/.

DMTF. 2010. Architecture for managing clouds — A white paper from the open cloud standards incubator.
Retrieved June 2010 from http://dmtf.org/standards/cloud/.

Docker. 2015a. Docker Hub Registry. Retrieved from https://registry.hub.docker.com/.
Docker. 2015b. Overview of Docker Compose. Retrieved from https://docs.docker.com/compose/.
dotCloud. 2015. Online article. Retreived from https://www.dotcloud.com/dev-center/platform-

documentation.
Robert Dukaric and Matjaz B. Juric. 2013. Towards a unified taxonomy and architecture of cloud frameworks.

Future Gener. Comput. Syst. 29, 5 (2013), 1196–1210.
Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers. 2013. Fundamentals of Business

Process Management. Springer.
Erik Elmroth and Lars Larsson. 2009. Interfaces for placement, migration, and monitoring of virtual ma-

chines in federated clouds. In Proceedings of the 2009 8th International Conference on Grid and Cooper-
ative Computing (GCC’09). IEEE, 253–260.

Finally.io. 2014. finally.io. Retrieved February 8, 2015 from https://www.finally.io/.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

https://docs.chef.io/recipes.html
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1016/j.jss.2012.02.060
http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns836/ns976/whitepaperc11-617239.pdf
http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns836/ns976/whitepaperc11-617239.pdf
https://www.cloudfoundry.org/
https://www.cloudbees.com/
https://www.terminal.com/explore
https://manual.cs50.net/appliance/19/
https://cloudsecurityalliance.org/research/securityguidance/
https://cohesive.net/
https://support.ca.com/cadocs/0/CApercnt;20AppLogicpercnt;203percnt;208-ENU/BookshelfFiles/HTML/AppLogicDoc/index.htm?toc.htm?CatGatewayINSSLR2.html
https://support.ca.com/cadocs/0/CApercnt;20AppLogicpercnt;203percnt;208-ENU/BookshelfFiles/HTML/AppLogicDoc/index.htm?toc.htm?CatGatewayINSSLR2.html
http://www.complang.tuwien.ac.at/raab/constraint_solvers.pdf
http://www.linuxjournal.com/content/unikernels-docker-and-why-you-should-care/
http://dl.acm.org/citation.cfm?id$=$1924976.1924977
https://nectar.org.au/
http://dmtf.org/standards/cloud/
https://registry.hub.docker.com/
https://docs.docker.com/compose/
https://www.dotcloud.com/dev-center/platform-documentation
https://www.dotcloud.com/dev-center/platform-documentation
https://www.finally.io/

26:36 D. Weerasiri et al.

Inc. Engine Yard. 2016. Engine Yard. Retrieved January 10, 2016 from https://www.engineyard.com/.
Daren Fang, Xiaodong Liu, Imed Romdhani, and Claus Pahl. 2015. An approach to unified cloud service ac-

cess, manipulation and dynamic orchestration via semantic cloud service operation specification frame-
work. J. Cloud Comput. 4, 1 (2015), 1.

Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. 2012. RPPS: A novel resource prediction and provisioning
scheme in cloud data center. In Proceedings of the 2012 IEEE 9th International Conference on Services
Computing (SCC). IEEE, 609–616.

Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John P. Morrison, and Theo Lynn. 2014. A survey of
Cloud monitoring tools: Taxonomy, capabilities and objectives. J. Parallel Distrib. Comput. 74, 10 (2014),
2918–2933.

Joerg Fritsch. 2015. Security properties of Containers managed by Docker. Retrieved June 5, 2015 from
https://www.gartner.com/doc/2956826/security-properties-containers-managed-docker.

Gartner. 2013. Gartner Says Cloud Computing Will Become the Bulk of New IT Spend by 2016. Retrieved
November 24, 2015 from http://www.gartner.com/newsroom/id/2613015.

Inc. Gartner. 2014. Gartner Survey Reveals That SaaS Deployments Are Now Mission Critical. Retrieved
July 14, 2015 from http://www.gartner.com/newsroom/id/2923217.

Wolfgang Gerlach et al. 2014. Skyport: Container-based execution environment management for multi-cloud
scientific workflows. In Proceedings of the 5th International Workshop on Data-Intensive Computing in
the Clouds. IEEE Press, 25–32.

