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a b s t r a c t 

Cyber-physical systems (CPS) integrate cyber-infrastructure comprising computers and net- 

works with physical processes. The cyber components monitor, control, and coordinate the 

physical processes typically via actuators. As CPS are characterized by reliability, availabil- 

ity, and performance, they are expected to have a tremendous impact not only on indus- 

trial systems but also in our daily lives. We have started to witness the emergence of 

cloud-based CPS. However, cloud systems are prone to stochastic conditions that may lead 

to quality of service degradation. In this paper, we propose M2CPA - a novel framework 

for multi-virtualization, and multi-cloud monitoring in cloud-based cyber-physical systems. 

M2CPA monitors the performance of application components running inside multiple vir- 

tualization platforms deployed on multiple clouds. M2CPA is validated through extensive 

experimental analysis using a real testbed comprising multiple public clouds and multi- 

virtualization technologies. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

CPS is an interdisciplinary approach for combining communication devices, computation, and actuation for performing

time-constrained actions in a predictive and adaptive manner [2,3] . This is done using a feedback loop within the physical

system, which enables the embedded and network systems to monitor and control the physical processes. In this way

the design of a previous model can be modified using feedback from the physical system. This also makes the system

more robust, reliable and free from any past errors. According to the National Institute of Information and Communication
� This journal paper is a significantly extended version of conference paper published by IEEE Cloud 2019 conference [1] . 
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Fig. 1. Cyber-physical system and an example of stream data management for highway monitoring system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technology (NIST) [4] , cyber-physical cloud computing is “a system environment that can rapidly build, modify and provision

cyber-physical systems composed of a set of cloud computing based sensors, processing, control, and data services”. 

CPS consists of three main elements: cyber, physical, and network components. Each of these components consists of a

few other components. For example, the cyber component consists of two components: cloud and IoT devices where the IoT

devices work as a bridge between physical and cyber components. The network component is used for interlinking the cyber

and physical components and transferring and controlling data as shown in Fig. 1 . In order to develop a robust architecture

for a CPS solution, data needs to be collected from various physical sources (for example traffic, education, and healthcare

systems [5] ) using IoT devices (e.g. sensor, mobile, and a camera). Every day larger applications with more devices are being

connected with CPS, which means that a larger variety of physical conditions need to be considered, and this requires larger

volumes of data to be extracted using IoT devices, and filtered and processed using cloud data centres (cloud). Therefore the

main components of a CPS can be summarised as follows: 

1. Physical Component: This component does not have any computation or communication capability; it only includes

biochemical processes, mechanical processes, or humans. Physical components collect and provide data, which is re-

quired to be processed in real time for controlling various activities. Such data is usually highly concurrent and dy-

namic. 

2. Cyber Component: is used for collecting, processing, reporting and controlling all the physical components within

CPS. As it is challenging to manage the concurrent and dynamic data from the physical component of CPS, the cyber

component is divided into two sub-systems. These are cloud data centers, and IoT devices [5] . 

3. Network Component: is responsible for communication between the physical and cyber components or among the

cyber components. The raw data is captured from components such as IoT devices and passed to the cloud. Also, cloud

devices send control and feedback to the IoT devices using network components. Main factors that affect network

communications are bandwidth, topology, latency, and congestion [6,7] . 

1.1. Research context 

Fig. 1 describes a conceptual implementation of highway traffic monitoring services using a cyber-physical system. The

sensed data of highway traffic (for example the position of the cars) is sent as a stream of events that is physically separated

and used for problems such as traffic monitoring and management. This requires the processing of huge volumes of data

with high efficiency using the capabilities of multi-cloud environments [3,8,9] . 

To effectively explore data processing in a multi-cloud environment, three services for highway traffic are considered.

These are: (i) Toll Collection Notification, (ii) Accident Alerts, and (iii) Car Count (a detailed discussion is given in Section 4 ).

The system will manage its resources in terms of sensor data and other saved data available in the cloud and provide the

requested information to the driver. For example, the highway traffic system will send an alert to drivers on their navigation

systems to inform them to take appropriate routes (push mode). Also the driver can request information about traffic routes,

and then make informed decisions based on that information (pull mode). 

