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Abstract—In real simulation applications, simulations often involve large volumes of three-dimensinal (3D)moving objects.With the rapid

growth of the scale of simulation-problemdomains, it has become a key requirement to efficientlymanagemassive 3Dmoving objects.

Conventional indexing approaches for managing 3Dmoving objects during simulations generally suffer from excessive update costs.

Aiming to this problem, this paper first proposes an update-efficient indexing structure by fusing a looseOctree and one update-memo

structure, namelyML-Octree.ML-Octree significantly reduces the update costs of one simulation involvingmassive 3Dmoving objects.

Towards providing amore efficient indexing approach, this paper has explored the feasibility of parallelingML-Octree by employing

Graphic ProcessingUnit (GPU). A load-balancing scheme is used to further improve the update performance of theGPU-aidedML-Octree.

Finally, a distributed GPU-aidedML-Octree is proposed for large-scale simulations. The experimental results indicate that (1) ML-Octree

can acquire the update-performance gain of an order of magnitude similar to that of Octree, (2) the GPU-aidedML-Octree can accelerate

5.07� faster than a parallel ML-Octreewith 8 CPU threads on average, (3) the load-balance scheme can improveGPU-aidedML-Octree

by 2.3� on average, and (4) the distributedGPU-aidedML-Octree can efficiently support large-scale simulations.

Index Terms—Parallel processign, streaming data, big data

Ç

1 INTRODUCTION

SIMULATION is an essential technique in many areas of sci-
ence and engineering since real-world or physical

experiments are extremely costly and pure mathematical
approaches or analytic models do not adequately character-
ize the features of problems in areas of science and engi-
neering [1], [2], [3]. In real simulation applications [4], [5],
[6], simulations often involve large volumes of 3D moving
objects. For example, in large cosmological simulations [7],
[8], [9], the universe is represented by N moving particles,
and the gravitational N-body simulation method is used to
simulate the particles’ interactions to deeply understand
problems related to the universe, such as dark matter, the
halo abundance, etc. The 3D moving objects represented by
multi-agents [10] also appear in the simulations for study-
ing the collective behavior of large aggregations of animals

through the local rules of interaction among the 3D moving
objects. The representative examples are bird flocks [11] and
fish schools [12], [13]. With the rapid growth of both the
complexity and the scale of problem domains [14], [15],
[16], [17], it has become a key requirement to efficiently
manage massive moving objects for accurate and fast large-
scale simulations [18].

Indexing approaches based on tree structures are domi-
nant for efficiently managing 3Dmoving objects in such sim-
ulations. These indexing approaches make use of tree
structures, e.g., Octree [7], [19], [20] and KD-tree [21], to
recursively divide up the simulation domain to sub-volumes
and to index all moving objects in a time-step simulation.
Thus, a time-step simulationwith the tree-indexing structure
contains two phases: the query phase and update phase [22].
In the query phase, each moving object can employ the
indexing structure to accurately and quickly obtain the
information of nearby objects and to compute their new
states (e.g., velocity, location, etc). After all moving objects
finish this query phase, the simulation goes to the update
phase, where the tree-indexing structure is updated or
rebuilt to again index all moving objects for the next time-
step simulation.

Previous works on the uses of tree-indexing structures in
simulations mainly focus on optimizing their query per-
formances. These approaches exploit the parallelism of tree-
indexing structures for processing queries with the techni-
ques of high-performance computing (HPC) such as super-
computers [7], [8], General Purpose GPUs (GPGPUs) [21],
[23] and Field-Programmable Gate Array (FPGA) [9]. Nev-
ertheless, a new challenge arises with the volume of 3D
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moving objects becoming very large in current simulations.
For example, [7] presents a cosmological N-body simulation
of more than 69 billion particles on 256K (218) processors.
That means each processor is responsible evenly for index-
ing 218 particles at least. Thus, the maintenance cost associ-
ated with updating or rebuilding indexing structure in the
update stage currently has a major impact on the simulation
performance. Meanwhile, traditional indexing structures
for simulations such as Quadtree and Octree exhibit the
inferior performance for updating large-scale moving
objects with geometries [18]. This is because the sizes of
these minimum Quadtree (or Octree) enclosing cells depend
on the positions of the centroids of the objects and are inde-
pendent of the size of the objects. There exists a pressing
need for a new indexing approach for simulations that sup-
ports the efficient frequent updates of large-scale 3D mov-
ing objects with geometries.

To address the new research challenge, we first propose a
new indexing structure that aims to support the frequent
updates of 3D moving objects with geometries. The new
structure has been constructed upon a loose Octree [24] and
an update-memo structure [25]. Inspired by loose Quadtree
for indexing 2D moving objects in [18], we employed a loose
Octree (i.e., L-Octree) to index 3D moving objects to accom-
modate more frequent updates than that which occurs with
Octree as the loose Octree has less possible cells associated
with the 3D moving objects. Thus, the L-Octree can process
updates much more quickly than the Octree can. Further-
more, we propose a L-Octree with an update-memo struc-
ture called ML-Octree, like RUM-tree (a R-tree with an
update memo) [25], for efficiently handling frequent updates
when the changes between consecutive updates are large.
The update memo can help L-Octree to eliminate the need to
delete the old data item during an update operation. Thus,
the cost of an update operation for ML-Octree is approxi-
mately that of an insert operation.

Meanwhile, to gain more efficient update performances
of ML-Octree for simulations, we map ML-Octree to the
architecture of one Kepler GPU, namely G-ML-Octree.
G-ML-Octree is organized by multiple 1D arrays and one
hash table in GPU memory. Then, we parallelize the inser-
tion operations of a large number of moving objects on
G-ML-Octree using a dynamic load-balancing scheme on
GPUs [26] and the dynamic parallelism feature of Kepler
GPUs [27]. Finally, we employ a two-level indexing scheme
(i.e., one global spatial index and multiple local indexes) to
design a distributed G-ML-Octree on GPU clusters for
large-scale simulations.