Patrick Goldsack et al. 2009. The smartfrog configuration management framework. ACM SIGOPS Operat.
Syst. Rev. 43, 1 (2009), 16–25.

Patrick Goldsack, Julio Guijarro, Steve Loughran, Alistair N. Coles, Andrew Farrell, Antonio Lain, Paul
Murray, and Peter Toft. 2009. The smartfrog configuration management framework. Operat. Syst. Rev.
43, 1 (2009), 16–25.

Google. 2015a. Container Registry: Fast, private Docker image storage on Google Cloud Platform. Retrieved
November 17, 2015 from https://cloud.google.com/container-registry/.

Google. 2015b. Google App Engine: Platform as a Service. Retrieved June 8, 2015 from https://cloud.
google.com/appengine/docs.

Christophe Gravier, Julien Subercaze, Amro Najjar, Frederique Laforest, Xavier Serpaggi, and Olivier
Boissier. 2015. Context awareness as a service for cloud resource optimization. IEEE Internet Com-
put. 19, 1 (2015), 28–34.

Nikolay Grozev and Rajkumar Buyya. 2014. Inter-cloud architectures and application brokering: Taxonomy
and survey. Softw.: Pract. Exper. 44, 3 (2014), 369–390.

Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. 2006. Enforcing performance isolation
across virtual machines in xen. In Proceedings of the ACM International Conference on Middleware
(Middleware’06). Springer-Verlag, New York, NY, 342–362.

Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay Rao, Kunwadee Sripanidkulchai, and
Mohit Tawarmalani. 2011. Cloudward bound: Planning for beneficial migration of enterprise applications
to the cloud. ACM SIGCOMM Comput. Commun. Rev. 41, 4 (2011), 243–254.

Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan, Prem Prakash Jayaraman, Joanna Kolodziej,
Pavan Balaji, Sherali Zeadally, Qutaibah Marwan Malluhi, Nikos Tziritas, Abhinav Vishnu, et al. 2016.
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems.
Computing 98, 7 (2016), 751–774.

Ahmad Fadzil M. Hani, Irving Vitra Paputungan, and Mohd Fadzil Hassan. 2015. Renegotiation in service
level agreement management for a cloud-based system. Comput. Surv. 47, 3 (2015), 51.

Mitchell Hashimoto. 2013. Vagrant: Up and Running. O’Reilly Media, Inc.
Christina N. Hoefer, Georgios Karagiannis, and et al. 2010. Taxonomy of cloud computing services. In

Proceedings of the 2010 IEEE Globecom Workshops. IEEE, 1345–1350.
Ben Hosmer. 2012. Getting started with salt stack–the other configuration management system built with

python. Linux J. 2012, 223 (2012), 3.
Wei Huang et al. 2015. The state of public infrastructure-as-a-service cloud security. ACM Comput. Surv. 47,

4 (June 2015), Article 68, 31 pages. DOI:http://dx.doi.org/10.1145/2767181
Hewlett Packard Enterprise Development. 2016. HPE Helion Eucalyptus: Open source hybrid

cloud software for AWS users.Retrieved January 10, 2016 from http://www8.hp.com/us/en/cloud/
helion-eucalyptus-overview.html.

Intel Corporation. 2015. Cloud computing taxonomy and ecosystem analysis. Retrieved September 2012
from http://www.intel.com/content/dam/doc/case-study/intel-it-cloudcomputing-taxonomy-ecosystem-
analysis-study.pdf.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

https://www.engineyard.com/
https://www.gartner.com/doc/2956826/security-properties-containers-managed-docker
http://www.gartner.com/newsroom/id/2613015
http://www.gartner.com/newsroom/id/2923217
https://cloud.google.com/container-registry/
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs
http://dx.doi.org/10.1145/2767181
http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.html
http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.html
http://www.intel.com/content/dam/doc/case-study/intel-it-cloudcomputing-taxonomy-ecosystem-analysis-study.pdf
http://www.intel.com/content/dam/doc/case-study/intel-it-cloudcomputing-taxonomy-ecosystem-analysis-study.pdf

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:37

Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. 2011. Adaptive resource provision-
ing for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst. 27, 6 (2011),
871–879.

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical prediction models for adaptive
resource provisioning in the cloud. Future Gener. Comput. Syst. 28, 1 (2012), 155–162.

Brendan Jennings and Rolf Stadler. 2014. Resource management in clouds: Survey and research challenges.
J. Netw. Syst. Manag. (2014), 1–53.