The performance of a cyber-physical application in cloud systems may vary considerably due to factors such as applica-

tion type, interference effect (caused by other applications running in the same or different containers), resource failure and

congestion. Quality of Service (QoS) denotes the levels of service offered by the cloud provider in terms of service features

depending on the user’s/application’s requirements [10] . QoS is generally defined in terms of application specific features

such as availability, pricing, capacity, throughput, latency, and reliability or user dependent features such as certification,

reputation, and user experience rating. QoS is essential for both the user who expects the cloud provider to deliver the

published services, and the provider who needs to find a balance between the offered service and functional cost. Agree-

ment between the user and the provider on the quality of service offered leads to a Service Level Agreement (SLA) [11] .

SLA creates transparency between user and cloud provider by defining a common ground, which is agreed by both user
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and cloud provider. Appropriate penalties are normally associated with the SLA, which are applied in case of SLA viola-

tions. Therefore, it is imperative to monitor the QoS provided by the cloud provider to check whether the SLA is satisfied

or not. Monitoring is required for different purposes such as resource provisioning [12] , scheduling [13–15] , security [16] ,

and re-encryption [17,18] . To detect any performance anomaly or to ensure that SLA requirements are achieved, continuous

monitoring is essential [19] . 

In virtualized environments, an application may be distributed over multiple containers/VMs, each running some services

communicating over REST-based APIs [20] . Monitoring is required at both individual container/VM level or at application

level to guarantee that the QoS requirements of the application are satisfied. There are some lightweight endpoints available

that can easily be plugged in to perform the monitoring operations for a single environment application. However, for

complex containerized applications, it is challenging to have a single monitoring end-point, because each container may be

hosted on different environments that do not support a common monitoring endpoint. 

1.2. Research contributions 

Currently, there are multiple monitoring frameworks e.g. Docker stat, CAdvisor, DataDog, Amazon CloudWatch, CLAMS 

[21] , available to monitor the applications running in the cloud. However, most of the frameworks are either cloud provider

specific e.g. Microsoft Azure Fabric Controller, or virtualization architecture specific e.g. CAdvisor. These monitoring tools

are not able to satisfy the complex dependent requirements of CPS that can provide holistic monitoring across multi-cloud

scenarios supporting different types of virtualization. Monitoring the performance of services in such a complex environment

is very challenging for the following reasons: 

• The deployment environment for cyber-physical applications in multi-cloud environments is very complex as there 

are numerous components running in heterogeneous environments (VM/container) and communicating frequently 

with each other using REST-based/REST-less APIs. In some cases, multiple components can also be executed inside a

container/VM making any failure or anomaly detection very complicated. It is necessary to monitor the performance

variation of all the service components to detect any reason for failure. 

• Considering the virtualization environment, deployment of cyber-physical applications in containers is very differ- 

ent from that in VM. Containers are defined in terms of namespace and cgroups that share the same host machine

whereas each VM is isolated with its own operating system. Also, the resource limitation in containers can be hard or

soft as compared to VM which is always strict (hard). A soft limit allows containers to extend beyond their allocated

resource limit creating higher chances of interference [22] . Monitoring the performance of cyber-physical applications

in such cross VM-container scenarios is very important to ensure that services are executing in a desirable way. 

• Modern applications can be distributed across multiple cloud environments including bare metal, public or private

cloud depending on several features such as cyber-physical application component requirements, deployment loca- 

tions, security concerns, cost, etc. Different cloud providers have their own way of handling deployment and man-

agement of cyber-physical application components. Due to the heterogeneity of cloud providers, it is complex to have

holistic management of application components. 

Based on the aforementioned challenges, this paper addresses the following research questions: 

• How to monitor the performance of distributed software components of cyber-physical applications running on het-

erogeneous virtualization platforms within the same or different cloud service providers? 

• How to aggregate QoS measures of cyber-physical applications running in multiple cloud environments to give a

holistic view of performance? 

To answer these questions, this paper makes following new contributions: 

• It introduces a novel framework: Multi-virtualization, Multi-cloud Monitoring in Cyber-Physical Applications (M2CPA) 

that provides a holistic approach to monitor the performance of CPS applications composed into multiple applications

deployed/running in a multi-cloud and heterogeneous environment (e.g. using different virtualization technologies). 

• It validates the proposed monitoring framework M2CPA, via a proof of concept implementation that monitors cyber-

physical application performance running across different cloud service providers using different virtualization means. 