A number of experiments have been carried out to evalu-
ate the update performance of ML-Octree for 3D moving
objects in the N-body simulation. The Octree-based indexing
approach was referenced for the purpose of comparison.
Furthermore, G-ML-Octree has been examined against the
Central Processing Unit (CPU)-based alternative. Finally, the
distributed G-ML-Octree has been evaluated on a GPU clus-
ter with four nodes. The experimental results indicate that
(1) theML-Octree indexing structure can significantly reduce
maintenance costs compared with the Octree indexing struc-
ture for the N-body simulation, (2) the GPU-aided ML-
Octree on a Kepler GPU [27] outperforms the ML-Octree in
terms of update costs, (3) the load-balancing scheme further

improves the update performance of G-ML-Octree, and (4)
the distributed G-ML-Octree is proved to be one way for
large-scale simulations of massive 3Dmoving objects.

The principle contributions of the paper are summarized
as follows:

1) We have proposed an update-efficient indexing
structure named ML-Octree that supports the simu-
lation of 3D moving objects with geometries. ML-
Octree employs the loose feature of loose Octree cells
and one update-memo structure to accommodate
frequent indexing updates during the simulation.

2) We have designed a parallel indexing structure of
ML-Octree on one GPU for fast index updating.

3) We have improved the update performance of G-ML-
Octree by combining one GPU load-balancing scheme
[26] and the Kepler GPU’s dynamic parallelism
feature.

4) We have presented a distributed G-ML-Octree on
GPU clusters for large-scale simulations.

The remainder of this paper is organized as follows:
Section 2 presents the related work of indexing moving
objects. Section 3 proposes the update-efficient indexing
structure (ML-Octree). Section 4 introduces the design of
ML-Octree on one GPU (i.e., G-ML-Octree) and the load-
balancing scheme for G-ML-Octree. Section 5 introduces a
distributed G-ML-Octree on a GPU cluster. Section 6
presents the experiments and results for the performance
evaluation of the proposed approaches. Section 7 concludes
this paper with a summary.

2 RELATED WORK

This section describes the most salient works along indexing
moving objects.

The indexing structures formoving objects can be roughly
classified into two categories, i.e., the cell-based and the tree-
based categories. The cell-based structures employ a grid
structure [28], [29], [30] to partition the indexing space into
equal-sized cells for indexingmoving objects. In [31], authors
introduce a novel grid index called Distributed Grid Index
(DGI). The server transmits DGI and the client examines the
received index to process spatial queries. The proposed
index structure and search algorithm support efficient spa-
tial queries in a wireless broadcast environment, shortening
query search times. However, the selection of cell size is non-
trivial. Too large of a size may cause too many moving
objects residing in one cell to decrease the query perfor-
mance of the indexing structure. On the contrary, too small
of one can lead to the high costs of space and time for build-
ing and rebuilding their indexing structures [32].

The tree-based approaches index moving objects to
retrieve predicative answers or to approximate query
answers using tree-based indexing structures. Traditionally,
tree-based approaches exploited the indexing structures of
R-tree and its variants. For instance, R*-tree in [33] and
TPR-tree in [34] are used to index positions of moving
objects to support queries. However, the R-tree and its var-
iants were designed mainly for static data. Thus, these
indexing structures may suffer from the high maintenance
costs associated with indexing moving objects since their
indexing structures are updated frequently with the
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continuous changes of moving objects. Bottom-up update
approaches have been made to alleviate the update-
performance issue of the R-tree family. For example, Lazy
Update R-tree (LUR-tree) [35] updates the structure of the
index only when an object moves out of the corresponding
minimum bounding rectangle (MBR). If the new position of
an object is in the MBR, this changes only the position of the
object in the leaf node. The Frequently Updated R-tree
(FUR-tree) [36] extended the LUR-tree through a scheme in
which a certain object can move to one of its siblings. How-
ever, the update performances of these bottom-up methods
degrade quickly when consecutive changes are large. To
deal with the drawback of bottom-up methods, Y. N. Silva
et al. proposed a R-tree with an update memo (RUM-tree)
to handle moving-object updates more efficiently. The
update memo eliminates the need to delete the old data
item from the index during an update operation. In [37],
authors proposed a novel query indexing structure, referred
to as the Query Region tree (QR-tree), which allows the
server to cooperate with moving objects efficiently by
leveraging the available computational resources of the
moving objects to improve the overall system performance.

For the large-scale simulations of moving objects, R-tree
indexing suffers from the heavy cost of rebalancing the
R-tree structure [22]. Therefore, non-balanced tree-based
structures such as Quadtree, Octree and KD-tree have been
widely used in indexing moving objects in the large-scale
simulations of moving objects. For example, for 2D simula-
tions, the loose Quadtree structure is applied for indexing
moving objects with extents in games [18], and Sim-tree is
proposed for indexing vehicles for large-scale microscopic
traffic simulations [22]. In the case of the simulations of 3D
moving objects, the Octree structure [7], [19], [20] and the
KD-tree [21] structure are used for indexing moving objects
(moving particles) for the N-body simulation. In [38], a
hybrid indexing structure of grid and loose Octree called as
GLOctree is proposed to provide a general purpose spatial
partitioning method for dynamic scenes. GLOctree holds a
great query performance with the grid structure and an
excellent update performance by loose Octree. Similar to
GLOctree, we utilize loose Octree for efficient updates as
well. Unlike GLOctree, we employ GPU to gain a good
update performance. As we can see, the current most index-
ing structures for 3D moving-object simulations still employ
the traditional Octree and KD-tree indexing structures.
These indexing structures seldom consider the geometric
feature of moving objects and exhibit inferior performance
in updating large-scale moving objects with geometries [18].