Yexi Jiang, Chang-shing Perng, Tao Li, and Rong Chang. 2011. Asap: A self-adaptive prediction system
for instant cloud resource demand provisioning. In Proceedings of the 2011 IEEE 11th International
Conference on Data Mining (ICDM’11). IEEE, 1104–1109.

Matjaz B. Juric and Denis Weerasiri. 2014. WS-BPEL 2.0 Beginner’s Guide. Packt Publishing Ltd.
Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, James Ahtes, Francesco D’Andria, Stefano Bocconi,

Panagiotis Gouvas, Giannis Ledakis, Franco Ravagli, Oleksandr Lobunets, and others. 2013. Cloud4soa:
A semantic-interoperability paas solution for multi-cloud platform management and portability.
In Proceedings of the European Conference on Service-Oriented and Cloud Computing. Springer,
64–78.

Luke Kanies. 2006. Puppet: Next-generation configuration management. USENIX Mag. 31, 1 (2006), 19–25.
B. Khasnabish, J. Chu, S. Ma, Y. Meng, N. So, P. Unbehagen, et al. 2011. IEFT cloud reference framework.

Retrieved from http://tools.ietf.org/html/draft-khasnabishcloud-reference-framework-02.
Alireza Khoshkbarforoushha, Meisong Wang, Rajiv Ranjan, Lizhe Wang, Leila Alem, Samee U. Khan, and

Boualem Benatallah. 2016. Dimensions for evaluating cloud resource orchestration frameworks. Com-
puter 49, 2 (2016), 24–33.

Hyunjoo Kim and Manish Parashar. 2011. CometCloud: An autonomic cloud engine. Cloud Computing:
Principles and Paradigms (2011), 275–297.

Johannes Kirschnick et al. 2012. Towards an architecture for deploying elastic services in the cloud. Softw.
Pract. Exper. 42, 4 (Apr. 2012), 395–408. DOI:http://dx.doi.org/10.1002/spe.1090

Alexander V. Konstantinou et al. 2009. An architecture for virtual solution composition and deployment in
infrastructure clouds. In Proceedings of the 3rd International Workshop on VTDC. ACM, 9–18.

Oliver Kopp et al. 2012. BPMN4TOSCA: A domain-specific language to model management plans for com-
posite applications. In Business Process Model and Notation. Springer, 38–52.

Peter Laird. 2008. Cloud Taxonomy. Retrieved September 2008 from https://sites.google.com/site/
saaslink/Laird_CloudMap_Sept2008.png.

C. Larman and V. R. Basili. 2003. Iterative and incremental developments. A brief history. Computer 36, 6
(June 2003), 47–56. DOI:http://dx.doi.org/10.1109/MC.2003.1204375

George Lawton. 2005. LAMP lights enterprise development efforts. Computer 38, 9 (2005), 0018–20.
Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. 2016. Web service composition: A survey of

techniques and tools. ACM Comput. Surv. 48, 3 (2016), 33.
Grace Lewis et al. 2013. Role of standards in cloud-computing interoperability. In Proceedings of the 2013

46th Hawaii International Conference on System Sciences (HICSS). IEEE, 1652–1661.
Christoph Fehling Frank Leymann, Ralph Retter, Walter Schupeck, and Peter Arbitter. 2014. Cloud com-

puting patterns. Springer, Wien. doi 10 (2014): 978–3.
LinuxContainers.org. 2015. What’s LXC? Retrieved June 8, 2015 from https://linuxcontainers.org/

lxc/introduction/.
Changbin Liu, Boon Thau Loo, and Yun Mao. 2011a. Declarative automated cloud resource orchestration.

In Proceedings of the SOCC’11. ACM, Article 26, 8 pages.
Changbin Liu, Yun Mao, Jacobus Van der Merwe, and Mary Fernandez. 2011b. Cloud resource orchestration:

A data-centric approach. In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR’11). 1–8.

Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn Leaf. 2011c. NIST cloud
computing reference architecture. NIST Spec. Publ. 500, 2011 (2011), 292.

Scott Lowe. 2011. Mastering VMware vSphere 5. John Wiley & Sons.
Hongbin Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu. 2013. Pattern-based deployment service for

next generation clouds. In Proceedings of the 2013 IEEE 9th World Congress on Services (SERVICES).
464–471.