Experimental analysis verifies the efficacy of our proposed monitoring framework. 

The rest of this paper is organized as follows. Section 2 discusses recent related work. The M2CPA framework design

is presented in Section 3 . Section 4 presents the proof of concept implementation of M2CPA and Section 5 discusses the

outcomes of experimental evaluation. The paper concludes by giving some future work suggestions in Section 6 . 

2. Related work 

There are already industry monitoring tools whether in containers [Docker, CAdvisor, Datadog] or in cloud [CloudWatch,

Microsoft Azure Fabric]; and academic monitoring tools whether in VMs [14,21] or even in containers [23,24] . 
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Table 1 

Comparison of related work. 

Parameter(monitoring) Related work M2CPA 

Docker CAdvisor Datadog CloudWatch CLAMS Microsoft Azure Fabric PyMon 

Virtual Machine (VM) ✗ ✗ ✗ 
√ √ √ 

✗ 
√ 

Container 
√ √ √ √ 

✗ 
√ √ √ 

Multiple Cloud 
√ √ √ 

✗ 
√ 

✗ 
√ √ 

Cyber-Physical Systems 
√ √ √ √ 

✗ 
√ 

✗ 
√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Docker 1 provides an inbuilt monitoring tool, Docker stats, to examine the resource usage metrics of running containers.

The various metrics provided by Docker stats are CPU and memory usage, and actual free memory for each container.

However, it does not inspect the performance of individual applications running inside a container. Our proposed framework,

M2CPA, improves on this significantly by monitoring the performance of each application running inside a container. Along

with this, M2CPA also gathers the monitoring information from containers running in heterogeneous cloud environments

(e.g. Amazon, Azure, Openstack, etc.). By aggregating the data collected from multiple containers running across multi-cloud

environments, one can perform different types of performance comparisons to assess the performance in containers. 

CAdvisor 2 is an open source monitoring framework that displays monitoring performance and resource usage in real

time. It provides CPU usage, memory usage, network and throughput information of the running containers. One can access

the monitoring information only for two minutes duration, as there is no associated storage mechanism that can retain

the data for a longer interval. In contrast M2CPA monitors the performance of individual applications that run inside the

container/VM and also stores monitoring data in a database shared by both container and VM. 

Datadog 3 is a monitoring service that gathers metrics such as CPU utilization, memory, and I/O for all containers. It is

an agent-based system that sends data only to the Datadog cloud, making the monitoring job completely dependent on

Datadog’s cloud. On the other hand M2CPA has the ability to store data in any cloud service provider. 

CloudWatch 

4 is a commercial cloud monitoring tool that tracks CPU, memory usage, and network but cannot monitor

application-level QoS metrics. In addition, it is not platform independent (i.e., it works only for Amazon platform and not

for Azure). Similarly, Microsoft Azure Fabric 5 Controller is limited to work only on the Azure platform. M2CPA, on the other

hand, has the ability to monitor applications in heterogeneous cloud environments. 

In [21] the authors present CLAMS, an application monitoring framework for multi-cloud platforms. Moreover, their mon-

itoring framework considers different QoS parameters for web-applications running inside a VM. The model retrieves the

QoS performance for different cloud layers. However, the model does not monitor the performance of containers. In addi-

tion, the model is constrained to only web applications. This is different to our framework, which monitors cyber-physical

applications that run inside containers and VMs. 

In [23] the authors present a framework called PyMon that collects resources like CPU utilization, memory utilization,

and network by using Docker container management API. In contrast to [23] , our study uses standalone libraries to monitor

applications inside the virtualization environment (e.g. containers) and hence can work in heterogeneous environments (e.g.

from VM to container). The work published in [24] presents a study between the uses of Virtual Machines and Docker

containers comparing the QoS parameters evaluation. They only use Docker containers for their experiments. The authors

use the Docker container process to monitor the CPU utilization but they do not validate any application specific parameters

of the containers that are being executed. 

In [14] , the authors present an architecture that collects, analyses and presents the physiological data. Also, it captures

data from numerous sensors for further transformation and analysis. This paper is mainly concerned with monitoring par-

ticular parameters for performing scheduling in only the cloud environment. In contrast, our framework monitors the per-

formance of an application in a holistic cyber-physical system. 