Different from existing indexing methods for moving
objects, this paper targets the emerging challenge of sup-
porting efficient frequent updates of large-scale 3D moving
objects with geometries during simulations. Our indexing
method gains a great update performance through inherit-
ing the merits of the loose Octree and the update-memo
structure, and through exploiting the parallelism of GPU
device and GPU cluster.

3 THE UPDATE-EFFICIENT INDEXING APPROACH

This section first formulates this problem. Then, the details of
the proposed indexing structure ML-Octree are described.

This section endswith a series of algorithms and one deletion
scheme uponML-Octree.

3.1 Problem Formulation

We assume that the simulation space is a 3D euclidean
space, and the geometric feature of the moving object is con-
sidered. Then, we formulate the problem.

Definition 1 (A 3D Moving Object). A 3D moving object
with geometries in a 3D euclidean space is described as: o =
ðid;MBB; r; SÞ. In Definition 1, id is the identifier of the mov-
ing object. MBB = (plþb, prþt) is a minimum bounding box
that represents the 3D moving object, where plþb = ðx1; y1; z1Þ
and prþt = ðx2; y2; z2Þ represent the position coordinates of the
bottom-left corner and the top-right corner of the MBB respec-
tively, in a 3D euclidean space. r is half the length of a side of
the minimum bounding hypercube of MBB. S is a set of states
that describes the moving object. The content of S varies with
different kinds of moving objects.

Definition 2 (Simulation Moving Objects). A set of N
moving objects in one simulation with S timesteps. O is defined
as a dynamic set over the simulation timesteps: O = {oji j 1 � i
� N ^ 1 � j � S }. oji represents the ith moving object in the
jth timestep of the simulation.

Definition 3 (The Indexing Structure for O). The indexing
structure for indexing the dynamic set of moving objects O is
defined as imbalanced tree-based indexing structure T ðOÞ.
Here, the objective is to make the indexing structure

T ðOÞ update efficient for large-scale simulations.

3.2 The Indexing Structure: ML-Octree

An update-efficient indexing structure based on a loose
Octree [24] and an update-memo structure [25] is proposed
for the simulation of 3D moving objects, namely ML-Octree.
ML-Octree is constructed by the two phases of (1) loose
Octree construction and (2) update-memo incorporation.

3.2.1 Loose Octree Construction

In our highly dynamical simulation environment, the
Octree structure suffers from the drawback that the struc-
ture is frequently updated, as the size of the its minimum-
enclosing cell depends on the positions of the moving
objects. Thus, these sizes of Octree cells require frequent
change with the moving objects. The loose Octree [24] can
overcome this issue by expanding the size of the space. It is
spanned by each Octree cell c of width w by a cell expansion
factor p(p> 0). Thus, the expanded cell is of width ð1þ pÞ�
w, and a moving object o ¼ ðid;MBB; r; SÞ is associated
with its minimum-enclosing expanded Octree cell. There-
fore, the procedure of inserting o into the loose Octree is one
of finding the smallest Octree cell c that contains the cen-
troid of o:MBB, and whose expanded cell also contains o.
To determine the appropriate cell of width w for o, we use
the following formula described in [18]

1

1þ p
� w

2� o � r <
2

p
: (1)

Let the root cell of the loose Octree have width 2g so that
all other cells havew = 2k (k� g). One function is used in [18]
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MðxÞ ¼ 2k; ð2k�1 < x � 2kÞ: (2)

The Formula (2) is used to compute the number of levels
in the loose Octree at which the smallest Octree cell c of the
moving object o could possibly lie. It is upper bounded by
UB. The value of UB is

UB ¼ log
Mð2=pÞ
2 � log

Mð1=ð1þpÞÞ
2 : (3)

Thus, given p, moving object o can find the correspond-
ing cell with Formula (1) for the cost of traveling at most UB
levels in the loose Octree. Fig. 1 provides an example for
constructing a loose Octree to index a set of moving objects
O (Ref O to Definition 1 in Section 3.1) including three mov-
ing objects o1, o2, and o3 given a specific simulation time-
step. As we can see in Fig. 1a, the insertion of these three
objects with the above-mentioned insertion procedure leads
to the cell decomposition of the loose Octree. Thus, the
indexing space is first partitioned into eight octants from
cell 0 to cell 7. Then, cell 3 further is decomposed into eight
octants including the cells from cell 30 to cell 37. As a result,
each moving object is assigned to one Octree cell. That
means o1 corresponds to cell 2, o2 is in cell 32, and o3 falls
under cell 33. The corresponding tree representation is
shown in Fig. 1b. In Fig. 1b, we assume o2 moves away from
cell 32 of width w. Unlike the Octree, o2 should have been
deleted and reinserted. The loose Octree can avoid this

reinsertion since the centroid of MBB of o2 is still enclosed
by the expanded Octree cell 32’ of width ð1þ pÞw.

3.2.2 Update-Memo Incorporation

To further improve the update performance of the loose
Octree, we incorporate an update memo that has been used
in R-tree for frequent updates [25] into the loose Octree
called ML-Octree. The primary feature behind ML-Octree is
that the old entry in the tree is allowed to co-exist with
newer entries before it is removed later, rather than deleting
it when updating moving objects. Like [25], garbage
cleaners are also used to remove old data entries in ML-
Octree lazily. Thus, the cost of an update operation is about
the cost of an insert operation.

In ML-Octree, each index entry in one leaf cell is assigned
a stamp by a global stamp counter when the entry is
inserted into the tree. The stamp places a temporal relation-
ship among leaf entries, i.e., an entry with a smaller stamp
is inserted before an entry with a larger stamp. Normally,
index entry e in the loose Octree is represented with
ðo; stampÞ, where o is the same as Definition 1 and stamp is
the assigned stamp number. To distinguish the latest entries
from the obsolete entries, the update-memo structure is
used as in [25]. Specially, the update-memo structure is a
hash table. It contains multiple hkey; valuei pairs. Each entry
is formed with hHðo:idÞ; V i, where Hðo:idÞ is the hash value
of o:id and where V = ðo:id; Slatest; NoldÞ represents one
entry in the update memo, in which o:id is the object identi-
fier, Slatest is the stamp of the latest entry of the object, and
Nold stands for the maximum number of obsolete entries.