Heiko Ludwig, Alexander Keller, Asit Dan, Richard King, and Richard Franck. 2003. A service level agree-
ment language for dynamic electronic services. Electron. Commerce Res. 3, 1–2 (2003), 43–59.

Linux Foundation. 2015a. Open Container Initiative. Retrieved September 24, 2015 from https://www.
opencontainers.org/. (2015).

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://tools.ietf.org/html/draft-khasnabishcloud-reference-framework-02
http://dx.doi.org/10.1002/spe.1090
https://sites.google.com/site/saaslink/LairdCloudMapSept2008.png
https://sites.google.com/site/saaslink/LairdCloudMapSept2008.png
http://dx.doi.org/10.1109/MC.2003.1204375
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://www.opencontainers.org/
https://www.opencontainers.org/

26:38 D. Weerasiri et al.

Linux Foundation. 2015b. Open Container Project. Retrieved from http://www.opencontainers.org/.
MadeiraCloud. 2015. CloudFielder: Policy as a Service, for your cloud infrastrucutre. Retrieved October 10,

2015 from http://cloudfielder.com/.
David J. Malan. 2015. CS50. Retrieved June 8, 2015 from https://cs50.harvard.edu/.
Ebrahim H. Mamdani. 1974. Application of fuzzy algorithms for control of simple dynamic plant. In Proceed-

ings of the Institution of Electrical Engineers, Vol. 121. IET, 1585–1588.
Zoltán Ádám Mann. 2015. Allocation of virtual machines in cloud data centers-a survey of problem models

and optimization algorithms. ACM Comput. Surv. 48, 1 (Aug. 2015), Article 11, 34 pages.
Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, and Athanasios V. Vasi-

lakos. 2014. Cloud computing: Survey on energy efficiency. ACM Comput. Surv. 47, 2 (Dec. 2014), Article
33, 36 pages. DOI:http://dx.doi.org/10.1145/2656204

Michael Menzel, Rajiv Ranjan, Lizhe Wang, Samee U. Khan, and Jinjun Chen. 2015. CloudGenius: A hybrid
decision support method for automating the migration of web application clusters to public clouds. IEEE
Trans. Comput. 64, 5 (2015), 1336–1348.

Thijs Metsch, Andy Edmonds, R. Nyrén, and A. Papaspyrou. 2010. Open cloud computing interface–core. In
Open Grid Forum, OCCI-WG, Specification Document.

Brenda M. Michelson. 2006. Event-driven architecture overview. Patricia Seybold Group 2 (2006). Re-
trieved from http://elementallinks.com/el-reports/EventDrivenArchitectureOverview_ElementalLinks_
Feb2011.pdf.

Neil Middleton, Richard Schneeman, and others. 2013. Heroku: Up and Running. O’Reilly Media, Inc.
M. Mishra, A. Das, P. Kulkarni, and A. Sahoo. 2012. Dynamic resource management using virtual machine

migrations. IEEE Commun. Mag. 50, 9 (Sept. 2012), 34–40.
Madhurranjan Mohaan and Ramesh Raithatha. 2014. Learning Ansible. Packt Publishing Ltd.
Francesco Moscato, Rocco Aversa, Beniamino Di Martino, Teodor-Florin Fortiş, and Victor Munteanu. 2011.

An analysis of mosaic ontology for cloud resources annotation. In Proceedings of the 2011 Federated
Conference on Computer Science and Information Systems (FedCSIS). IEEE, 973–980.

Nitrous. 2013. nitrous.io. Retrieved May 7, 2015 from https://nitrous.io.
OASIS 2013. Topology and Orchestration Specification for Cloud Applications (TOSCA), Version 1.0. OASIS.
Kiran Oliver. 2015. TNS Markers: The Comparison and Context of Unikernels and Containers. Re-

trieved November 25, 2016 from http://thenewstack.io/the-comparison-and-context-of-unikernels-and-
containers/.

OMG 2011. Business Process Model and Notation (BPMN), Version 2.0. OMG.
OpenCrowd. 2010. Cloud Taxonomy. Retrieved from http://cloudtaxonomy.opencrowd.com.
OpenStack.org. 2015a. Open source software for creating private and public clouds. Retrieved May 30, 2015

from https://www.openstack.org/.
OpenStack.org. 2015b. OpenStack Orchestration. Retrieved from https://wiki.openstack.org/wiki/Heat.
Oracle Corporation. 2011. Oracle reference architecture—cloud infrastructure. Retrieved November 2011

from http://www.oracle.com/technetwork/topics/entarch/oracle-ra-cloudinfrastructure-r3-0-1395892.pdf.
Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. 2010. A particle swarm

optimization-based heuristic for scheduling workflow applications in cloud computing environments.
In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking
and Applications (AINA’10). IEEE, 400–407.