Existing monitoring solutions discussed above do not have the ability to monitor the performance of cyber-physical ap-

plications running inside multi-virtualization heterogeneous cloud environments (container/VM). A comparison of different

related works with our proposed M2CPA is presented in Table 1 . 

Our proposed work differs from the aforementioned solutions in that it can be used to holistically monitor the perfor-

mance of cyber-physical applications components running inside containers and VMs in multiple cloud environments. 

3. M2CPA monitoring framework design 

This framework consists of two main components namely a monitoring manager and a monitoring agent. Monitoring

agents (represented as ˜ A ) are placed inside containers/VMs that track the performance of underlying applications. A mon-
1 https://www.docker.com . 
2 https://github.com/google/cadvisor . 
3 https://www.datadoghq.com . 
4 https://aws.amazon.com/cloud-watch . 
5 https://azure.microsoft.com . 

https://www.docker.com
https://github.com/google/cadvisor
https://www.datadoghq.com
https://aws.amazon.com/cloud-watch
https://azure.microsoft.com
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Fig. 2. Overview of M2CPA framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

itoring agent collects the system-level statistics for each service and sends the information to the manager. The manager

deployed in a distant multi-virtualization, collects the information from different monitoring agents and stores this data in

a database for further performance analysis and prediction. The configuration of multi-virtualization (containers/VMs) can 

be either homogeneous or heterogeneous each of which is provisioned on different cloud providers. Each container/VM may

execute one or more services of the same or different types. Fig. 2 presents a high-level view of the M2CPA framework. 

A detailed discussion on the design of the monitoring agent and monitoring manager is given below. 

3.1. Monitoring agent 

The monitoring agent is a software component that collects the information from applications running inside (contain-

ers/VMs). It has the ability to work in different cloud platforms. Agents will wait for requests coming from the manager

to push monitoring information to the manager. M2CPA uses HTTP request for communicating system information be-

tween agents and managers. The agents are implemented using the SIGAR ( https://github.com/hyperic/sigar/ ) and RESTLet

( https://restlet.com/ ) libraries that enable them to run on any cloud providers. SIGAR is a multiplatform library (Unix, Win-

dows, Solaris, FreeBSD, Mac OS, etc.) written in Java that provides an API for accessing operating system information while

the RESTLet is a Java library that makes it easy to develop HTTP REST APIs. 

The M2CPA framework uses SIGAR to obtain the defined system parameters, namely CPU usage, memory usage, free

memory, network usage, etc. RESTLet is used in the development of the services of the monitoring agents that would be

accessed by the manager to obtain monitoring data. 

The monitoring agent is packaged into a jar file and configured to run during the multi-virtualization (container/VM)

boot process. First, agent registration information must be sent to the manger using HTTP PUT request. Second, the agent

will send data periodically to the manager using HTTP POST request. Finally, agent configuration will be sent to the manager

by using HTTP GET request that can update agent configuration parameters. The agent utilizes functionalities provided by

SIGAR to retrieve the application metrics and other custom built APIs. SIGAR helps in getting the information parameters for

the specific application. Using these functionalities, the agent monitors the specified features for each application ID. The

agent will start to retrieve the information parameters for this application such as CPU utilization, memory utilization, and

so on. The manager utilizes a pull technique that retrieves the information parameters from all the distributed agents and

stores them in an SQL database. 

3.2. Monitoring manager 

The monitoring manager is a software component that receives monitoring information from agents deployed inside

(containers/VMs) scattered in the heterogeneous cloud environment, and provides an API for accessing data saved by other

services or other applications. Communication between manager and agents is based on pull-based or push-based mecha-

nisms. The manager makes use of the RESTLet library in building the clients accessing the services of the agents. For each

registered monitoring agent, the manager starts a thread that coordinates a RESTLet client for access to agent data. Each

time the data of a monitor agent is received the manager stores the results in a MySQL database for further access by the

graphical management tool. 