Fig. 2 shows an example of a hybrid structure with the
loose Octree and the update memo for indexing moving
objects. We assume that moving object o2 initially falls
under cell 32 and then moves to cell 33. This motion causes
two changes in ML-Octree. First, one new leaf entry (o2, s2)
is inserted into cell 33, while the old leaf entry (o2, s1)
remains in cell 32, holding the condition s2 > s1. Then, one
key-value pair hHðo2:idÞ; V ¼ ðo2:id; s2; 1Þi is inserted into

Fig. 1. An example for constructing loose Octree.

Fig. 2. Illustrating the structure of ML-Octree.
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the update memo. Value V ¼ ðo2:id; s2; 1Þ means that for
moving object o2, the stamp of the latest entry is s2, and
there exists one obsolete entry, i.e., ðo2:id; s1Þ, in the leaf
nodes of ML-Octree. This processing avoids the deletion of
an old leaf entry ðo2:id; s1Þ, and the latest entry of o2 is
recorded in the update memo. The deletion of ðo2:id; s1Þ is
done later by the clean-on-touch way or garbage cleaners in
the batch manner through the update memo.

3.3 The Algorithms upon ML-Octree

This section describes insert/update and search algorithms
on ML-Octree. We present the deletion scheme on ML-
Octree as well.

3.3.1 Insert and Update

The update procedure is similar to the insert procedure
except for the operations on the update memo. Thus,
given a 3D moving object o (see Definition 1), and ML-
Octree T with cell expansion factor p, we present both
insert and update procedures using the pseudocode in
Algorithm 1. As we can see, initially, we query the update
memo with o:id (line 2) and record the current timestamp
(line 3). If there is no record in memo, there are two cases.
The first case is that the moving object has been an exist-
ing object in ML-Octree, so we first update the update
memo (lines 4-8) and then update the index entry of o by
an insert operation (lines 10-20). Otherwise, o is a new
moving object. For this case, we generate a new index
entry and then execute an insert operation (lines 10-20) as
well. During the insert procedure, we use the search algo-
rithm in [18] to locate the tree cell holding the index entry
(lines 21-27).

3.3.2 Search

In our setting, the basic query type is the range query used
to find out index entries within a given range. Let q be one
range query and RS be one result set. The search algorithm
with the range query is presented in Algorithm 2. First, we

search matched entries from the root node (line 2) and then
search its children (lines 3-15). For each child, we match its
expanded cell with the range query q. If there is overlap,
the procedure is recursively repeated (lines 9-11).

Algorithm 1. Insert and Update on ML-Octree

1 InsertAndUpdate_Procedure(T; o; p)
2 memo e retrieve index entry with the hash value of o:id
from the update memo

3 s = CurStampCount+1 /*the current stampcount

increases by one */

4 ifmemo e == NULL then
5 if o is an existing object then
6 insert an index entry ðo:id; s; 1Þ into the memo
7 end
8 end
9 else
10 memo e:Slatest ¼ s;memo e:Noldþþ
11 end
12 set one new index entry e ¼ ðo; sÞ
13 c = findMINCellðT; o; pÞ /* find the minimum enclosing

expanded Octree cell for o */

14 if c == null then
15 create one cell satisfied with Formula (1) through

recursively partitioning the indexing space of T
16 end
17 e:s  (stampcount = stampcount + 1) /* set the e’s

stamp through the global stamp counter */

18 if c is not full then insert e into the cell c
19 ;
20 else split the cell into eight subcells and insert e into one

of them
21 ;
22 return

/* find the minimum enclosing expanded Octree

cell */

23 findMINCell(T, o, p)
24 rc = NULL;

25 for i = log
Mð1=ðpþ1ÞÞ
2 ; i < log

Mð2=pÞ
2 ; i++ do

26 w  2ðiþ1Þ � M(o.r) /* computing the width of the

smallest possible cell c containing o, M(.)

see Formula (2) */

27 if o falls in the c with w in T then rc c;
break;

28 end
29 return rc

3.3.3 Delete

Since no moving objects are deleted during the simulation
procedure, no delete operations happen on the update memo.
Thus, we focus only on how to delete obsoleted index entries
in L-Octree and we employ the garbage-cleaning scheme in
RUM-tree [25]. Concretely, multiple cleaning tokens that are
logical objects for traveling tree nodes are used to clean the old
index entries in the traveled nodes. Note that, unlike RUM-
tree, where data are stored only in leaf nodes, data are distrib-
uted in all nodes in ML-Octree. Therefore, cleaning tokens are
responsible for all tree nodes rather than leaf nodes. Fig. 3 pro-
vides an example of the deletion scheme, where Token 1 and
Token 2 clean nine nodes and eight nodes, respectively.

Fig. 3. Illustrating the deletion scheme of ML-Octree.
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4 THE GPGPU-AIDED ML-OCTREE

We first map ML-Octree to GPU’s memory to form G-ML-
Octree, and then, we present a fast update scheme for G-
ML-Octree.