Manish Parashar and Salim Hariri. 2005. Autonomic computing: An overview. In Unconventional Program-
ming Paradigms. Springer, 257–269.

Dana Petcu. 2014. Consuming resources and services from multiple clouds. J. Grid Comput. 12, 2 (2014),
321–345.

Google Cloud Platform. 2015. Cloud SDK. Retrieved from https://cloud.google.com/sdk/.
OpenNebula Project. 2016. OpenNebula—Flexible Enterprise Cloud Made Simple. Retrieved January 10,

2016 from http://opennebula.org/.
Puppet. 2015. Overview of Orchestration Topics. Retrieved October 10, 2015 from https://docs.puppet

labs.com/pe/latest/orchestration_overview.html.
Puppet Labs. 2015a. Publishing Modules on the Puppet Forge. Retrieved June 8, 2015 from https://docs.

puppetlabs.com/puppet/latest/reference/modules_publishing.html.
Puppet Labs. 2015b. Puppet Enterprise. Retrieved from https://puppetlabs.com/puppet/puppet-enterprise.
Puppet Labs. 2015c. Type Reference. Retrieved June 8, 2015 from https://docs.puppetlabs.com/references/

latest/type.html.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://www.opencontainers.org/
http://cloudfielder.com/
https://cs50.harvard.edu/
http://dx.doi.org/10.1145/2656204
http://elementallinks.com/el-reports/EventDrivenArchitectureOverviewElementalLinksFeb2011.pdf
http://elementallinks.com/el-reports/EventDrivenArchitectureOverviewElementalLinksFeb2011.pdf
https://nitrous.io
http://thenewstack.io/the-comparison-and-context-of-unikernels-and-containers/
http://thenewstack.io/the-comparison-and-context-of-unikernels-and-containers/
http://cloudtaxonomy.opencrowd.com
https://www.openstack.org/
https://wiki.openstack.org/wiki/Heat
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-cloudinfrastructure-r3-0-1395892.pdf
https://cloud.google.com/sdk/
http://opennebula.org/
https://docs.puppetlabs.com/pe/latest/orchestrationoverview.html
https://docs.puppetlabs.com/pe/latest/orchestrationoverview.html
https://docs.puppetlabs.com/puppet/latest/reference/modulespublishing.html
https://docs.puppetlabs.com/puppet/latest/reference/modulespublishing.html
https://puppetlabs.com/puppet/puppet-enterprise
https://docs.puppetlabs.com/references/latest/type.html
https://docs.puppetlabs.com/references/latest/type.html

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:39

Rackspace. 2015. Rackspace: API Documentation.Retrieved from http://docs.rackspace.com/.
Fahimeh Ramezani, Jie Lu, and Faheem Hussain. 2013. An online fuzzy decision support system for resource

management in cloud environments. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS
Annual Meeting (IFSA/NAFIPS). IEEE, 754–759.

Rajiv Ranjan, Boualem Benatallah, Schahram Dustdar, and Michael P. Papazoglou. 2015. Cloud resource
orchestration programming: Overview, issues, and directions. IEEE Internet Comput. 19, 5 (2015),
46–56.

Rajiv Ranjan, Rajkumar Buyya, and Surya Nepal. 2013. Editorial: Model-driven provisioning of application
services in hybrid computing environments. Future Gener. Comput. Syst. 29, 5 (July 2013), 1211–1215.
DOI:http://dx.doi.org/10.1016/j.future.2013.01.007

Real-Status-Ltd. 2015. A visibly different approach to cross-domain, hybrid IT management. Retrieved Octo-
ber 7, 2015 from http://www.hyperglance.com/wp-content/uploads/2015/08/HyperglanceDatasheet_Final
1.pdf.

Paul Resnick and Hal R. Varian. 1997. Recommender systems. Commun. ACM 40, 3 (1997), 56–58.
Stefan Ried, Holger Kisker, and Pascal Matzke. 2010. The evolution of cloud computing markets.