The sending of information by the monitoring agent to the monitoring manager occurs as a sequence of steps: First,

agent sends a registration request to the manager, and the manager receives the request and registers the agent, an access

key and an endpoint are sent with the data returning to the agent. Second, the manager executor (uses Push mechanism) is

enabled to receive the data sent by the agent using their IP address. Lastly, the agent periodically queries the manager for

its configuration (Change Configuration). Dynamic configuration enables real-time agent management. 

https://github.com/hyperic/sigar/
https://restlet.com/


A. Noor, K. Mitra and E. Solaiman et al. / Computers and Electrical Engineering 77 (2019) 314–324 319 

Docker 
Container

& 
VM

Agent

System AdministratorAd i i

1 – Start Agent

Manager

Centralized Data
3 – Send Data

2 – Register Agent

Fig. 3. M2CPA data acquisition model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complete monitoring application is represented in the form of a data acquisition model as given in Fig. 3 . It consists

of three steps. Initially, the system administrator starts the monitoring agent (Step 1). Subsequently, the administrator reg-

isters the agent (An HTTP PUT request registers the agent’s IP) to the manager (Step 2). The agent continuously monitors

the system (applications, containers, or VMs). Finally, all the monitoring agents send the monitored information periodically

to the manager using the HTTP POST request. (Step 3). The manager stores the received data in a shared database and also

processes any query (if received) related to the performance of the applications. 

4. M2CPA implementation 

Our M2CPA monitoring framework is implemented in Java and works for both containers and VMs running on any host

operating system (Linux, Windows or Mac OS) running on any cloud platform. 

To validate the M2CPA framework, we built a highway monitoring system for automated toll collection notification, ac-

cident alerting, and car counting using a stream data management system. The choice to use these three applications is

justified by the need to evaluate the effectiveness of M2CPA in a variety of scenarios running on a distributed and multi-

cloud environment and with different virtualisation techniques. 

The highway monitoring application was built on the basis of work published in [25] which presented the Linear

road benchmark for evaluating stream data management systems. Through a simulator called MIcroscopic Traffic SIM-

ulation Laboratory (MITSIMLab) it is possible to construct traffic descriptor files of vehicles that travel on a high-road

( http://www.cs.brandeis.edu/ ∼linearroad/mitsiminstall.html ). The generated data is used as tuples to be sent to the flow

processing system. In [25] the authors define some queries that use the data generated in the context of a motorway moni-

toring application. Following the authors’ proposal, we run MITSIMLab and generate a file corresponding to 3 h of vehicular

traffic. We programmed three historical data queries: one for toll billing notification; another to detect accidents; and finally

to count the number of cars in each track and segment of the highway in real time. Queries were implemented using Esper

( http://www.espertech.com/esper/ ). Esper is a language and an execution machine for processing events and focusses on

dealing with high-frequency time-based event data as presented in Fig. 4 . 

Queries were built to cover constraints and conditions imposed by the Linear road benchmark. Therefore the tuple was

used to simulate the position of a car at a certain instant of time. This data was encapsulated in an event composed of

the attributes present, and represented the flow of information coming from the positions of the vehicles reported through

sensors as shown in Table 2 . 

The data sent is: TIME, VID, SPD, XWAY, LANE, DIR, SEG. TIME represents the instant of time in which the information

was obtained. VID represents the vehicle identifier. SPD, speed of the vehicle. XWAY on which freeway the car travels. LANE
Table 2 

Input tuple schemas. 

Input tuple Schema 

Car Position Data (Time, VID, Spd, XWay, Lane, Dir, Seg) 

http://www.cs.brandeis.edu/~linearroad/mitsiminstall.html
http://www.espertech.com/esper/
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Fig. 4. Simulation highway traffic pattern. 

Fig. 5. Toll notification query on Esper language. 

Table 3 

Output tuple schemas: continuous queries. 

Query response Schema 

Toll-Notification (VID, Seg) 

Accident-Alert (Xway, Lane, Seg) 

Car-Count (VID, XWay, Lane, Seg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the road strip on which the car is. DIR, the direction, east or west. Finally, SEG represents the segment of the highway from

which the position was issued. 

The Esper language is based on the data-query pattern defined by SQL-92. For example, to define the toll collection

notification (see Fig. 5 ), it used a grouping function that counted the number of segments (SEG) reported by the same

vehicle in a 30 s time window. In the case of a same vehicle (IE VID) reporting a position of different segments within 30 s

a toll collection event was triggered. 

Following similar concepts, the car count query only counts the different VIDs, grouping these results by XWAY, LANE,

and SEG. As well, the accident alert query counts the number of vehicles that have zero speed, grouping them by XWAY,

LANE and SEG. When the number of vehicles with zero speed in the same tricycle: XWAY, LANE and SEG is greater than

two, an accident alert event is generated as presented in Table 3 . 