Algorithm 2. Search on ML-Octree

1 Search_Procedure(T:cell; q; RS) /* Input: T:cell is the

cell of a ML-Octree, q is a range query; Out-

put: RS is the query results */

2 GetResultsðT:cell; q; RSÞ /* return all matched index

entries in the T:root node */

3 CellSet = findCells(T:cell; q) /* find all subcells of T’s
cell overlaps q */

4 for each cell c 2 CellSet do
5 if c’s expended cell (i.e ð1þ pÞw ) overlaps q then
6 GetResults(c; q; RS)
7 CellSet = findCells(c:cell; q)
8 for each subcell subC 2 CellSet do
9 if subC:ð1þ pÞw overlaps q then

/* recursive search */

10 Search_Procedure(subC; q; RS)
11 end
12 end
13 end
14 end
15 return RS

/* retrieve all matched query results in one

given cell */

16 GetResults(Cell; q; RS)
17 EntrySet get all entries in the Cell
18 for each index entry e 2 EntrySet do
19 gain index entrymemo ewith the hash value of e:o:id

from the update memo
20 isLatest = (e.stamp ==memo e.Slatest)? TRUE:FALSE
21 if isLatest ^ e:o:MBB overlaps q then
22 RS = RS [ feg
23 end
24 end

4.1 Data Structures for G-ML-Octree

ML-Octree has two components: one loose Octree and one
update memo. Thus, we achieve the structure map through
constructing the loose Octree and the update memo on the
GPU, respectively.

In [23], the Octree structure on one GPU has been repre-
sented by multiple arrays. Different from the structure in
[23], in our setting, the indexed data are 3D geometries
rather than point data, and the expanded cell factor needs
to be stored. Therefore, we extend the data structure of
Octree in [23] for loose Octree. Fig. 4a shows that L-Octree
in the GPU memory consists of a cell array and a data array.
The cell array holds all Octree cells. Each element in the cell
array has eight sub-elements that represent eight children,
and the grey-filled sub-elements mean they are leaf nodes.
Meanwhile, each element in the data array is used to store
3D geometry data and the properties of each cell especially
including the expanded cell factor.

The update-memo structure in ML-Octree is represented
by one hash table in our design. Thus, we employ one paral-
lel hash table structure on the GPU [39] for ML-Octree.
Fig. 4b illustrates the hash table. As we can see, this hash

table is one two-level structure. The index entries first dis-
tributed smaller buckets by a first-level hash function. Then,
the index items in each bucket are stored in three sub-tables
by a parallel cuckoo hashing algorithm [39].

4.2 Updating G-ML-Octree

After constructing G-ML-Octree on the GPU, we need to
update the indexing structure efficiently during the update
stage of the simulation procedure. However, the construc-
tion procedure of Octree is a dynamic one, since there is no
information beforehand on how deep each branch will be,
based on the description in [26]. This results in the load-
unbalance problem of the GPU threads for constructing our
G-ML-Octree.

To address this issue, we propose one two-level balance
scheme. First, we use a task stealing scheme in [26]. Each
GPU thread group is assigned a set of update tasks by one
task queue and attempts to steal tasks from another GPU

Fig. 4. Illustration of the structure of ML-Octree on GPUs.
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thread group once it has completed assigned tasks. The task
assignment and stealing are executed by CPU.

However, the issue of load unbalance still exists when a
GPU thread group executes sequentially the tasks from its
task queue since different tasks have various workloads. One
solution is to resize the GPU thread group for different tasks
by host-calling kernels. Nevertheless, the Peripheral Compo-
nent Interconnect (PCI) traffics generated by multiple kernel
launches between the host and device reduce the update per-
formance. We further employ the dynamic parallelism fea-
ture provided by the NVIDIA’s GPU based on the Kepler
architecture to solve this problem.Dynamic parallelism ena-
bles a CUDA kernel to create and synchronize new nested
work, using the CUDA runtime API to launch other kernels
and optionally synchronize on kernel completion, without
CPU involvement. Thus, each thread group can adaptively
resize itself for incoming tasks with various workloads by
using dynamic parallelism. Fig. 5 provides an example of our
scheme of load balance. First, two thread groups, i.e., group 1
and group 2, are assigned two task queues and begin to exe-
cute individual tasks at time point t1. Then, group 1 and
group 2 change their sizes by using dynamic parallelism to
efficiently process different tasks as time escapes (e.g., at time
point tk). At time point tkþ1, group 1 steals one task through
one CPU thread from the tail of the queue for group 2 since it
has no tasks to execute.

5 A DISTRIBUTED G-ML-OCTREE ON A GPU
CLUSTER

Since the number of indexed moving objects is limited by
the size of GPU memory on one GPU device, one GPU
device may not index all 3D-moving objects in large-scale
simulations. Therefore, in this section, we propose a distrib-
uted G-ML-Octree on a GPU cluster. We assume a GPU
cluster contains n nodes and each node is equipped with
one GPU device. We index N 3D-moving objects across n
nodes. Concretely, the indexing is composed of (1) a global
spatial index, and (2) n local G-ML-Octree indexes.

Since large-scale reservoir simulations often also need to
partition space [40], we employ one domain decomposition
method for parallel reservoir simulation [41] to design the
global spatial index. Concretely, the minimum global space
containing all 3D moving objects first is partitioned into n
disjoint domainsD1,D2, ...,Dn (one for each node) and each
node t owns Dt only. The partition scheme depends on the

GPU memory size of each node. That means VD1
: VD2

:, . . . ,
: VDn = Snode1 : Snode2 :, . . . , : Snoden . VDi

is the volume of Di

and Snodei represents the size of GPU memory of nodei.
Meanwhile, each node nodei holds a maximum capacity of
holding moving objectsMAXnodei . In the procedure of simu-
lation, one node may receive some incoming moving objects
from other nodes. Thus, we assume

Pn
i¼1 MAXnodei ¼ a �

N , where a is a capacity expansion factor ( � 1) to guarantee
that each node has enough GPU storage space to store
incoming moving objects and intermediate results. That
means we need deploy enough nodes in a cluster for large-
scale simulations. After then, each moving object o is dis-
tributed into one domainD0 using the following formula:

D0 ¼ argmax
Di

½overlapðDi; o Þ� ^ ðCDi
�MAX

nodei
Þ: (4)