Forrester Res. Retrieved from http://fm.sap.com/data/upload/files/forrester%20-%20the%20evolution
%20of%20cloud%20computing%20markets.pdf.

RightScale. 2016. Self-Service. Retrieved from http://rightscale.com/products-and-services/products/self-ser
vice.

Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. 2009. A taxonomy and survey of cloud computing
systems. In 2009 Fifth International Joint Conference on INC, IMS and IDC (2009). 44–51.

Rami Rosen. 2013. Resource management: Linux kernel namespaces and cgroups. Haifux. May (2013).
Todd Rosner. 2013. Learning AWS OpsWorks. Packt Publishing Ltd.
Arpan Roy, Santonu Sarkar, Rajeshwari Ganesan, and Geetika Goel. 2015. Secure the cloud: From the

perspective of a service-oriented organization. ACM Comput. Surv. 47, 3 (2015), 41.
Navin Sabharwal. 2014. Automation Through Chef Opscode. APress.
H. Sato, A. Kanai, and S. Tanimoto. 2010. A cloud trust model in a security aware cloud. In Proceedings of the

2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT). 121–124.
Benjamin Satzger et al. 2013. Winds of change: From vendor lock-in to the meta cloud. IEEE Internet Comput.

17, 1 (2013), 69–73.
Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi, and Danny Hughes. 2012. Using constraint pro-

gramming to manage configurations in self-adaptive systems. Computer 10 (2012), 56–63.
Stefan Schulte, Christian Janiesch, Srikumar Venugopal, Ingo Weber, and Philipp Hoenisch. 2015. Elastic

business process management: State of the art and open challenges for BPM in the cloud. Future Gener.
Comput. Syst. 46 (2015), 36–50.

Shipyard. 2015. Shipyard Walkthrough. Retrieved from https://shipyard-project.com/walkthrough/.
Junaid Shuja, Kashif Bilal, Sajjad A. Madani, Mazliza Othman, Rajiv Ranjan, Pavan Balaji, and Samee U.

Khan. 2014. Survey of techniques and architectures for designing energy-efficient data centers. IEEE
Systems Journal 10, 2 (2016), 507–519.

Sukhpal Singh and Inderveer Chana. 2015. QoS-aware autonomic resource management in cloud computing:
A systematic review. ACM Comput. Surv. 48, 3 (Dec. 2015), Article 42, 46 pages.

Sukhpal Singh and Inderveer Chana. 2016. QoS-aware autonomic resource management in cloud computing:
A systematic review. ACM Comput. Surv. 48, 3 (2016), 42.

James Skene, Franco Raimondi, and Wolfgang Emmerich. 2010. Service-level agreements for electronic
services. IEEE Trans. Softw. Eng. 36, 2 (2010), 288–304.

M. Smit, B. Simmons, M. Shtern, and M. Litoiu. 2013. Supporting application development with structured
queries in the cloud. In Proceedings of the 35th International Conference on Software Engineering (ICSE).
1213–1216.

StackEngine. 2015. StackEngine Container Application Center. Retrieved from http://stackengine.com/
product/.

The Apache Software Foundation. 2014a. An API that abstracts the differents between clouds. Retrieved
June 10, 2015 from https://deltacloud.apache.org/.

The Apache Software Foundation. 2014b. Compute Guide. Retrieved November 10, 2015 from https://jclouds.
apache.org/start/compute/.

The Apache Software Foundation. 2014c. The Java Multi-Cloud Toolkit. Retrieved June 10, 2015 from https://
jclouds.apache.org/.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://docs.rackspace.com/
http://dx.doi.org/10.1016/j.future.2013.01.007
http://www.hyperglance.com/wp-content/uploads/2015/08/HyperglanceDatasheetFinal1.pdf
http://www.hyperglance.com/wp-content/uploads/2015/08/HyperglanceDatasheetFinal1.pdf
http://fm.sap.com/data/upload/files/forrester20-20the20evolution20of20cloud20computing20markets.pdf
http://fm.sap.com/data/upload/files/forrester20-20the20evolution20of20cloud20computing20markets.pdf
http://rightscale.com/products-and-services/products/self-service
http://rightscale.com/products-and-services/products/self-service
https://shipyard-project.com/walkthrough/
http://stackengine.com/product/
http://stackengine.com/product/
https://deltacloud.apache.org/
https://jclouds.apache.org/start/compute/
https://jclouds.apache.org/start/compute/
https://jclouds.apache.org/
https://jclouds.apache.org/

26:40 D. Weerasiri et al.