5. Experimental evaluation 

We conducted an experimental evaluation of the M2CPA monitoring system to evaluate its effectiveness and efficiency

in monitoring cyber-physical applications running in multi-virtualizations deployed in multi-cloud environments. An appli- 

cation based on a highway data streaming system is deployed in a multi-cloud (Amazon and Azure) environment having

both container and VM running it. We test our application by performing an extensive set of experiments using a 3 h data

workload. 

We considered both Amazon EC2 and Microsoft Azure clouds where we ran virtual machines using Ubuntu operating

system ( https://www.ubuntu.com/ ) 16.04 on which the Docker ( https://www.docker.com/ ) platform, version 17, was installed

to execute the application container. The VMs on Azure have the standard A1 configuration, with 1 VCPU and 2 gigabytes

(GB) of memory for each machine, which consist of four VMs. The Amazons VMs were t2.micro instance, with 1 VCPU and

1GB of memory for each machine, which consist of two VMs. 

The machine configurations on which experiments were conducted are as follows: first machine used Java (Version 8)

virtual machine (used for S1). The second machine used Java (Version 8) virtual machine (used for S2). The third machine

installed the Docker platform (version 1.18.0) and using Docker container that uses one image for Java to run (S3). The final

machine used Java virtual machine and used this machine in Linear Road data producer to be consumed by S1, S2 and S3. 

The application consisted of a cyber-physical system for monitoring highways. The sensed data (the position of the cars)

is sent in a stream of events to be processed by three consumers: Toll Notification, Accident Alert and Car Count. The work-

load was composed of a file with 3 hours of heavy traffic. Three different scenarios covering different forms of virtualization

https://www.ubuntu.com/
https://www.docker.com/
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Table 4 

Applications scenarios deployed at containers and VMS. 

Environment Scenario Containers VMs 

Amazon Web Services (AWS) [A] One-cloud Virtualization only (S1) 1- Linear-Road [A] 1- 

Toll-Notification [A] 

Microsoft Azure Fabric 

[M] + Amazon Web Services 

(AWS) [A] 

Multi-cloud Virtualization only (S2) 1- Linear-Road [A] 1- Car-Count 

[M] 

Microsoft Azure Fabric 

blue[M] + Amazon Web Services 

(AWS) [A] 

Multi-cloud Cross Container / VM 

(S3) 

1- Accident-Alert [M] 1- Linear-Road [A] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in a multi-cloud environment (Amazon Web Services A and Microsoft Azure Fabric M) were proposed in order to obtain

maximum reach for the various programming models of the cyber-physical system as shown in Table 4 : 

• Scenario 1 (S1) – A toll notification consumer and Linear road data producer running on the same cloud service.

In our case, this was represented by the deployment of toll notification on the same cloud service as the Linear

road data producer. Both were deployed on Amazon Web Services(A). The aim of the scenario was to understand the

performance of applications running on the same cloud service. 

• Scenario 2 (S2) – In this scenario we launch two virtual machines, one in each cloud. In Microsoft Azure Fabric (M),

we run a car count consumer application. In Amazon Web Services (A), we run a Linear road data producer. The aim

of the scenario was to understand the performance of the application running on multiple clouds. 

• Scenario 3 (S3) – The last scenario serves as an evaluation of the type of virtualization (the data consumer is deployed

in a Docker container). Within Microsoft Azure Fabric (M), we run accident alert in a container. In Amazon Web

Services (A), we run a Linear road data producer. The aim of the scenario was to understand the performance of the

application running on multiple clouds with multiple virtualization techniques. 

We emphasize that the data load generated by the Linear road data producer was simultaneously sent to all three con-

sumer applications within scenarios S1, S2 and S3. 

5.1. CPU results 

The CPU values for all scenarios is shown in Fig. 6 . The monitoring agents send monitoring information to the manager

every 5 s. As shown in Fig. 6 the average usage of CPU (%) for the toll notification service was 0.36%. For the accident alert

service, in the Azure container, the average usage of CPU was 3.48%. However, the average usage of CPU for the car count

service running in VM was 4.00%. The Linear road producer that was run in VM, and submitted in Amazon; had a bigger
Fig. 6. CPU usage (Percentage) for services on VMs in Amazon, VM in Azure and container in Azure. 
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Fig. 7. Memory usage (MB) for services on VMs in Amazon (A), VM and container in Azure (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU usage of 7.00% because of continuous reading of 3 days worth of data from file and parsing this data using Esper event

to be sent to all consumers. 