Where, overlapðDi; oÞ is the overlap of spatial region
between Di and o, and CDi

is the current number of moving
objects in Di. To avoid network transfer overhead, the
global spatial index is replicated across nodes in the cluster.
Noted that, the global spatial index only records the map-
ping relation between each cluster node and its correspond-
ing space domain. Therefore, it only consumes a very small
space overhead. Thus, we simply store the global spatial
index in the host memory of each node. After distributing
all moving objects, we generate n local indexes on n nodes
by constructing n G-ML-Octrees. In the distributed case, the
update procedure is still similar to the insert procedure, we
also present both insert and update procedures using the
pseudocode in Algorithm 3 like Algorithm 1. As we can see,
we first need to mark the incoming moving object o as obso-
lete one on ns if o has not belonged to ns by global index
determination (lines 3-5), and then insert o into the local
index of the remote node n0 (line 6). Otherwise, the moving
object o still resides on ns. Thus, we only insert o into the
local index of ns again. A search algorithm with the range
query over a distributed G-ML-Octree is presented in Algo-
rithm 4, for a range query q on ns, we first find out all nodes
overlap q by using global index on ns, then forward q to
these nodes to execute search procedure in parallel, finally
all results are returned to ns and merged into a final result.

Algorithm 3. Insert and Update on Distributed
G-ML-Octree

1 InsertAndUpdate_Procedure(o, ns) /* o is a moving

object, ns is one local node who initializes

the operation in the cluster */

2 n0  find the node holds o through ns’s global spatial index
3 if n0 is not ns then
4 Mark o as an invalid object in the local index of ns

5 end
6 Insert o into the local index of n0

6 PERFORMANCE EVALUATION

We have evaluated the performances of the proposed index-
ing methods of ML-Octree and G-ML-Octree for one 3D
N-body simulation on one computer equipped with a Kep-
ler GPU (Titan Black), and the configurations are presented
in Table 1. Meanwhile, we also evaluated the update

Fig. 5. Illustrating the load-balancing scheme of G-ML-Octree.

DENG ET AL.: G-ML-OCTREE: AN UPDATE-EFFICIENT INDEX STRUCTURE FOR SIMULATING 3D MOVING OBJECTS ACROSS GPUS 1081



performance of ML-Octree on one high-performance rack
server (see in Table 2). Furthermore, the update perfor-
mance of distributed G-ML-Octree has been measured on
a GPU cluster with four nodes. These four nodes are con-
nected via one 100Mbps’s Ethernet. Table 3 gives major
configurations of the four nodes.

Algorithm 4. Search on Distributed G-ML-Octree

1 Search_Global_Procedure(q; ns; RS) /* Input: q is a

range query, ns is one node who initializes

the query q in the cluster; Output: RS is the

query results */

2 NodeSet = findNodes(ns’s global index, q) /* return all

nodes whose region overlap q */

3 for each node n 2 NodeSet in parallel do
/* search local indexes */

4 Search_Local_Procedure(q; n0s local index, RS0)
Return RS0 to ns

5 end
6 ns merges all RS0 to from RS
7 return RS

6.1 Experimental Setup

To evaluate the proposed indexing methods’ potential in
serving large-scale simulations for 3D moving objects with
extents, we take the N-body simulation as a case study.
Concretely, we modify an open-source N-body simulator
REBOUND [42] to support 3D moving objects and our
indexing structures. In our following experiments, one 3D
moving object is a spheroid. The modified simulator can
generate numerous sphere objects in the unit-volume space
[0,1] � [0,1] � [0,1]. Each 3D moving object is represented
by a set of properties, including position, velocity, accelera-
tion, mass, and radius.

One time of simulation consists of multiple timesteps.
Each timestep has two stages by using indexing structures:
1) the query stage, where each object employs our indexing
structure to search neighboring objects to calculate new val-
ues for interaction force and acceleration, and 2) the update
stage, where all object move to new positions and update
indexing structures according to individual new states and
collision rules in [42].

6.2 ML-Octree Evaluation

Here, we evaluate the update performance and space cost of
ML-Octree for the N-body simulation. For comparison, we
observe the update performance and space cost of Octree,
L-Octree, and ML-Octree. Since REBOUND has employed
an Octree to index moving objects, we implemented a
L-Octree in [43] and replace the Octree in REBOUND. Fur-
thermore, to realize ML-Octree, we obtained the source
code about RUM-tree [25] from authors, then incorporate
the update-memo structure of RUM-tree into L-Octree to
form ML-Octree. All these three indexing structures have
been constructed by using two double-precision data struc-
tures (i.e., tree and hashing table) on one computer
equipped with CPU i7-4790 (3.6 GHz) and 32 GB memory
(see in Table 1). For L-Octree and ML-Octree, the cell expan-
sion factor p is set to 0.999, which is an optimal value
according to the experimental results in [18]. The update
performance is measured by the operation number incurred
by indexing updates and the runtime speedup.

First, we fix the number of simulation timesteps as 20
and observe the the operation number incurred by indexing
updates and the runtime speedup for various numbers of
moving objects ranging from 10 K to 100 K. These opera-
tions include query, delete, and insert operations. The
experimental results are presented in Fig. 6a show that
L-Octree outperforms Octree about an order of magnitude
in terms of operation number NOP . Moreover, ML-Octree

TABLE 1
Configurations of the Computer

Specifications of CPU platforms Computer

OS Linux Ubuntu 14.04
CPU i7-4790 (3.6 GHz, 4 cores)
Memory 32 GB DDR3

Specifications of GPU platforms GTX Titan Black

Architecture Kepler GK110
Memory 6 GB DDR5
Bandwidth Bi-directional bandwidth of 16 GB/s
CUDA SDK 6.0

TABLE 2
Configurations of the Rack Server

Specifications of CPU
platforms

Server

OS Linux Ubuntu 14.04

CPU
Intel Xeon E5-2609 v4
(1.7 GHz, 8 cores)

Memory 32 GB DDR4

TABLE 3
Major Hardware and Software Features of Four Nodes in the Cluster

Features node #1 node #2 node #3 node #4

Hardware

CPU i7-4790@3.6 GHz i7-5820K@3.3 GHz i7-5820K@3.3 GHz i7-4790K@4.0 GHz
Host memory 32 GB 32 GB 32 GB 16 GB
GPU GTX Titan Black GTX Titan X GTX Titan Black GTX 960
GPU memory 6 GB 12 GB 6 GB 4 GB

Software

OS Linux Ubuntu 14.04 Linux Ubuntu 15.04 Linux Ubuntu 16.10 Linux Ubuntu 15.04
CUDA 6.0 8.0 8.0 8.0
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only uses half of the operations of L-Octree. Meanwhile, the
results of runtime speedup in Fig. 6b show that L-Octree
can gain a speedup of 6.98� compared with Octree, while
ML-Octree obtains a speedup of 12.4� faster than Octree on
average.