The Apache Software Foundation. 2015c. One Interface To Rule Them All. Retrieved June 10, 2015 from
https://libcloud.apache.org/.

R. W. Thrash. 2010. Building a Cloud Computing Specification: Fundamental Engineering for
Optimizing Cloud Computing Initiatives. Retrieved March 2010 from http://assets1.csc.com/
innovation/downloads/CSC_Papers_2010_Building_a_Cloud_Computing_Specification.pdf.

Doug Tidwell. 2009. The Simple Cloud API: Writing portable, interoperable applications for the cloud.
Retrieved from http://www.ibm.com/developerworks/library/os-simplecloud/.

Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. 2014. Interconnected cloud computing
environments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47, 1 (2014), 7.

James Turnbull. 2014. The Docker Book: Containerization Is the New Virtualization. James Turnbull.
TIBCO Software Inc. 2014. Event Processing with State Machines. Technical Report.
Ubuntu. 2013. Juju. Retrieved from http://www.ubuntu.com/cloud/tools/juju.
Ubuntu Juju. 2015a. Charm Store Policy. Retrieved June 8, 2015 from https://juju.ubuntu.com/docs/authors-

charm-policy.html.
Ubuntu Juju. 2015b. What is a relation? Retrieved June 8, 2015 from https://jujucharms.com/docs/stable/

authors-interfaces.
Peter Van Roy et al. 2009. Programming paradigms for dummies: What every programmer should know.

New Comput. Paradigms Comput. Music 104 (2009).
David Villegas et al. 2012. Cloud federation in a layered service model. J. Comput. Syst. Sci. 78, 5 (Sept.

2012), 1330–1344. DOI:http://dx.doi.org/10.1016/j.jcss.2011.12.017
VisualOps. 2015. VisualOps - WYSIWYG for your cloud. Retrieved from http://docs.visualops.io/.
Inc. VMware. 2015. Understanding virtual machine snapshots in VMware ESXi and ESX (1015180).

Retrieved November 17, 2015 from http://kb.vmware.com/selfservice/microsites/search.do?language=
en_US&cmd=displayKC&externalId=1015180.

Lizhe Wang, Rajiv Ranjan, Jinjun Chen, and Boualem Benatallah. 2012. Cloud Computing: Methodology,
Systems, and Applications. CRC Press.

Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, and Cao Jian. 2016. CloudMap: A visual nota-
tion for representing and managing cloud resources. In Proceedings of the International Conference on
Advanced Information Systems Engineering. Springer, 427–443.

Denis Weerasiri and Boualem Benatallah. 2015. Unified representation and reuse of federated cloud re-
sources configuration knowledge. In Proceedings of the 2015 IEEE 19th International Enterprise Dis-
tributed Object Computing Conference (EDOC). 142–150.

Denis Weerasiri, Boualem Benatallah, and Moshe Chai Barukh. 2015. Process-driven configuration of fed-
erated cloud resources. In Database Systems for Advanced Applications. Springer, 334–350.

Yi Wei and M. Brian Blake. 2013. Adaptive service workflow configuration and agent-based virtual re-
source management in the cloud*. In Proceedings of the 2013 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 279–284.

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. 2014. Standards-based devops automation
and integration using TOSCA. In Proceedings of the 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing. IEEE Computer Society, 59–68.

Johannes Wettinger et al. 2014. Unified invocation of scripts and services for provisioning, deployment, and
management of cloud applications based on TOSCA. In CLOSER 2014. SciTePress, 559–568.

Matthew S. Wilson. 2009. Constructing and managing appliances for cloud deployments from repositories of
reusable components. In Proceedings of the 2009 Conference on HotCloud’09. USENIX Association.

Erik Wittern, Alexander Lenk, Sebastian Bartenbach, and Tobias Braeuer. 2014. Feature-based configura-
tion of vendor-independent deployments on iaas. In Proceedings of the 2014 IEEE 18th International
Enterprise Distributed Object Computing Conference (EDOC’14). IEEE, 128–135.

Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. 2012. URL: A unified reinforcement learning approach for
autonomic cloud management. J. Parallel Distrib. Comput. 72, 2 (2012), 95–105.