5.2. Memory results 

Fig. 7 shows memory usage results obtained from agents monitoring services running on both public clouds. The average

memory usage for the toll notification service that is running in Amazon VM was 618MB from a memory total of 992MB as

shown in Fig. 7 (A). On the other hand, the memory usage on Azure is larger than on Amazon. The larger memory use on

Azure cloud can be explained by the difference of virtual hardware configuration between the two clouds. When running

a container in Azure, the average memory usage for the accident alert service was 1405MB as shown in Fig. 7 (B). This is

from a memory total within the container of 1920MB. Further, the average memory usage for the car count service running

within a VM in Azure was 1312MB (as shown in Fig. 7 (B)). This is from a memory total for the VM of 1936MB. The Linear

road data producer was run in VM, and has an average of memory usage of 559MB as shown in Fig. 7 (A). This is from a

memory total for the VM of 992MB. 

5.3. Network results 

Fig. 8 shows network usage results obtained from agents monitoring the network traffic of the services. In the toll notifi-

cation service, car count service, and the Linear road data service (workload of a file with 3 h of heavy traffic), the download

and upload rates of a VM or container are presented. For the accident alert service the download and upload rate of the

container are shown. The results show that the traffic caused by using a 3 h data workload, was detected and verified by

the monitoring system. The network traffic of the toll notification service running in an Amazon cloud VM, was 495KB for
Fig. 8. Network traffic (KB) for services on VMs in Amazon, VM and container in Azure. 
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download and 161KB for upload. The network traffic of the accident alert service running in an Azure cloud container, was

464KB for download and 149KB for upload. The network traffic for the car count service running on an Azure cloud VM,

was 548KB for download and 823KB for upload. The Linear road producer service had a network traffic of 399KB for down-

load, and 1563KB for upload. This high upload is expected because it is sending the same data 3 times to all other services

running on multiple clouds. 

5.4. Results summary 

In the previous sections we clearly see the effectiveness of our M2CPA framework in accurately monitoring the individual

components of a cyber-physical application distributed across multiple clouds using multiple virtualisation means including

VMs and containers. The M2CPA framework was able to calculate and report accurate performance metrics of CPU usage,

memory usage, and network usage for 3 scenarios of a traffic monitoring application. Our work improves significantly on

current monitoring tools in that it provides a unique combination of features that include a) monitoring the performance of

cyber-physical application sub components running inside individual containers and individual VMs, b) gathers monitoring

information from applications/sub-applications running inside heterogeneous cloud environments (e.g, Amazon, Azure, Open

Stack, etc) and aggregates the results via an agent based system, c) stores monitoring data in a database shared by both

containers and VMs, d) monitored data can be stored and accessed on any cloud provider. 

6. Conclusion and future work 

With the anticipated advent of new computing and networking technologies, we can expect to see billions of more

devices being connected to the Internet as part of cyber-physical systems for critical applications such as smart healthcare,

and smart cities. Developing reliable monitoring frameworks that can accurately assess the performance of such critical

applications is extremely important. But with the number of components, and complexity of such applications expected

to increase, monitoring their performance accurately and efficiently becomes more challenging. In this paper, we propose,

develop and validate M2CPA – a novel framework for efficient monitoring of cyber-physical applications based on multi-

virtualization (containers/VMs) and multi-cloud environments. The proposed solution provides users the ability to monitor

the performance of cyber-physical applications that run inside containers and VMs and report their metrics performance

in real-time. We developed a proof-of-concept implementation of the proposed solution using Docker containers and VMs

deployed on Amazon and Azure clouds. The proposed system was evaluated using experimental analysis that considered

diverse scenarios with evaluation outcomes validating the effectiveness of M2CPA in monitoring the performance of cyber-

physical applications in a multi-virtualized and multi-cloud environment. Our future work will expand the framework to

monitor physical devices and application container migration to develop efficient deployment and orchestration strategies

for cyber-physical applications. 
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