The reason for the great performance gains of L-Octree
and ML-Octree is that L-Octree and ML-Octree can avoid
numerous unnecessary updates through their expended
cells. On the other hand, ML-Octree can further enhance the
update performance using the update-memo structure to
delete old index data lazily compared with L-Octree. In
addition, we also perform another experiment where the

number of moving objects is fixed to 100K and the number
of timesteps ranges from 5 to 30. The experimental results
shown in Fig. 7 are similar to those of the first one.

Moreover, we observe the space costs of ML-Octree,
Octree, and L-Octree for various numbers of moving objects
for one N-body simulation with 20 timesteps. The space
costs of the three indexing structures have been measured
in both single-precision and double-precision cases. Fig. 8a
shows that ML-Octree and Octree have maximum and mini-
mum space costs, respectively, among the three indexing
structure. This reason is that L-Octree needs to maintain an
additional loose factor than Octree, and ML-Octree needs to

Fig. 6. Evaluating the update performance of ML-Octree with 20 timesteps.

Fig. 7. Evaluating the update performance of ML-Octree with 100K moving objects.

Fig. 8. The comparison of space costs in the double-precision case.
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incorporate an update memo into L-Octree. Moreover, we
can see that the size of ML-Octree increases with the
increase of the timestep, while the sizes of Octree and
L-Octree are unchanged. That is because that the update
memo of ML-Octree is empty when the simulation starts
and then its size gradually expands as the simulation time-
step increases (see in Section 3.2.2 Update-memo incorpo-
ration). Meanwhile, ML-Octree adapts the lazy update
scheme so that the number of obsolete index entries
increases as the simulation timestep increases as well. In
contrast to ML-Octree, Octree and L-Octree have no such an
update scheme so that their sizes are unchanged in the sim-
ulation. Figs. 8b and 8c indicate the similar results to the
one in Fig. 8a. Noted that, when the size of ML-Octree
becomes very large, the garbage cleaning scheme (see in
Section 3.3.3 Delete) can be triggered to alleviate the issue of
space cost.

Furthermore, from Fig. 9 we also observe that the space
cost of ML-Octree in the single-precision case can on aver-
age decrease by 46 percent compared with the space cost in
the double-precision case. Meanwhile, we compare the
speedup of ML-Octree relative to Octree for update time, in
both single-precision and double-precision cases. According
to the experimental results in Fig. 10, ML-Octree has almost
the same update performance in the single-precision and
double-precision cases.

6.3 G-ML-Octree Evaluation

The goal of this experiment is to investigate the update per-
formance of G-ML-Octree for N-body simulation and the

effectiveness of our load-balancing scheme. Thus, we first
measure the update performance of G-ML-Octree without
load-balance scheme with 10 timesteps. For comparison, we
used one GPU-aided KD-tree [21] structure for the N-body
simulation. For convenience, we denoted the GPU-aided
KD-tree as G-KDtree. Meanwhile, we also compared the
update performances of ML-Octree on two different
machines denoted as M1 and M2. M1 (see in Table 1) is one
computer equipped with one CPU i7-4790 (3.6 GHz, 4 cores)
and 32 GB memory. M2 (see in Table 2) is a rack server with
one CPU Intel Xeon E5-2609 v4 (1.7 GHz, 8 cores) and 32 GB
memory. For the sake of fairness, we implemented a parallel
version of ML-Octree on both M1 and M2 by using the
similar parallel method as distributed G-ML-Octree and
OpenMP. Since M1 has a 4-core CPU and M2 owns a 8-core
CPU, we only measured the update performance of parallel
ML-Octree with 8 CPU threads. For convenience, we
denoted theML-Octree with 1 thread and 8 threads onM1 as
ML-Octree-1 and ML-Octree-1þ, respectively. Similarly, the
ML-Octrees with 1 thread and 8 threads on M2 are repre-
sented as ML-Octree-2 and ML-Octree-2þ, individually. In
addition, we considered the data transfer time between CPU
andGPUwhen evaluating G-ML-Octree andG-KDtree.

Fig. 11 shows that the update time costs of ML-Octree-1
and ML-Octree-2 range from 39.8s to 233s and 59s to 335s,
respectively, as the number of moving objects changes from
100K to 500K. Comparing to ML-Octree-1 and ML-Octree-2,
ML-Octree-1þ and ML-Octree-2þ can on average gain the
speedups of 3.24� and 6.78� due to the parallel acceleration
of 4 CPU cores on M1 and 8 CPU cores on M2. Furthermore,

Fig. 10. The comparison of update performance of ML-Octree in the sin-
gle-precision and double-precision cases.

Fig. 11. Evaluating the update performance of G-ML-Octree with 10
timesteps.

Fig. 9. The comparison of space costs in the single-precision case.
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we can see that G-KDtree can averagely accelerate 2.17�
and 1.53�, respectively, relative to ML-Octree-1þ and ML-
Octree-2þ. The performance gain of G-KDtree is attribute to
its parallel construction algorithm in [21]. Finally, Fig. 11
reflects that G-ML-Octree averagely has a speedup of 3.24�
compared with G-KDtree. The reason for the great perfor-
mance of G-ML-Octree is that the combination of the update
scheme of ML-Octree, multiple arrays and the parallel hash
table can cater to the feature of the parallel access of massive
GPU threads to progressively update its indexing structure
as the simulation timestep increases. Comparing to G-ML-
Octree, G-KDtree has to continuously reconstruct its struc-
ture since the space partition may not be effective once one
simulation timestep ends.