Zhen Ye, Sajib Mistry, Athman Bouguettaya, and Hai Dong. 2016. Long-term QoS-aware cloud service
composition using multivariate time series analysis. IEEE Trans. Serv. Comput. 9, 3 (2016), 382–393.

Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. A systematic survey of self-protecting software systems.
ACM Trans. Auton. Adapt. Syst. 8, 4 (2014), 17.

Rostyslav Zabolotnyi, Philipp Leitner, and Schahram Dustdar. 2014. Profiling-based task scheduling for
factory-worker applications in infrastructure-as-a-service clouds. In Proceedings of the 2014 40th EU-
ROMICRO Conference on Software Engineering and Advanced Applications (SEAA’14). IEEE, 119–126.

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

https://libcloud.apache.org/
http://assets1.csc.com/innovation/downloads/CSCPapers2010BuildingaCloudComputingSpecification.pdf
http://assets1.csc.com/innovation/downloads/CSCPapers2010BuildingaCloudComputingSpecification.pdf
http://www.ibm.com/developerworks/library/os-simplecloud/
http://www.ubuntu.com/cloud/tools/juju
https://juju.ubuntu.com/docs/authors-charm-policy.html
https://juju.ubuntu.com/docs/authors-charm-policy.html
https://jujucharms.com/docs/stable/authors-interfaces
https://jujucharms.com/docs/stable/authors-interfaces
http://dx.doi.org/10.1016/j.jcss.2011.12.017
http://docs.visualops.io/
http://kb.vmware.com/selfservice/microsites/search.do?language=enUSamp;cmd=displayKCamp;externalId=1015180
http://kb.vmware.com/selfservice/microsites/search.do?language=enUSamp;cmd=displayKCamp;externalId=1015180

A Taxonomy and Survey of Cloud Resource Orchestration Techniques 26:41

Rostyslav Zabolotnyi, Philipp Leitner, Stefan Schulte, and Schahram Dustdar. 2015. SPEEDL–A
declarative event-based language to define the scaling behavior of cloud applications. In Pro-
ceedings of the 2015 IEEE World Congress on Services (SERVICES’15). 71–78. DOI:http://dx.doi.
org/10.1109/SERVICES.2015.19

Peter Zadrozny and Raghu Kodali. 2013. Big Data Analytics Using Splunk: Deriving Operational Intelligence
from Social Media, Machine Data, Existing Data Warehouses, and Other Real-Time Streaming Sources.

Liangzhao Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. 2004. QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30, 5 (May 2004), 311–327.
DOI:http://dx.doi.org/10.1109/TSE.2004.11

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li. 2015a. Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47, 4,
Article 63 (July 2015), 33 pages. DOI:http://dx.doi.org/10.1145/2788397

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li. 2015b. Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47, 4
(2015), 63.

Miranda Zhang, Rajiv Ranjan, Armin Haller, Dimitrios Georgakopoulos, Michael Menzel, and Surya Nepal.
2012b. An ontology-based system for Cloud infrastructure services’ discovery. In Proceedings of the
International Conference on Collaborative Computing: Networking, Applications and Worksharing (Col-
laborateCom’12). IEEE.

Miranda Zhang, Rajiv Ranjan, Anna Haller, Dimitrios Georgakopoulos, and Peter Strazdins. 2012a. Inves-
tigating decision support techniques for automating cloud service selection. In Proceedings of the 2012
IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom’12). IEEE,
759–764.

Miranda Zhang, Rajiv Ranjan, Surya Nepal, Michael Menzel, and Armin Haller. 2012c. A declarative rec-
ommender system for cloud infrastructure services selection. In Proceedings of the 9th International
Conference on Economics of Grids, Clouds, Systems, and Services (GECON’12). Springer-Verlag, Berlin,
102–113. DOI:http://dx.doi.org/10.1007/978-3-642-35194-5_8

Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, and Simon Gibbs. 2011. Towards an elastic
application model for augmenting the computing capabilities of mobile devices with cloud computing.
Mobile Netw. Appl. 16, 3 (2011), 270–284.

Received August 2016; revised December 2016; accepted January 2017

ACM Computing Surveys, Vol. 50, No. 2, Article 26, Publication date: May 2017.

http://dx.doi.org/10.1109/SERVICES.2015.19
http://dx.doi.org/10.1109/SERVICES.2015.19
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1007/978-3-642-35194-5_8