Meanwhile, we also observed the transfer time of G-ML-
Octree shown in Fig. 12 only takes 0.53 percent on average,
when the number of moving objects changes from 100K to
500k. The reason for the results lies in only two times of
transfers happen during the whole simulation, i.e., input
indexing structure from host to device before the simulation
starts, and return results from device to host after the simu-
lation ends. Meanwhile, the transfer bandwidth of the GPU
device is 16 GB/s so that data can be quickly transferred
between host and device.

Furthermore, according to the original experiments in
[21], the indexing construction time of G-KDtree for 500K
moving objects is in the range of 200-500 ms. However, in
our experiment, according to Fig. 13, the time cost is 35.5s

(including 0.7s data transfer time) for 500K moving objects
for 10 simulation timesteps. That means the construction
time of G-KDtree is about 2.8s on average in one simulation
timestep. The main reason for the time difference is that we
focus on 3D moving objects with geometries. Thus, our
insertion procedure takes more time costs in terms of split-
ting indexing space when constructing G-KDtree compared
with the original experiments in [21]. We evaluated the con-
struction time of G-KDtree for 500K moving objects without
considering geometries. The construction time is about 510
ms in one simulation timestep.

Finally, we evaluate the effectiveness of our load-
balancing scheme with 30 timesteps. For convenience, we
label the G-ML-Octree with the load-balancing scheme as
G-ML-Octreeþ. As we can see in Fig. 14, compared with
G-ML-Octree, G-ML-Octreeþ gains encouraging speedups
that are 2.3� on average thanG-ML-Octree. The great acceler-
ation performance results from the joint contributions of
the task stealing scheme and dynamic parallelism of the GPU.

6.4 Distributed G-ML-Octree Evaluation

We conduct experiments to verify the update performance
of the distributed G-ML-Octree for large-scale N-body sim-
ulations. For comparison, We first build different-size
G-ML-Octrees on node #2 in the GPU cluster (see in Table 3)
by varying the number of moving objects NOB from 5 M to
25 M. Then we execute N-body simulations with 10 time-
steps on node #2. After that, we set the value of a as one to
construct distributed G-ML-Octrees on the GPU cluster and
run the same experiments on the distributed G-ML-Octrees.
We compared the update time costs of G-ML-Octrees on
node #2 and distributed G-ML-Octrees on the GPU cluster.
For fairness, we considered the maximum network transfer
time for migrating moving objects between nodes and the
time overhead for synchronization of nodes in a timestep
simulation. The implementation of distributed G-ML-Octree
employed a MPI message-passing library MPICH 3.2 for
communications between nodes.

Fig. 15a shows that the distributed G-ML-Octree can
averagely gain a speedup of 2.11� compared with the
G-ML-Octree. The major reason for such results is that we
dispatch the moving objects to four nodes in the GPU clus-
ter according to their capacities of GPU memory. In our set-
ting, the node #2 holds 12 GB GPU memory while the other
three nodes own 16 GB GPU memory in all. Thus, node #2
is response for about 42.8 percent workload for simulations

Fig. 12. Evaluating the transfer time of G-ML-Octree with 10 timesteps.

Fig. 13. Evaluating the transfer time of G-KDtree with 10 timesteps.

Fig. 14. Evaluating the scheme of load balance with 30 timesteps.
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while the other three nodes hold 57.2 percent workload.
Therefore, the GPU cluster can achieve about 2.33� faster
than node #2 in theory. However, the network transfer over-
heads in the GPU cluster, to a great extent, hinder this theo-
retical gain. Fig. 15b reflects the network time cost accounts
for average 6.6 percent in the total update cost of distributed
G-ML-Octree. The results indicate the network time cost
only occupies for a relatively small percentage in the whole
update time overhead of distributed G-ML-Octree.

Moreover, we also evaluate the update performance of
the distributed G-ML-Octree in a GPU cluster with 10
homogeneous nodes. Each node is equipped with a CPU
(i7-4790, 3.6 GHz) and a GPU (GTX 960, 4 GB). We first
build a G-ML-Octree for 3M moving objects on one node,
and then execute N-body simulations with 20 timesteps.
Furthermore, we again set the value of a as one to construct
the corresponding distributed G-ML-Octree and run the
same simulation on the various numbers of nodes in the
GPU cluster. We compared the update time costs of G-ML-
Octree on one node and distributed G-ML-Octrees on the
various numbers of nodes in the GPU cluster.

The experimental results in Fig. 16 show that the distrib-
uted G-ML-Octree can gain a speedup 1.88�, 3.68�, 5.28�,
6.72�, and 7.89�, respectively for the number of nodes N =
2, 4, 6, 8 and 10 compared with the single node. The results
reflect the scalability of distributed G-ML-Octree.

7 CONCLUSIONS

In this paper, we propose an update-efficient indexing
structure for managing massive 3D moving objects in large-
scale simulations. The proposed indexing method ML-
Octree combines a loose Octree and an update-memo struc-
ture to achieve a great update performance. Furthermore,
we implement the ML-Octree structure on one Kepler GPU
for a higher performance gain. Finally, a distributed ML-
Octree has been implemented on GPU clusters. The experi-
mental results show that (1) ML-Octree can acquire the
update performance gain of an order of magnitude, (2) the
GPU-aided ML-Octree can accelerate 5.07� faster than a
parallel ML-Octree with 8 CPU threads on average, (3) the
load-balancing scheme can improve the GPU-aided ML-
Octree by 2.3� on average, and (4) the distributed G-ML-
Octree can efficiently support large-scale simulations.
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